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Abstract 

For snow-avalanche hazard mapping, one needs efficient tools that nevertheless capture the essential 

physical processes. The code MoT-PSA described here is based on the two-layer depth-averaged 

formulation for mixed snow avalanches developed by Eglit and co-workers in the 1980s but is extended 

to three-dimensional terrain and uses a fast numerical scheme based on the method of transport. 

Compared to previous works, we introduce novel formulations for the suspension and deposition of 

snow from the dense core. Snow cover and air entrainment are quantified with physics-based models. 

A sensitivity study of the model parameters on an idealized topography shows that both the dense core 

and the parameters of the powder snow cloud (PSC) governing particle suspension and settling 

significantly affect the dynamics. As expected, we observe that snow cover entrainment favours the 

formation of large powder snow clouds with long runout. The powder snow avalanche that occurred in 

Lom (Norway) on 27 February 2020 is back-calculated using MoT-PSA. With plausible parameter 

values, the model reproduces the dense core stopping at the gully's base and the dilute powder snow 

cloud travelling across the frozen lake for almost one kilometre. 
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1. Introduction 

Mixed snow avalanches (henceforth also called powder snow avalanches) are characterized by three 

distinct flow regimes (Sovilla and others, 2015): A dense core is formed when a snow slab is released 

and entrains the dense snow cover. Where collisions between snow particles dominate over enduring 

frictional contacts in parts of the flow, a fluidized flow regime is attained, which is more dilute and 

faster than the dense core. An upper suspension layer (also termed powder snow cloud, abbreviated as 

PSC in the following) forms by suspension of fine snow grains from the fluidized flow and may grow 

in size (up to 100‒200 m high) by entrainment of ambient air if its mass is sufficiently high. The PSC 

is mainly above the front and body of the avalanche but may detach from it and reach longer runout 

even on flat terrain and counter-slopes. Thus, extensive damage may be produced by the PSC itself, 

which warrants its implementation in numerical models for hazard mapping.  

Because of their simplicity, most of the existing operational numerical avalanche models (e.g., 

Bartelt and others, 2017) only describe the dense core and neglect the formation and dynamics of the 

PSC. The use of such models is only adequate when modelling wet snow avalanches or small slab 

avalanches on relatively flat terrain where powerful PSCs cannot develop. The dynamics of pure PSCs 

(i.e., detached from the dense/fluidized core) were explored in the 1970s with centre-of-mass models 

endowed with dynamically changing height and length (Kulikovskiy and Sveshnikova, 1977). Eglit 

(1983) and Nazarov (1991) derived and coded depth-averaged equations in one dimension for a two-

layer model, in which the bottom layer represents the dense core and the upper layer the PSC. They 

included snow cover and air entrainment, so that the density of the PSC can evolve. Later, Fukushima 

and Parker (1990) combined the centre-of-mass approach of Kulikovskiy and Sveshnikova with the 

four-equation model of turbidity currents by Parker and others (1986) to model non-Boussinesq PSCs. 

In addition to the volume, mass and momentum conservation equations already identified by Eglit 

(1983), Fukushima and Parker (1990) included an additional equation for the conservation of turbulent 

kinetic energy. However, they did not model the dense core. All these approaches were limited to two-

dimensional terrain, in terms of a prescribed cross-section of the avalanche path which must be chosen 
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by the modeller. Naaim and Gürer (1998) formulated a fully three-dimensional model of the suspension 

layer including erosion, sedimentation and a two-equation turbulence model, for which a 2D depth-

averaged dense-flow model of the Voellmy-type provides the boundary conditions through one-way 

coupling, i.e., the effect of the suspension layer on the dense flow is neglected. Sampl and Zwinger 

(2004) developed a similar approach but solved the dense-flow and suspension-layer equations 

simultaneously to achieve two-way coupling. Both models are computationally very demanding. More 

recently, Bartelt and others (2016) proposed a two-layer depth-averaged model for powder snow 

avalanches, whose underlying physical assumptions are, however, debated (Issler and others, 2018).  

In this paper, we present a new two-layer depth-averaged code – MoT-PSA (Method of Transport 

– Powder Snow Avalanche) – to model mixed snow avalanches. The aforementioned regimes in mixed 

snow avalanches have been observed to produce quite sharp and distinguishable transitions in 

radargrams, impact pressures, velocities, densities (Sovilla and others, 2015) and deposits (Issler and 

others, 2020). This justifies modelling the structure of a mixed snow avalanche with distinct layers. For 

the sake of simplicity, we provisionally model the dense core and fluidized layer as a basal layer with 

constant density. An upper powder snow cloud layer may then form, for which formulas describing its 

interaction with the basal core and the surrounding air must be specified. The longitudinal extent of the 

non-suspended part of snow avalanches is typically two orders of magnitude larger than their thickness, 

which justifies using a depth-averaged approach to reduce the computational cost. The length–to–height 

ratio is only O(10) for the PSC so that depth-averaging is harder to justify, but the gain in computational 

efficiency of a code outweighs the loss of accuracy in hazard-mapping applications, as experience with 

a 1D depth-averaged code (Issler, 1998) has shown. Moreover, variations of avalanche variables like 

velocity, density and pressure along the depth may be captured partly through adequate parametrization, 

although complex 3D phenomena related to turbulence have to be neglected in a depth-averaged 

approach. MoT-PSA was initially designed to extend Eglit's (1983) and Nazarov's (1991) two-layer 

model to three-dimensional terrain (Issler, 2023). It was therefore implemented within the MoT 

framework, already developed for dense snow avalanches (MoT-Voellmy, Issler, in preparation). Along 

the way, some of Eglit's closure assumptions concerning the mass exchange rates between the layers 

were modified, however, to account explicitly for the shear strength in the snow cover and the dense 
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layer, to include deposition, and to make use of more recent experiments on the entrainment of ambient 

fluid in density currents. In the first part of this paper, we describe the mathematical model of MoT-

PSA. In the second part, we perform a sensitivity analysis on an idealized parabolic topography to 

derive the influence of the model parameters on the flow dynamics. We then back-calculate a powder 

snow avalanche that happened in Norway to verify that the salient features of powder snow avalanches 

are captured by the model.  

 

2. MoT-PSA model equations 

Two depth-averaged flow layers are used to model mixed snow avalanches (Fig. 1). The bottom layer 

(denoted by index 1) represents the dense core, while the upper layer (denoted by index 2) models the 

powder snow cloud. The fluidized layer (Schaerer and Salway, 1980; Issler and others, 1996, 2020; 

Sovilla and others, 2015)—earlier called "light flow" or "saltation layer"— is not modelled explicitly 

but embedded within the dense layer. An erodible snow cover (denoted by index 0 in the following) is 

also considered. The index a refers to the ambient air. 

In the mathematical model, the avalanche flows over a general three-dimensional topography Σ 

described by a function 𝑍(𝑋,𝑌) in a global Euclidian coordinate system, where 𝑋 and 𝑌 are in the 

horizontal plane. On Σ, we define a curvilinear coordinate system, where the x-coordinate lines project 

vertically on the X-coordinate lines of the Euclidian system, and analogously for the y-coordinate lines. 

At each point on Σ, a z-coordinate line normal to Σ is defined, with z = 0 on Σ. The metric tensor on Σ 

is given by 

 

 𝐺 = (
1 + (𝜕𝑋𝑍)

2 𝜕𝑋𝑍 𝜕𝑌𝑍

𝜕𝑋𝑍 𝜕𝑌𝑍 1 + (𝜕𝑌𝑍)
2
) . (1) 

 

It is used to calculate the scalar products of vectors in this non-orthogonal coordinate system and to 

derive the curvature (Issler, in preparation).  
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Figure 1. Cross-section of a two-layer powder snow avalanche. The bottom layer (1) represents the dense core 

(and the fluidized layer), and the upper layer (2) represents the powder snow cloud, which entrains air (a). The 

two layers may entrain the snow cover (0). The primitive variables are indicated with blue vectors and within the 

shaded white boxes. The boundary stresses are indicated with black vectors, and the volumetric exchange rates 

are denoted with red arrows. 

 

2.1. Conservation equations 

Particles in the suspension layer are typically so small that they have the density of ice, 𝜌ice = 917 kg 

m−3. Snow clods in the dense/fluidized layer have considerably smaller density, 𝜌𝑠 , in the range 200–

600 kg m−3 (McClung and Schaerer, 1985) but may be embedded in a matrix of snow grains (Issler and 

others, 2020). The model assumes the components of the granular mixture – interstitial as well as 

ambient air and snow particles or snow grains – to be incompressible. The bulk density of the mixture 

can nevertheless change because the volumetric concentration of the snow particles need not be 

constant. 

Incompressibility of the constituents implies that not only mass and momentum but also the volume 

is conserved in the flow. Consequently, the density of at least some layers must be variable if they 

exchange mass between each other. In the PSC, particle concentration may change by orders of 

magnitude so that it is imperative to solve the volume, mass and momentum conservation equations of 

layer 2. With this, the ambient air density, 𝜌𝑎, can consistently be held constant. For simplicity and 

efficiency, MoT-PSA assumes the density of the snow cover, 𝜌0 to be constant, and the dense/fluidized 

layer, 𝜌1, to also be constant. This simplification comes, however, at the price of volume or mass not 
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being strictly conserved in some situations: If, say, the snow cover with density 𝜌0 is eroded to a depth 

Δℎ0 by the dense-flow layer with density 𝜌1 and flow depth ℎ1, 𝜌0 remains the same but 𝜌1 changes to 

𝜌1
′ =

𝜌1ℎ1+𝜌0Δℎ0

ℎ1+Δℎ0
= 𝜌1

1+(𝜌0 𝜌1⁄ )⋅(Δℎ0 ℎ1⁄ )

1+Δℎ0/ℎ1
. In the situation where the snow cover and the dense flow have 

similar density (𝜌1 ≈ 𝜌0), the density of layer 1 does not change after erosion (𝜌′1 ≈ 𝜌1), and mass and 

volume are hence exactly conserved. However, with typical values for the dense core, 𝜌0 ≈ 0.5𝜌1, 

Δℎ0 ≈ 0.3ℎ1, one obtains 𝜌′1 ≈ 0.85𝜌1 ; similarly, for a dilute, fluidized flow with 𝜌0 ≈ 3𝜌1, 𝜌′1 ≈

1.5𝜌1  results: Erosion has the effect of changing the density of layer 1. Conversely, if one enforces the 

density of layer 1 to remain constant (𝜌′1 = 𝜌1 ), the flow depth is distorted, and mass not strictly 

conserved. Physically, the most reasonable approximation would be to enforce conservation of ice mass 

and accept that layer 1 expels some air into the ambient or ingests air from it as needed. 

MoT-PSA solves conservation equations for the following depth-integrated variables: mass hold-

ups 𝜌0ℎ0(𝑥,𝑦, 𝑡), 𝜌1ℎ1(𝑥,𝑦, 𝑡), 𝜌2ℎ2(𝑥,𝑦, 𝑡), momentum hold-ups 𝜌1ℎ1𝒖1(𝑥, 𝑦, 𝑡) =

(𝜌1ℎ1𝑢1, 𝜌1ℎ1𝑣1) and 𝜌2ℎ2𝒖2(𝑥,𝑦, 𝑡) = (𝜌2ℎ2𝑢2,𝜌2ℎ2𝑣2), and bulk density of the PSC, 𝜌2(𝑥,𝑦, 𝑡). 

The density of the snow cover, 𝜌0, and of the dense core, 𝜌1, are instead assumed to be constant.  

In the presence of an erodible bed, the evolution of the bed depth (ℎ0) can be written as an Exner 

equation: 

 

 𝜕𝑡ℎ0 = −𝐸01 −𝐸02 +𝐷10 + 𝐷20 , (2) 

 

where 𝐸01 and 𝐸02 represent the entrainment rates (m s–1) of the bed into layer 1 and layer 2, 

respectively, 𝐷10 represents the deposition rate of the dense layer, and 𝐷20 represents the settling rate 

of snow particles from the powder snow cloud onto the snow cover. If 𝜌0 is assumed constant, Eqn (2) 

also describes mass conservation (snow particles and air) within the snow cover . 

The volume and exact mass conservation equations for the dense layer are written as 

 

 𝜕𝑡ℎ1 +𝜵∥ ∙ (ℎ1𝒖1) = 𝐸01 − 𝑆12 +𝐷21 −𝐷10 , (3) 
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 𝜕𝑡(𝜌1ℎ1) + 𝜵∥ ∙ (𝜌1ℎ1𝒖1) = 𝜌0𝐸01 −𝜌1𝑆12 +𝜌𝑠𝐷21 − 𝜌𝑑𝐷10 , (4) 

 

where 𝑆12 is the suspension rate from the dense layer into the powder snow cloud and 𝐷21 is the settling 

rate of snow particles from the powder snow cloud onto the dense layer. 𝜌𝑑 is the density of the 

deposited dense core. 𝜵∥ indicates the slope-parallel (∥) component of the gradient operator. 

Equations (3) and (4) express the volume and mass conservation for a dense core with variable 

density. However, in our model, the dense core is simplified to a fluid with constant density 𝜌1. Hence, 

Eqn (3) is not considered. Instead, using the condition 𝜌1 = const., the mass conservation equation (4) 

simplifies to 

 

 𝜕𝑡ℎ1 +𝜵∥ ∙ (ℎ1𝒖1) =
𝜌0
𝜌1
 𝐸01 −𝑆12 +

𝜌𝑠
𝜌1
𝐷21 −

𝜌𝑑
𝜌1
𝐷10 . (5) 

 

The volumes exchanged between layers 0 and 1 differ in the two directions (compare the terms on the 

right-hand side of Eqns (2) and (5) respectively), while the mass exchanged between the two layers is 

conserved. This is a consequence of the assumption 𝜌1 = const. When the snow cover is entrained, it 

loses a volume 𝐸01 per unit time and area, while the dense core gains a volume 𝜌0/𝜌1 𝐸01. For instance, 

in the case 𝜌1 < 𝜌0, when entrained, the snow cover must expand and ingest ambient air to attain the 

(constant) density of the dense core. Similarly, during the deposition process, the bed gains a volume 

𝐷10 per unit time and area, while the flow loses a volume 𝜌𝑑/𝜌1 𝐸01 per unit time and area. The situation 

where 𝜌𝑑 > 𝜌1 physically corresponds to the dense core compressing and sintering to form the final 

deposit, as is observed in nature (Issler and others, 2020).  

The momentum conservation for the dense layer is written as 
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𝜕𝑡 (𝜌1ℎ1𝒖1) + 𝜵∥ ∙ (𝜌1ℎ1𝒖1𝒖1)

=  𝜌1𝒈∥ℎ1 −𝜵∥ (
1

2
𝜌1𝑔𝑧,1ℎ1

2)

− ℎ1𝜵∥ ((𝜌2 −𝜌𝑎 )𝑔𝑧,2ℎ2) − 𝝉01 +  𝝉21∥

− 𝜌1𝑆12𝒖1 + 𝜌𝑠𝐷21𝒖2𝑏 −𝜌𝑑𝐷10𝒖1 , 

(6) 

 

where 𝒈∥ is the slope-parallel component of the gravitational acceleration. The second term on the right-

hand side of Eqn (6) represents the longitudinal pressure gradient that originates from the dense core. 

The third term on the right-hand side represents the longitudinal pressure gradient that originates from 

the superposition pressure from the PSC, cf. Eqn (18). To evaluate these longitudinal pressures, we 

assume for simplicity a hydrostatic stress state and therefore neglect passive and active stress states, 

which may arise in the avalanche during compressional and dilative motion. Introducing a variable 

passive/active earth pressure coefficient has been shown to produce more realistic shapes of the 

avalanche deposit (Gray and others, 1999), but was for simplicity not implemented in the model at this 

stage.  

Introducing the hypothesis 𝜌1 = const., Eqn (6) reduces to 

 

 

𝜕𝑡(ℎ1𝒖1) + 𝜵∥ ∙ (ℎ1𝒖1𝒖1)

=  𝒈∥ℎ1 −𝜵∥ (
1

2
𝑔𝑧,1ℎ1

2) −
ℎ1
𝜌1
𝜵∥ ((𝜌2 − 𝜌𝑎) 𝑔𝑧,2ℎ2)

−
𝝉01
𝜌1

+
 𝝉21∥
𝜌1

− 𝑆12𝒖1 +
𝜌𝑠
𝜌1
𝐷21𝒖2𝑏 −

𝜌𝑑
𝜌1
𝐷10𝒖1 . 

(7) 

 

In the following, we will adopt this hypothesis and hence compute the dynamics of the dense core using 

the conservation equations (5) and (7). However, the code already implements the conservation 

equations (3), (4) and (6), which allow modelling a dense core with variable density if one adds an 

explicit equation for the density or an evolution equation specifying its rate of change in terms of the 

other field variables. 
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The shear stress 𝝉01 acts at the base of the dense layer, while 𝝉21∥ acts between layers 1 and 2, 

which are projected along the flow direction (∥). The term 𝑔𝑧,𝑖 is the component of the gravitational 

acceleration normal to the topography, inclusive of curvature effects: 

 

 𝑔𝑧,𝑖 = {𝑔 cos 𝜃 + 𝜅𝒖‖𝒖𝑖‖
2} , (8) 

 

where 𝑖 = 1,2 and {} are the Macaulay brackets to denote the ramp function defined as {𝜂} =

0 (∀𝜂 < 0), 𝜂 (∀𝜂 ≥ 0). 𝑔 is the acceleration due to gravity, 𝜃 is the slope angle of the topography, 

and 𝜅𝒖 is the terrain curvature in the flow direction, which is calculated with the help of the second 

fundamental form of the surface (Issler, in preparation) and assumed to be the same for the two layers. 

𝑔𝑧,𝑖 may differ for the two layers if these have different velocities. 

The volume, mass and momentum conservation equations for the powder snow cloud are given as 

 

 𝜕𝑡ℎ2 + 𝜵∥ ∙ (ℎ2𝒖2) = 𝐸02 + 𝑆12 − 𝐷21 − 𝐷20 + 𝐸𝑎2 , (9) 

   

 𝜕𝑡 (𝜌2ℎ2) + 𝜵∥ ∙ (𝑓𝜌𝑢𝜌2ℎ2𝒖2) = 𝜌0𝐸02 +𝜌1𝑆12 − 𝜌𝑠𝐷21 − 𝜌𝑠𝐷20 +𝜌𝑎𝐸𝑎2 , (10) 

   

 

𝜕𝑡 (𝑓𝜌𝑢𝜌2ℎ2𝒖2) + 𝜵∥ ∙ (𝑓𝜌𝑢𝑢𝜌2ℎ2𝒖2𝒖2)

= (𝜌2 −𝜌𝑎 )𝒈∥ℎ2 −𝜵∥(𝑓𝑐𝜁(𝜌2 − 𝜌𝑎)𝑔𝑧,2ℎ2
2) − 𝝉02 

                                 − 𝝉12∥ − 𝝉𝑎2∥− 𝒑𝑛∥ + 𝜌1𝑆12𝒖1 − 𝜌𝑠𝐷21𝒖2𝑏 − 𝜌𝑠𝐷20𝒖2𝑏  , 

(11) 

 

where 𝝉02 is the shear stress acting where the base of the PSC directly touches the snow cover; 𝝉𝑎2 is 

the shear stress exerted by the surrounding air on the top surface of the PSC; and 𝒑𝑛 is the normal stress 

on the top surface of the PSC due to the stagnation pressure from the surrounding air. Both 𝝉𝑎2∥ and  

𝒑𝑛|| are projected along the flow direction. 𝐸𝑎2 is the air entrainment rate. 
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The density and velocity profiles of the dense core are assumed to be uniform along the direction 

normal to the terrain, parametrized by the normalized depth coordinate 𝜁1 = (𝑧− ℎ0)/ℎ1, i.e., 

𝜌1∗(𝜁1) = 𝜌1  and 𝒖1∗(𝜁1) = 𝒖1 (the subscript ∗ is used to indicate that the variable is evaluated at a 

certain normalized depth 𝜁, while the subscript 𝑏 will later be used to indicate that the variable is 

evaluated at the base of the layer). In contrast, the snow concentration and velocities of the PSC vary 

strongly along the normalized flow depth 𝜁2 = (𝑧 − ℎ0−ℎ1)/ℎ2. The density profile of the powder 

snow cloud is assumed as 

 

 𝜌2∗(𝜁2) = 𝜌𝑎 +𝑓𝑐(𝜁2)𝑐(𝜌𝑠 −𝜌𝑎) = 𝜌𝑎 +𝑓𝑐(𝜁2)(𝜌2 − 𝜌𝑎) , (12) 

 

where 𝑐 = (𝜌2 −𝜌𝑎)/(𝜌𝑠 −𝜌𝑎) is the depth-averaged volumetric concentration of snow in the PSC, 

and 𝜌𝑠  is the density of the bulk snow. The shape function of the concentration is modelled as a generic 

parabolic function, 𝑓𝑐(𝜁2) = 𝑐0 + 𝑐1𝜁2+ 𝑐2𝜁2
2, where the coefficients 𝑐0, 𝑐1, 𝑐2 may be chosen based 

on laboratory experiments (e.g., Hermann and Hutter, 1991) and must respect the condition 

∫ 𝑓𝑐(𝜁2)𝑑𝜁2
1

0 = 1. Similarly, the velocity profile is assumed as 

 

 𝒖2∗(𝜁2) = 𝑓𝑢(𝜁2)𝒖2 , (13) 

 

with a parabolic velocity shape function 𝑓𝑢(𝜁2) = 𝑠0+ 𝑠1𝜁2+ 𝑠2𝜁2
2 normalized as ∫ 𝑓𝑢(𝜁2)𝑑𝜁2

1

0 = 1. 

The coefficients 𝑠0, 𝑠1, 𝑠2 may be chosen based on experimental observations (e.g., Hermann and 

Hutter, 1991). 

The three shape factors 𝑓𝜌𝑢, 𝑓𝜌𝑢𝑢, 𝑓𝑐𝜁 in Eqns (10) and (11) account for non-uniform density and 

velocity profiles, and are respectively defined as 

 

 𝑓𝜌𝑢 =
∫ 𝜌2∗(𝜁)𝒖2∗(𝜁)
1

0
𝑑𝜁

𝜌2𝒖2
= (1−

𝜌𝑎
𝜌2
)∫ 𝑓𝑐(𝜁)𝑓𝑢(𝜁)𝑑𝜁

1

0

+
𝜌𝑎
𝜌2
 , (14) 
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𝑓𝜌𝑢𝑢 =
∫ 𝜌2∗(𝜁)𝒖2∗(𝜁)𝒖2∗(𝜁)
1

0
𝑑𝜁

𝜌2𝒖2𝒖2

= (1−
𝜌𝑎
𝜌2
)∫ 𝑓𝑐(𝜁)𝑓𝑢

2(𝜁)𝑑𝜁
1

0

+
𝜌𝑎
𝜌2
∫ 𝑓𝑢

2(𝜁)𝑑𝜁
1

0

 , 

(15) 

 

 𝑓𝑐𝜁 =
∫ (𝜌2∗(𝜁)− 𝜌𝑎 )𝜁
1

0
𝑑𝜁

𝜌2 −𝜌𝑎
= ∫ 𝑓𝑐(𝜁)𝜁𝑑𝜁

1

0

 . (16) 

 

2.2. Closure assumptions 

To solve the depth-averaged conservation equations, a total of twelve closure assumptions are required, 

expressing the stresses acting on the basal boundaries (𝝉01,𝝉12∥, 𝝉02) and on top of the powder snow 

cloud (𝝉𝑎2∥,  𝒑𝑛∥), and the volumetric exchange rates (𝐸01, 𝐸02, 𝐷10, 𝐷20, 𝑆12, 𝐷21, 𝐸𝑎2). In our 

notation, the first subscript refers to the source layer exerting stress on, or feeding mass to, the target 

layer (second subscript). For the boundary stresses, the relationship 𝝉𝑖𝑗 = 𝝉𝑗𝑖 is generally not valid 

because of the jump conditions associated with entrainment. 

 

2.2.1. Boundary stresses 

The Voellmy model is used to model the shear stress acting at the base of the dense core: 

 

 𝝉01 = {

min(𝜏𝑐 ,  𝜇𝜎𝑧𝑧 +𝑘01𝜌1‖𝒖1‖
2)

𝒖1
‖𝒖1‖

if ℎ0 > 0

(𝜇𝜎𝑧𝑧 +𝑘01  𝜌1‖𝒖1‖
2)

𝒖1
‖𝒖1‖

if ℎ0 = 0 ,
  (17) 

 

where 𝜇 is the Coulomb friction coefficient and 𝑘01 is the drag coefficient. The basal normal stress is 

defined as 

 

 𝜎𝑧𝑧 = 𝑔𝑧,1𝜌1ℎ1 +𝑔𝑧,2(𝜌2 − 𝜌𝑎)ℎ2 , (18) 

 

https://doi.org/10.1017/aog.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2024.10


13 
 

where the first term on the right-hand side represents the overburden weight of layer 1, while the second 

term on the right-hand side is the buoyant overburden weight of layer 2. As 𝜌1 ≫ 𝜌𝑎 , the buoyancy 

effect is for simplicity neglected in the first term. Both terms are projected normal to the topography. 

The snow cover shear strength, 𝜏𝑐, is introduced in Eqn (17) for the case where the snow cover becomes 

entrained by the dense layer, i.e., the upper expression applies only when ℎ0 > 0 (more details will be 

given in Sec. 2.2.2).  

The powder snow cloud is modelled as a turbulent fluid. A drag term is introduced to model the 

shear stress at the base of the powder snow cloud: 

 

 𝝉02 = {
min(𝜏𝑐 , 𝑘02𝜌2‖𝒖2‖

2)
𝒖2
‖𝒖2‖

if ℎ0 > 0

𝑘02𝜌2‖𝒖2‖𝒖2 if ℎ0 = 0 ,
 (19) 

 

 𝝉12∥ = min(𝜏𝑠𝑢 ,𝑘12𝜌2‖𝒖2 − 𝒖1‖
2)

𝒖2 − 𝒖1
‖𝒖2 − 𝒖1‖

 , (20) 

 

where 𝜏𝑠𝑢 is the snow shear strength at the top of the dense layer, which is introduced in Eqn (20) to 

consistently model the suspension of snow from the dense core into the powder snow cloud (more 

details will be provided in Sec. 2.2.3, where the suspension model is described). Note that the shear 

stresses are evaluated at the layer boundary. However, by definition, the drag model makes use of the 

far-field velocities and densities (here assumed to correspond to the depth-averaged variables), and not 

of the variables evaluated at the boundaries. 

The shear stress exerted on top of the powder snow cloud by the surrounding air is modelled as a 

drag term. Its projection in the flow direction is given by: 

 

 𝝉𝑎2∥ = 𝑘𝑎2𝜌𝑎 (1 + (𝜕𝑥ℎ)
2 + (𝜕𝑦ℎ)

2
) ‖𝒖2‖𝒖2 , (21) 
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where ℎ = ℎ1 +ℎ2. The term (1 + (𝜕𝑥ℎ)
2+ (𝜕𝑦ℎ)

2
) is introduced to provisionally model the speed-

up of the air flow relative to the suspension-layer speed 𝒖2 as the air gets deflected at the PSC–air 

interface (i.e., the deflected speed is enhanced by a factor (1 + (𝜕𝑥ℎ)
2+ (𝜕𝑦ℎ)

2
)
1/2

). The speed-up 

of the air flow derives from conservation of the ambient air mass at the upper boundary of the PSC. The 

shear stress 𝝉𝑎2 is therefore projected along the flow direction of layer 2 (i.e., 𝝉𝑎2 is multiplied by a 

factor (1+ (𝜕𝑥ℎ)
2+ (𝜕𝑦ℎ)

2
)
−1/2

) which acts on an enhanced upper surface compared to the basal 

area by a factor (1 + (𝜕𝑥ℎ)
2+ (𝜕𝑦ℎ)

2
)
1/2

. 

The stagnation pressure is defined as 𝒑𝑛 = −
1

2
𝜌𝑎 (𝒖2 ∙

𝜵ℎ

‖𝜵ℎ‖
)
2 𝜵ℎ

‖𝜵ℎ‖
(1+ (𝜕𝑥ℎ)

2+ (𝜕𝑦ℎ)
2
)
1/2

 

(Fig. 1), where the term −
𝜵ℎ

‖𝜵ℎ‖
 defines the outward direction normal to the upper surface and −𝒖2 ∙

𝜵ℎ

‖𝜵ℎ‖
 is the speed of the PSC in the direction normal to the upper surface. The term 

(1 + (𝜕𝑥ℎ)
2+ (𝜕𝑦ℎ)

2
)
1/2

 is again introduced to account for the enhanced upper surface compared to 

the basal area. 𝒑𝑛 is therefore projected along the flow direction (
𝒖2

‖𝒖2‖
) to obtain  

 

 𝒑𝑛∥ =
1

2
𝜌𝑎 {−

𝒖2
‖𝒖2‖

∙
𝜵ℎ

‖𝜵ℎ‖
}
3

(1 + (𝜕𝑥ℎ)
2 + (𝜕𝑦ℎ)

2
)
1/2

‖𝒖2‖𝒖2 . (22) 

 

The Macaulay brackets are introduced to ensure that the stagnation pressure is only active in the flow 

regions impacting the air frontally and not on the avalanche tails.  

 

2.2.2. Entrainment model 

The tangential jump entrainment model—a slightly modified version of the formula derived by 

Fraccarollo and Capart (2002)—is used to compute the volumetric entrainment rate (per unit area) from 

the snow cover onto the dense core (𝑖 = 1) or onto the powder snow cloud (𝑖 = 2): 
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 𝐸0𝑖 =
{‖𝝉𝑖0‖− 𝜏𝑐}

𝜌0‖𝒖𝑖‖
 , (23) 

 

where ‖𝝉10‖ = 𝜇𝜎𝑧𝑧+𝑘01𝜌1‖𝒖1‖
2 and ‖𝝉20‖ = 𝑘02𝜌2‖𝒖2‖

2 are the shear stresses inside the flow 

just above the interface to the snow cover. If there is entrainment (i.e., when ℎ0 > 0 and 𝐸0𝑖 > 0), the 

shear stress in the snow cover just below the interface (𝝉01 or 𝝉02) equals the snow cover shear strength 

𝜏𝑐 (cf. Eqns (17), (19)), as the momentum conservation equations are formulated for the mechanical 

system comprising the flow and the just-eroded bed layer. Entrainment hence requires ‖𝝉𝑖0‖ > ‖𝝉0𝑖‖ =

𝜏𝑐, the difference ‖𝝉𝑖0‖− 𝜏𝑐 serving to accelerate the eroded snow to the depth-averaged speed. In 

contrast to Fraccarollo and Capart (2002), here the shear strength is not assumed to be the Coulomb 

yield criterion but an intrinsic property of the perfectly brittle (Issler, 2014) snow cover. 𝜏𝑐 hence 

represents the cohesion—or, possibly, the undrained shear strength if pore air pressure produces a 

mechanical feedback on the stress state—in a Tresca-type yield model. 

 

2.2.3. Suspension model 

A tangential jump entrainment model is here proposed to compute the suspension rate from the dense 

core into the powder snow cloud. The powder snow cloud exerts the shear stress ‖𝝉21∥‖ =

𝑘12𝜌2‖𝒖2−𝒖1‖
2 on the dense core. The dense core reacts with at most a strength 𝜏𝑠𝑢 (Fig. 2a), which 

represents the resistance of snow grains to suspension. If ‖𝝉21∥‖ exceeds 𝜏𝑠𝑢, snow grains within the 

dense core become eroded and suspended into the powder snow cloud, upon which their speed changes 

from 𝒖1 to 𝒖2 (Fig. 2b). The suspension rate is therefore given by: 

 

 𝑆12 =
{‖𝝉21∥‖ − 𝜏𝑠𝑢 }

𝜌1‖𝒖2 − 𝒖1‖
 . (24) 

 

The resistance of snow grains to suspension, 𝜏𝑠𝑢, is the only free parameter in the suspension model. 

We assume that 𝜏𝑠𝑢 evolves during the motion of the snow avalanche (Fig. 2c). At ‖𝒖1‖ = 0, the snow 

grains are sintered and therefore not easily suspended, i.e., 𝜏𝑠𝑢 is large.  At higher velocities, following 
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the initial disaggregation of the slab due to internal shearing and collisions, larger snow clods and 

smaller interstitial snow grains form. At large enough velocities of the basal layer, the so-formed small 

snow grains can be transported upward by escaping air and be more easily suspended into the PSC by 

turbulent eddies. All these processes result in 𝜏𝑠𝑢 being small at large velocities of the dense core. When 

the dense core decelerates, new bonds may form between the snow clods of the dense layer through 

sintering, which hinders suspension, i.e., 𝜏𝑠𝑢 becomes large again. We here assume the speed of the 

dense core as a proxy for the formation of small snow grains and their resistance to be suspended, 

through the following heuristic formulation: 

 

 𝜏𝑠𝑢 = 𝜏𝑠𝑒
−𝛾𝑠‖𝒖1‖  , (25) 

 

where 𝛾𝑠 is a decay coefficient (m−1 s). In the modelling, we typically set 𝛾𝑠 = 1 m
−1s, which, for 

plausible values of 𝑘12 ≅ 0.04 and internal slab shear strength of 𝜏𝑠 = 5 kPa, initiates suspension at 

𝑢1 ≈ 8 m s
−1. An approximate threshold velocity of 10 m s−1 for initiating the breakage of snow 

bonds and forming a powder snow cloud was inferred by Voellmy (1955) and Hopfinger (1983) from 

observations. The dense core speed is here assumed to only influence the disaggregation process. 

However, the increase of the flow speed, and more specifically of the shear rate, will also dilate or 

fluidize the dense core (Issler and Gauer, 2008), and hence decrease its density. This process is not yet 

included in our model but may be implemented in the future within the variable-density conservation 

equations of layer 1. 

When ‖𝒖1‖ ≫ 1/𝛾𝑠, the top part of the dense layer becomes completely disaggregated (𝜏𝑠𝑢 ≈ 0) 

and hence is easily suspended into the powder snow cloud. In this situation, Eqn (24) simplifies to: 

 

 𝑆12 =
𝜌2
𝜌1
𝑘12‖𝒖2 − 𝒖1‖ . (26) 

 

This equation has a similar structure as the suspension model used by Nazarov (1991), which reads: 
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 𝑆12 = 𝑚12

√𝜌1𝜌2

𝜌1 + 𝜌2
‖𝒖2 −𝒖1‖ , (27) 

 

where 𝑚12 is an empirical coefficient. In typical situations, 𝜌2 ≪ 𝜌1, and hence Eqn (27) can be 

approximated as 𝑆12 = 𝑚12√𝜌2/𝜌1‖𝒖2−𝒖1‖. By equating this last expression to Eqn (26), one finds: 

 

 𝑘12 ≈ 𝑚12√
𝜌1
𝜌2
 . (28) 

 

The ratio of the depth-averaged densities, 𝜌1/𝜌2, is typically 20–150, and Nazarov (1991) reported 

values of 𝑚12 ≈ 0.01–0.10. Hence, one may expect 𝑘12 ≈ 0.04–1. While in Nazarov's model the 

suspension coefficient 𝑚12 and the drag coefficient 𝑘12 are set independently, a unique coefficient 𝑘12 

controls both suspension and drag in the proposed suspension model. If one increases 𝑘12, the 

suspension rate will also increase. At the same time, however, the interfacial drag increases as well and 

reduces the velocity difference ‖𝒖2− 𝒖1‖, which will reduce the suspension rate.  

 

 

Figure 2. Schematic of suspension process: (a) Vertical section of the powder snow cloud travelling over the 

dense core; (b) Momentum change of the just-suspended layer; (c) Velocity-dependent dense core disaggregation 

process and consequent onset of suspension. 
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2.2.4. Dense-core deposition model 

To model deposition of the dense core, we assume a reverse entrainment model, inspired by the work 

of Nikooei and Choi (2022). The dense core exerts the basal shear stress ‖𝝉10‖ on the substrate, whose 

internal strength is 𝜏𝑑𝑢 (Fig. 3a). If 𝜏𝑑𝑢 > ‖𝝉10‖, an infinitesimal layer decelerates from the flow 

velocity ‖𝒖1‖ to rest (Fig. 3b), i.e., it deposits. The deposition rate is therefore given by: 

 

 𝐷10 =
{𝜏𝑑𝑢 −‖𝝉10‖}

𝜌𝑑‖𝒖1‖
 . (29) 

 

Similarly to Eqn (25), we assume that the internal strength of the deposited snow, 𝜏𝑑𝑢, is controlled 

by a sintering process (Fig. 3c), where the decrease of flow velocity allows bonding between snow clods 

and hence the recovery of shear strength: 

 

 𝜏𝑑𝑢 = 𝜏𝑑𝑒
−𝛾𝑑‖𝒖1‖  , (30) 

 

where 𝜏𝑑 is the final internal shear strength of the deposited snow and 𝛾𝑑 is a decay coefficient. A 

simplified version of Eqn (29) may be obtained from a first-order linearization of Eqn (30): 

 

 𝐷10 =
{𝜏𝑑 (1 − 𝛾𝑑‖𝒖1‖)− ‖𝝉10‖}

𝜌𝑑‖𝒖1‖
 . (31) 
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Figure 3. Schematic of the deposition process (0=snow cover, 1=dense core): (a) Vertical section of the dense 

core travelling over the snow cover; (b) Momentum change of the deposited layer; (c) Schematics of the velocity-

dependent dense core sintering process and onset of deposition. 

 

Recently, Rauter and Köhler (2019) proposed an empirical deposition model, which is here 

rewritten for a mass block (i.e., neglecting the pressure gradient term): 

 

 𝐷10(RK) = {1−
‖𝒖1‖

𝑢dep
}
{‖𝝉10‖ − 𝜌1‖𝒈∥‖ℎ1}

𝜌1‖𝒖1‖
 . (32) 

 

We compare the two models considering a flow of frictional material (‖𝝉10‖ = 𝜇𝜌1𝑔𝑧ℎ1) on a 

horizontal plane (𝒈∥ = 𝟎,𝑔𝑧 = 𝑔). In this case, by equating Eqns (31) and (32), we get:  

 

 

𝜏𝑑 = 2𝜇𝜌1𝑔ℎ1 ,

𝛾𝑑 =
1

2𝑢dep
 ,

 (33) 

 

which defines the order of magnitude of the two parameters 𝜏𝑑 and 𝛾𝑑. The influence of the deposition 

model on the block height and velocity is evaluated in Fig. 4 for a block with initial height ℎ1(0) = 1 m 

and initial velocity 𝑢1(0) = 5 m s
−1 decelerating on a horizontal plane.  
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The evolution of depth of each block model is obtained by time integration of the corresponding 

volumetric conservation equations, 𝑑𝑡ℎ1 = −𝐷10. The deposition rate 𝐷10 is calculated using Eqns (29) 

and (30) for the tangential jump deposition model and Eqn (32) for the model of Rauter and Köhler 

(2019). The flow velocity is then calculated after integrating the momentum conservation equation in 

time. For the proposed tangential jump deposition model, the momentum conservation equation is 

𝑑𝑡(ℎ1𝑢1) = 𝑔𝑥ℎ1− max(𝜏du ,‖𝝉10‖)/𝜌1 = 𝑔𝑥ℎ1− ‖𝝉10‖/𝜌1 −𝑢1𝐷10, where 𝜏du arises in the 

deposition situation (𝐷10 > 0) to account for the jump in shear stress from 𝜏10 to arrest the material. 

Instead, Rauter and Köhler (2019) and Nikooei and Choi (2022) do not implement such jump condition 

in their momentum conservation equation, 𝑑𝑡(ℎ1𝑢1) = 𝑔𝑥ℎ1 −‖𝝉10‖/𝜌1 , i.e., they neglect the term 

−𝑢1𝐷10 on the right-hand side of the equation, which is however crucial in the deposition situation 

(Hungr, 1990; Erlichson, 1991).  

The material properties of the block are as follows: 𝜌1 = 200 kg m
−3, 𝜇 = 0.3. For Rauter and 

Köhler's (2019) model, 𝑢dep = 3 m s
−1 is used, while Eqn (29) was first evaluated with 𝜏𝑑 = 1.2 kPa 

and 𝛾𝑑 = 1/6 m
−1s (obtained from Eqn. (33)), and then with a realistic value of the deposited snow 

shear strength, 𝜏𝑑 = 5.0 kPa, and using 𝛾𝑑 = 1 m
−1s. The latter values seem to provide a reasonable 

deposition curve, with deposition starting when the dense core velocity drops below 2 m s−1. In the 

proposed model, larger shear resistance acts at the base of the block in the deposition situation, which 

causes faster deposition and deceleration compared to Rauter and Köhler's model. Note that combining 

the momentum and volumetric conservation equations of the proposed model leads to the equation of 

motion 𝑑𝑡𝑢1 = 𝑔𝑥 −‖𝝉10‖/(𝜌1ℎ1) = 𝑔𝑥 −𝜇𝑔𝑧: the flow mobility only depends on the slope and on 

the friction parameter and is independent of deposition (although the block may arrest earlier if it fully 

deposits). In other terms, the mobility of a decelerating flow cannot increase if deposition occurs 

concomitantly. The main practical advantage of using the physics-based deposition model of Eqn (29) 

is that the deposition rate is negatively correlated with the flow velocity, resulting in an increase of 

deposition depth at low speeds. 
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Figure 4. Flow depth (continuous lines, scale on the left) and flow velocity (dashed lines, scale on the right) as a 

function of the runout distance for a  frictional mass-block model using different deposition models and 

parameters.  

2.2.5. Particle settling model  

The volumetric particle settling rate (per unit area) is given by the product of the settling velocity 𝑤𝑠 of 

the snow particles composing the powder snow cloud and the snow concentration: 

 

 𝐷2𝑖 = 𝑤𝑠  𝑐𝑏 cos 𝜃 , (34) 

 

where 𝑖 = 0,1. The term cos𝜃 is introduced because particles settle along the direction of gravity. The 

concentration of snow is evaluated at the bottom of the powder snow cloud layer: 𝑐𝑏 = 𝑐(𝜁2 = 0) =

𝑐0(𝜌2−𝜌𝑎 )/(𝜌𝑠 −𝜌𝑎). For the settling onto the dense core, Nazarov (1991) assumes 𝜌𝑠 = 𝜌1. We also 

make this assumption, which implies that both the snow particles and part of their surrounding air are 

lost by the powder snow cloud. Hence, here, 𝑐𝑏 is the concentration within the PSC of the snow particles 

and of part of their surrounding interstitial air (Fig. 5a). They settle onto the dense core at the constant 

density 𝜌1 (Fig. 5b). Since layers 1 and 2 are contiguous, and the ambient air is on top of them, such 

surrounding air must come from the powder snow cloud, which further implies that the volume lost by 

the powder snow cloud (𝐷21 in Eqn (9)) should be equal to the volume gained by the dense layer 

(𝜌𝑠/𝜌1 𝐷21 in Eqn (5)). Hence, 𝜌𝑠 = 𝜌1  is necessary if the assumption 𝜌1 = const. is made (i.e., when 

using conservation equations (5) and (7)). Instead, relaxing the hypothesis 𝜌1 = const. (i.e., when using 

https://doi.org/10.1017/aog.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2024.10


22 
 

conservation equations (3), (4) and (6)), one may assume the density of snow particles to be in the range 

𝜌1 ≤ 𝜌𝑠 < 𝜌ice, 𝜌ice being the density of snow crystals. If 𝜌𝑠 = 𝜌ice, only the snow crystals settle (Fig. 

5c). In our simulations, we stick to the first case (𝜌1 = const.) and hence use 𝜌𝑠 = 𝜌1 . For simplicity 

and consistency, we extend the hypothesis 𝜌𝑠 = 𝜌0 to evaluate the term 𝐷20 as well. In the case where 

the PSC is flowing directly on top of the snow cover, particles may either directly settle onto layer 0 

and come to rest or, if the speed of layer 2 is large enough (in the code, we set a threshold speed of 

10 m s−1), settle to reform a moving layer 1. 

Nazarov (1991) assumes 𝜌𝑠 = 𝜌1 to evaluate the volume gained by the dense core due to settling in 

the unit of time and area: 

 

 𝐷21(1) = 𝑤𝑠 𝑐0
𝜌2 −𝜌𝑎
𝜌1 −𝜌𝑎

cos 𝜃 . (35) 

 

This corresponds to Eqn (34) although in his original formulation, he uses 𝑐0 = 1. The corresponding 

mass gained by the dense core in his model is 𝜌1𝐷21(1), consistent with our model. Instead, regarding 

the volume lost by layer 2 in the unit of time and area, Nazarov (1991) assumed 

 

 𝐷21(2) = 𝑤𝑠  cos 𝜃 . (36) 

 

The corresponding mass which is lost in his model is 𝜌2𝐷21(2). Hence, in Nazarov (1991), the volumes 

exchanged between the two layers are not the same (Fig. 5d). In other terms, Nazarov assumed that, 

during settling, layer 1 increases its volume by an amount corresponding to the snow particles and of 

part of the surrounding air (𝜌𝑠 = 𝜌1 ), while layer 2 loses the volume associated to both the solid particles 

and their whole surrounding air (𝜌𝑠 = 𝜌2). Hence, part of the air lost by layer 2 in Nazarov (1991) settles 

onto layer 1, while some (excess) air is, implicitly in his model, ejected vertically into the ambient air. 

Such ejected air may form a density stratification within the PSC (e.g., Turnbull and others, 2007), 

which might influence the concentration profile function, with concentration vanishing at the top (i.e., 
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𝑓𝑐(𝜁2 = 1) = 0). In our work, we assume that such excess surrounding air remains conserved within 

the powder snow cloud (layer 2) without any change of the profile functions. 

 

 

Figure 5. Sketch of the mass and volume changes, in the time interval ∆𝑡, of layers 1 (dashed black line) and 2 

(continuous black line) due to settling of snow particles at a  speed 𝑤𝑠. The dotted red line is pure air volume which  

might be ejected from the PSC into the ambient air. The continuous red line is the solid volume effectively settling 

onto the dense core. (a) Volume components within the PSC. (b) Settling model with a constant density of the 

dense core, where snow particles and their interstitial air settle from the PSC. (c) Settling model with variable 

density of the dense core, where only snow crystals settle from the PSC. (d) Nazarov (1991) model with a constant 

density of the dense core, where snow particles and interstitial air settle from the PSC, and the excess air is ejected 

out of the PSC. The fate of such excess air is not clear yet. 

 

2.2.6. Air entrainment model 

Ellison and Turner (1959) modelled the entrainment of lighter fluid on top of a heavier turbulent layer 

assuming that the entrainment rate is proportional to the flow velocity and a function of the bulk 

Richardson number, 
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 𝐸𝑎2 = 𝑓(Ri)‖𝒖𝟐‖ , (37) 

 

where the bulk Richardson number is defined as 

 

 Ri =
(𝜌2 −𝜌𝑎 )𝑔cos 𝜃 ℎ2

𝜌𝑎‖𝒖𝟐‖
2

 . (38) 

 

Different parametrizations of the normalized ambient-fluid entrainment speed (the function 𝑓(Ri)) 

have been proposed in the literature (Ellison and Turner, 1959; Ancey, 2004; Dellino and others, 2019). 

Within our model, we use the empirical equation proposed by Parker and others (1987), which is a fit 

of the experimental data of Ellison and Turner (1959), Lofquist (1960), and Fukuoka and others (1980) 

over a wide range of Richardson numbers (10−2 to 102): 

 

 𝑓(Ri) =
0.075

(1+ 718 Ri2.4)0.5
 . (39) 

 

Hence, air entrainment becomes significant for low values of the Richardson number. Using typical 

values of the powder snow avalanche parameters, e.g., 𝜌2 ≅ 2 kg m
-3, ℎ2 ≅ 20 m, ‖𝒖𝟐‖ ≅ 50 m s–1, 

𝑔 cos𝜃 ≅ 7 m s–2, the Richardson number is 0.04, and from Eqn (39) we calculate 𝐸𝑎2/‖𝒖𝟐‖= 0.07, 

which is within the range of observed growth rates of the powder snow cloud (Issler and others, 2020).  

 

2.3. Numerical implementation 

The partial differential equations (2), (5), (7), (9–11) are solved using a simplified version of the Method 

of Transport, which is based on (Fey and Jeltsch, 1992). Volume, mass and momentum are advected to 

the neighbouring cells (including diagonal neighbours) with the flow layer speed 𝒖𝑖(𝑡𝑛), similarly to 

an upwind scheme. In contrast to the original scheme, the flow variables are not decomposed into 

component waves propagating at relative speed √𝑔𝑧ℎ𝑖   with respect to the flow layer speed, but the 

pressure gradient is explicitly included in the momentum balance equations.  This is an acceptable 
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approximation at large Froude numbers typical of dry-snow avalanches. The time step Δtn at time tn is 

chosen according to the Courant–Friedrichs–Lewy condition; if negative flow depths occur, the time 

step is repeated with reduced Δtn. Numerical instabilities are, however, observed in some simulations 

at the initiation of motion—in particular for large values of 𝑘12, which would lead to a large mass of 

snow being suspended from the dense layer—and during the final runout stages. The numerical 

instabilities were partly mitigated in the current work by using a small maximum time step (0.05 s), 

which however resulted in quite long computation times for the large-scale simulations on a 3D 

topography, O(10 min) on a single core. A version of the code accounting for wave propagation will be 

implemented in the future, which may reduce the numerical instabilities. The pressure gradient term is 

evaluated as a central difference at the cell faces, where the pressure at each face is evaluated as a 

geometric average of the pressure at neighbour cells. The source terms are evaluated at the time step 

𝑡𝑛. The volume, mass and momentum in each cell are therefore calculated at the time step 𝑡𝑛+1 using a 

forward Eulerian integration. More details on the numerical implementation are provided in (Issler, in 

preparation). 

 

3. Calibration of the numerical model 

The two-layer model requires specifying 18 parameters, in addition to the snow cover properties, to 

simulate both the dense flow, the powder snow cloud and their interactions with each other and with 

the snow cover. To better constrain the influence of each model parameter on the flow mobility and 

powder snow cloud formation, we first tested the model on two simplified 2D parabolic topographies, 

where the mobility, maximum speed (Eqn A3) and stagnation pressure (Eqn A2) of the PSC are 

computed (Appendix A). The possible ranges of values of the model parameters are also described in 

the appendix. Most of the model parameters influence the PSC dynamics to some degree, but a few of 

them have the strongest effect. The most mobile and destructive PSCs are obtained with small values 

of 𝑘01, which create a fast dense core, large values of 𝑘12 and small values of 𝑤s, both of which increase 

the effective density of the PSC. Entrainment of the snow cover by the dense core also increases the 

mobility of the PSC and its impact pressure. As expected, the simulations showed that formation of a 

powerful PSC requires a substantial drop height. In summary, the simulations on the 2D parabolic tracks 
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showed large sensitivity of the simulation results on the model parameters, highlighting the need to 

carefully select the input parameters. The simplified tracks allow to efficiently investigate the PSC 

dynamics for a wide range of parameter combinations, but they do not allow to select the model 

parameters precisely for a given snow avalanche event, where 3D topographical effects are important. 

Hence, a mixed snow avalanche that occurred in Norway is back-calculated. A powder snow avalanche 

was released spontaneously in the Knutstugrovi gully (Lom municipality, Norway) on 27 February 

2020. A dashboard camera mounted on a car recorded the powder snow cloud moving across the ice-

covered lake (Fig. 6a). The car was stopped 48 s afterwards by a traffic light connected to an early-

warning system (Fig. 6b). The runout of the dense and fluidized components of the mixed snow 

avalanche extended approximately 200 m below the road (Fig. 6c), while the powder snow cloud 

travelled almost 1 km further on the lake. The dense core left deposits of 1 m or more along the road, 

while an average deposit of 0.5 m—mostly associated with the fluidized layer—was measured below 

the road. The powder snow cloud deposits on the lake were only 1–3 cm thick. The gully was partly 

forested. Birches were broken by the pressure exerted by the dense core and powder snow cloud and 

transported downslope with the avalanche (Fig. 6d). Beyond the stopping point of the dense and 

fluidized layers, the powder snow cloud did not break any large trees and shrubs, but some small trees. 

The powder snow cloud also reached a few houses on the south-eastern side of its trajectory, without 

causing damage.  
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Figure 6. The powder snow avalanche in the Knutstugrovi gully on 27 February 2020. (a) The powder snow cloud 

travelling on the lake, as recorded by a dashboard camera. (b) East-side limit of the powder snow cloud recorded 

by the dashboard camera 48 s later and 800 m further than the photo in (a). (c) Extent of the deposits. (d) Trees 

broken and transported by the dense flow, and trees not damaged by the powder snow cloud. Images (a) and (b) 

courtesy J. M. Kveum, images (c) and (d) by Henrik Langeland, NGI. 

 

The simulations were run on a digital terrain model with 5 m resolution, which was interpolated 

from an original resolution of 10 m. The release area and the fracture depth of 0.8 m were identified 

after a field survey, from which an approximate release volume of 30,000 m3 is obtained. Based on the 

available information from the field survey and the weather data, the erodible snow cover depth is set 

to vary linearly from 0.1 m at 350 m a.s.l. to 0.3 m at 1150 m a.s.l. Similarly, the snow cover shear 

strength is set to vary linearly from 1 kPa at 350 m a.s.l., corresponding to denser snow, to 0.5 kPa at 

1150 m a.s.l., corresponding to a loose wind-drifted snow.  
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The model parameters used for the back-calculation of the avalanche were determined through trial-

and-error simulations and are shown in Table 1, "20200227 back-calculated". The simulation results 

are shown in Fig. 7 and compared to field observations. Low friction parameters of the dense/fluidized 

layer are used to capture its large mobility (𝛼1 = 26.5°). The simulated extent of the deposit of the 

dense layer was observed to be mostly dependent on the friction coefficient 𝜇, while the deposit shear 

strength 𝜏𝑑 controls the onset of deposition upslope, in agreement with the observations made for the 

depositing block model in Sec. 2.2.4. The ratio 𝜌𝑑/𝜌1 influences the deposit thickness. Based on field 

observations, the deposit was observed to be quite compact, and hence 𝜏𝑑 = 2 kPa and 𝜌𝑑 =

300 kg m−3 were used. The deposition depths from layer 1 compare quite well with the deposit 

thicknesses measured in the field (insert in Fig. 7b), with a root mean square deviation between the 

measured and modelled deposition depths of 0.35 m. In the simulation, the dense/fluidized layer comes 

to a halt at the base of the gully, leading to the detachment of the PSC, which then continues its runout 

on the lake. 

The PSC parameters were back-calculated to match the deposit thickness over the lake, the PSC 

extent and the forest damage. Loose wind-drifted snow characterized the release area, which should be 

easily suspended, and hence 𝜏𝑠 = 1 kPa and 𝑘12 = 0.05 were used. To model the PSC travelling to the 

opposite side of the lake, a mid-range value of the snow particle settling velocity was used, 𝑤𝑠 =

0.15 m s−1. Substantially larger values of 𝑤𝑠 would cause the PSC to die too early, and much smaller 

values of 𝑤𝑠 cause too high deposition depths from the PSC on the lake. The back-calculated PSC 

parameters allowed us to accurately model the deposit thickness beyond the dense core, 0.02 m, as 

observed in the field measurement (Fig. 7b). This implicitly validates the modelled amount of snow 

suspended from the dense core to the PSC.  

The lateral extent of the PSC could be estimated from the video recording of the dashboard camera 

(Fig. 6b): it is indicated as "< 0.1 kPa" in Fig. 7d, corresponding to the estimated low PSC impact 

pressure, and is well captured by the model. The extent of the PSC on the south-eastern side of the path 

could be estimated based on the absence of damage at the cabins. McClung and Schaerer (2022) indicate 

that pressures above 0.5 kPa may break windows. The windows and the wooden structure did not sustain 
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any damage, which hence allowed us to estimate a possible upper bound of the impact pressure at this 

location (point indicated as "<0.5 kPa"), although larger pressures cannot be completely excluded.  

Further constraints on the PSC pressure can be derived from damage to trees. The many trees broken 

along the gully do not provide a bound on the PSC pressure because they may have been broken by the 

dense core. Instead, trees beyond the extent of layer 1 can be used to directly validate the impact 

pressures of the PSC. The average pressure needed to break a tree may be calculated as (Feistl and 

others, 2015): 

 

 𝑝𝑡 =
𝜋𝐷𝑡

3𝜎𝑡
16𝑤𝑡𝐻𝑡

2
 , (40) 

 

where 𝐷𝑡 is the diameter of the tree, 𝐻𝑡 is its height (the hypothesis that the PSC is higher than the tree 

is here made), 𝑤𝑡 is the effective crown width and 𝜎𝑡 is the tensile strength of the tree. Notice that to 

derive Eqn (40), the PSC pressure is considered to be uniform, ignoring the shape factors 𝑓𝑐  and 𝑓𝑢: this 

assumption is valid if 𝐻𝑡 ≪ ℎ2. Smaller birch trees were observed to be broken by the PSC. For these, 

we roughly set 𝐷𝑡 ≅ 0.2 m, 𝐻𝑡 ≅ 8 m, 𝑤𝑡 ≅ 2 m, and 𝜎𝑡 ≅ 40 MPa to get a lower bound of the PSC 

maximum basal pressure, 𝑝2𝑏,max = 0.5 kPa. In contrast, bigger trees were not broken by the PSC (Fig. 

6d). For these, we set approximate tree parameters 𝐷𝑡 ≅ 0.4 m, 𝐻𝑡 ≅ 12 m, 𝑤𝑡 ≅ 3 m, and 𝜎𝑡 ≅

50 MPa to get an upper bound of the PSC maximum basal pressure, 𝑝2𝑏,max = 1.5 kPa. This provides 

an order of magnitude of the PSC maximum pressure (point indicated as "≈ 1 kPa" in Fig. 7d), which 

seems to be well captured in the back-calculation. Furthermore, smaller shrubs were only bent by the 

PSC. For these, we use 𝐷𝑡 ≅ 0.1 m, 𝐻𝑡 ≅ 1 m, 𝑤𝑡 ≅ 1 m, and 𝜎𝑡 ≅ 30 MPa to get an upper bound of 

the PSC maximum pressure, 𝑝2𝑏,max = 6 kPa (point indicated as "< 6 kPa" in Fig. 7d). The higher 

pressure needed to break shrubs is indicative of the ability of these tree species to grow and resist in 

areas with possible or frequent powder snow avalanche activity, but it is less useful in constraining the 

back-calculation of the 2020-02-27 avalanche. In summary, the simulation results generated using the 
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back-calculated parameters allow us to obtain a good match with the available field data from the 2020-

02-27 Knutstugrovi avalanche.  

 

Table 1. Material and model parameters used for the back-calculation of the Knutstugrovi powder snow avalanche 

on 2020-02-27. Simulations are also run for a hypothetical wet avalanche and using other model assumptions 

(constant concentration and velocity profiles and Nazarov 's (1991) settling model). 

Parameter Unit 
1 – 20200227 back-

calculated 

2 – Wet 

avalanche 

3 – Constant 

profiles 

4 – Nazarov (1991) 

settling model 

fc (c0, c1, c2) — (1.33, −0.67, 0) (1.33, −0.67, 0) (1, 0, 0) (1.33, −0.67, 0) 

fu (s0, s1, s2) — (1.4, 0.13, −1.4) (1.4, 0.13, −1.4) (1, 0, 0) (1.4, 0.13, −1.4) 

ρ1 = ρs = ρ0 kg m–3 200 300 200 200 

Μ — 0.2 0.35 0.2 0.2 

k01 — 0.0015 0.005 0.0015 0.0015 

k12 — 0.05 0.05 0.05 0.05 

k02 — 0.025 0.025 0.025 0.025 

Settling model  Eqn (34)  Eqn (34) Eqn (34) Eqn (35), (36) 

ws m s–1 0.15 0.5 0.15 0.15 

h0 m 0.1 ‒ 0.5 0.1 ‒ 0.5 0.1 ‒ 0.5 0.1 ‒ 0.5 

τc kPa 0.5 ‒ 1 1 0.5 ‒ 1 0.5 ‒ 1 

τd kPa 2 5 2 2 

ρd kg m–3 300 400 300 300 

τs kPa 1 5 1 1 

γs = γd m–1 s 1.0 1.0 1.0 1.0 
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Figure 7. Back-calculated results of the 2020-02-27 Knutstugrovi powder snow avalanche. (a) Computed dense 

core speed. (b) Computed deposition depths. The insert compares the simulation results with the measured 

deposition. (c) Computed PSC maximum speed. (d) Computed maximum pressure at the base of the PSC. 

Estimated pressures based on extent and damage are also indicated. 

Three additional simulations are carried out (Table 1) to explore the significance of some model 

parameters and assumptions. Fig. 8 shows the extent of the PSCs, taken as the 0.5 kPa PSC isobar, for 

the four simulated avalanches. 

A wet snow avalanche is simulated using high friction parameters and higher values of 𝜏𝑠 and 𝜏𝑑, 

and higher settling speed of the PSC (corresponding to bigger suspended particles). A very weak PSC 

is generated, the extent of which is significantly smaller than the one of the 2020-02-27 powder snow 

avalanche and limited to the initial steep section of the gully. Uniform concentration and velocity 

profiles produce smaller PSC pressures than non-uniform ones. Nazarov's (1991) and our settling 
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models lead to similar runout areas and PSC pressures (compare the colour rendering of Fig. 8 and Fig. 

7d).  

 

 

Figure 8. 0.5 kPa PSC pressure contours for the four simulations listed in Table 1. The maximum basal pressure 

distribution for the simulation using Nazarov's (1991) settling model is also shown. The white dashed line is used 

in Figure 9 to plot longitudinal profiles of relevant parameters of the four simulations. 

Fig. 9 shows the computed maximum densities and normalized maximum velocities of the PSC 

along the profile line of Fig. 8 for the four simulations. The maximum density of the PSC (Fig. 9a) for 

the 20200227 back-calculated simulation is approximately 2.5 times the air density near the release 

area, where snow starts to get suspended. The maximum density then decreases along the gully to an 

almost stationary value of 1.7𝜌𝑎 due to much air being entrained. As the powder snow cloud reaches 

the flat runout area, the density progressively decreases to the air density , as settling dominates over 

suspension. The depth-averaged density of layer 2 is of a similar order of magnitude as that indicated 

by Sovilla and others (2015), which suggests that the avalanche formation processes are adequately 

captured by the model. For the model assumptions and parameters used in our simulations, the powder 

snow cloud does not entrain the snow cover (for 𝜏𝑐 = 0.5 kPa, 𝑘02 = 0.025 and 𝜌2 = 3 kg m−3, the 

PSC would start entraining only at speeds above 82 m s−1). Instead, the entrainment model and 

parameters used in Nazarov (1991) and Eglit (1998) predict fairly large entrainment also by the powder 

snow cloud, which exceeds the entrainment rates by powder snow clouds inferred by Issler and others 
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(2020) by an order of magnitude. Hence, this may explain why quite high PSC densities are modelled 

by Nazarov (1991) compared to our numerical predictions (Fig. 9a). The normalized speed of the PSC 

(Eqn A3, Fig. 9b) reaches a maximum value of 0.7 (i.e., a maximum speed of 43 m s−1) ‒ similar to 

that measured for other major snow avalanches (Gauer, 2014) ‒ to then decrease to near-zero values at 

the end of the flat runout area. As expected, both the density and velocity of the PSC generated in the 

wet-snow avalanche simulation are lower compared to the simulation of the 2020-02-27 powder snow 

avalanche.  

It is of interest to compare simulations with the back-calculated (1) and the Nazarov (1991) model 

(4), which generated similar pressures (Fig. 7d and Fig. 8 respectively). The peak velocity profiles of 

simulations 1 and 4 are similar; however, their peak density profiles are quite different in magnitude.  

The pressure similarity can be explained by considering the asynchronous distributions of the computed 

flow variables of the PSC: while peak velocities are towards the flow front, peak densities typically lag 

behind. The body and tail are characterized by higher Richardson numbers and hence less air is here 

entrained: the peak density is affected by 𝐷2𝑖 and is therefore different in the two models. Instead, at 

the flow front, in virtue of larger velocities, much air is entrained. The term 𝐸𝑎2 becomes dominant over 

the term 𝐷2𝑖, and hence the density at the flow front becomes almost independent of which settling 

model is used. As the maximum pressure is also observed to be at the flow front, the maximum pressures 

calculated using the two models are therefore similar. Note also that concentration and velocity profiles 

that both decrease with 𝜁2 (Fig. 11) imply 𝑓𝜌𝑢 > 1 and therefore advection of denser flow from behind 

towards the flow front. Consequently, the density behind the front—and thus the maximum density in 

the PSC—decreases more rapidly than in simulation 3 with constant profiles (𝑓𝜌𝑢 = 1). 
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Figure 9. Simulation results along the profile line indicated in Figure 8. (a) The computed maximum density of 

the PSC normalized by the air density (𝜌𝑎 = 1.225 kg m
−3). (b) The computed maximum normalized velocity of 

the PSC (Eqn A3).  

 

4. Discussion and conclusion 

The principal area of application envisaged for MoT-PSA is hazard mapping, both as a supporting tool 

for experts assessing small areas in detail and as a key element in an automated chain of tools producing 

hazard indication maps over large areas. Thus, the following questions arise: (i) Is the modelling concept 

suitable for both intended application areas? (ii) Can MoT-PSA simulate mixed snow avalanches 

adequately? (iii) What needs to be improved before the model can be applied confidently by avalanche 

experts? 

The first question can be answered in the affirmative: MoT-PSA can be used in the same way as 

MoT-Voellmy and similar modelling tools, except that the user must specify the values of additional 
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parameters. While MoT-PSA is markedly slower than MoT-Voellmy due to more than double the 

number of differential equations, it is still fast enough to be used in the large-scale hazard mapping 

system NAKSIN (Issler and others, 2023). As it is implemented, MoT-PSA can also be used as a dense 

avalanche model by deactivating suspension (i.e., setting 𝑘12 = 0), which would reduce it to a similar 

mathematical model as MoT-Voellmy (Issler, in preparation), upon which MoT-PSA was built. 

Preliminary simulations furthermore suggest that the runout of the dense core with the PSC activated 

does not significantly differ from simulations conducted with the PSC deactivated. Compared to other 

operational avalanche models, e.g., RAMMS::Avalanche (Bartelt and others, 2017), the dense 

avalanche model implemented in MoT-PSA includes entrainment and deposition. Finally, MoT-PSA is 

capable of modelling a detached PSC, initialized with height, density and speed distributions; in this 

mode, laboratory experiments on density currents (Lofquist, 1960; Beghin and Olagne, 1991) and 

suspension flows (Keller, 1995; Dellino et al., 2019) can be simulated to test the suspension-layer 

component of MoT-PSA in detail. 

A definitive answer to the second question requires critically reviewing published measurements 

and reported observations of a wide variety of PSAs and then back-calculating them. This task remains 

to be done, but the good agreement of the simulation of the 2020 Knutstugrovi event with the 

observations suggests that the main features of PSAs relevant for hazard mapping are captured 

adequately with reasonable parameter values. 

The model describes the complex flow of PSAs in terms of simple models for two distinct layers 

interacting with each other and with the snow cover. Ideally, each of these process models should be 

validated separately against dedicated experiments. In some cases, like the entrainment of air along the 

upper surface of the PSC, laboratory experiments covering the entire range of the relevant non-

dimensional numbers have been carried out and are used in MoT-PSA. The approximations for the 

turbulent and pressure drag can be tested and possibly improved by comparing to 3D simulations of the 

Navier–Stokes equations with a suitable turbulence model. Direct snow entrainment from the snow 

cover into the PSC should be compatible with measurements of snow-cover erosion by blowing snow. 

Measurements with frequency-modulated radar provides data on the entrainment and deposition of 

snow into and from the dense/fluidized layer, but interpretation of the data is not straightforward and 
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neither the shear stresses exerted by the avalanche nor the shear strength of the substrate are well 

constrained. For other processes—e.g., the suspension of fine snow grains from the dense or fluidized 

layer—it remains to be investigated whether dedicated experiments are feasible. It is generally accepted 

that the Voellmy friction law, which has been used provisionally in MoT-PSA, describes the dissipative 

processes in real avalanches poorly and that the density in the dense/fluidized layer varies strongly in 

space and time. These deficiencies in turn affect the process models for entrainment and deposition of 

the dense layer, and for suspension of snow into the PSC. Therefore, only partial validation at the 

process level is possible at present and the adequacy of the model must be assessed mainly by back-

calculating the main features of observed events. 

A crucial step for making MoT-PSA usable in practice is to develop recommendations for choosing 

the large number of model parameters in a given situation. In particular, the snow-cover shear strength, 

τc, and erodible snow depth, h0, will depend on the target return period of the simulated event and on 

the local climate. The same will apply for the mean settling velocity of snow grains and for the shear 

strength τsu at the upper surface of the dense/fluidized layer. At present, a reliable calibration of a 

Voellmy-type model with entrainment and deposition is also lacking. One may, however, reasonably 

expect ongoing work to soon provide reasonable procedures for determining the input data and selecting 

the model parameters. 
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Appendix A – Sensitivity analysis on a 2D parabolic track 

A sensitivity study is conducted on simplified parametrized 2D topographies to evaluate the influence 

of the model parameters on the dynamics of the powder snow cloud. A typical avalanche path may be 

approximated as a parabola (Lied and Bakkehøi, 1980). Gauer (2018) proposed the following 

parametrization for a path with a constant-slope release area, parabolic track and horizontal runout (Fig. 

10):  

 

 𝑧(𝑥) =

{
 
 

 
 
𝐻𝑠𝑐 ,𝑓 − 𝑥 tan 𝜃0  ,                        𝑥 < 0                             

tan2 𝜃0
4𝐻𝑠𝑐 ,𝑓

𝑥²− tan 𝜃0 𝑥 +𝐻𝑠𝑐,𝑓  , 0 ≤ 𝑥 ≤ 2𝐻𝑠𝑐,𝑓  ctg 𝜃0

0 ,                                                   𝑥 > 2𝐻𝑠𝑐,𝑓 ctg 𝜃0          

  (A1) 

 

where x is the horizontal coordinate (with value 0 at the front of the release area) and z is the vertical 

coordinate (with the horizontal runout plane set at altitude 0). 𝜃0  is the inclination of the release area, 

and 𝐻𝑠𝑐,𝑓 is the total drop height from the front of the release area. Two different parabolic topographies 

are tested: P1 characterized by 𝐻𝑠𝑐,𝑓 = 1500 m and 𝜃0 = 50°, which is a long and steep avalanche 

track and should favour the formation of large powder snow clouds; P2 characterized by 𝐻𝑠𝑐,𝑓 = 700 m 

and 𝜃0 = 45°, which is a shorter avalanche track, where smaller powder snow clouds are expected. To 

keep the test configuration as simple as possible, 2D simulations are run along a cross-section of the 

parabola. This setup is only representative of an avalanche that does not show significant transverse 

spreading. 
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Figure 10. Parabolic track and release area.  

 

The initial avalanche volume plays an important role in the flow mobility. For the calibration, we 

simulate "major" avalanche events characterized by large volumes. In most of our simulations, we 

deactivate the snow cover entrainment, to focus on the essential features of the powder snow cloud 

formation. For all the simulations, a (normal-to-slope) fracture depth (𝐷𝑟) of 1 m is used. Large slab 

avalanches are typically characterized by a width (cross-slope) to length (down-slope) ratio between 2 

and 6 (McClung and Schaerer, 2022). For our simulation, we select a ratio of 2. Hence, the longitudinal 

length of the release area is determined as 𝐿 = √𝑉𝑟/(2𝐷𝑟), which is distributed along a plane inclined 

at 𝜃0 , on top of the parabolic track. Since 2D simulations are performed, the actual volumes per unit 

width used in the simulations are equal to 𝑉𝑟/(2𝐿). A grid with a uniform horizontally projected cell 

length of 5 m is used. 

A sensitivity study is carried out, computing quantities characterizing the flow dynamics for 

different values of the model parameters. The ranges of the input model parameters and their default 

values (in bold) are shown in Table 2. The concentration profile is heuristically defined based on 

experiments by Hermann and Hutter (1991): it varies linearly from 4/3 at the base of the PSC to 2/3 at 

the top of the PSC layer (Fig. 11). A nose-shaped velocity profile is assumed for the PSC, which has a 

value of 1.4 at the base and 0.13 at the top. The density of the dense core is constant and assumed in the 

range of 50–300 kg m−3, the lower value being used to model a fluidized flow. Typical literature values 
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of the friction parameters of the dense core, 𝜇 and 𝑘01, are assumed (Bartelt and others, 2017). The drag 

coefficient between the dense core and the powder snow cloud, 𝑘12, is assumed to be approximately 

10–20 times the value of 𝑘01 (depending on the simulation). This accounts for the fact that the powder 

snow cloud is governed by turbulence, while the dense core is typically dominated by Coulomb friction. 

The drag coefficient between the powder snow cloud and the snow cover, 𝑘02, is fixed to 0.5 ∙ 𝑘12 to 

account for a smoother snow cover surface compared to the rougher dense core surface. The magnitude 

of 𝑘02 in our study is similar to that reported in Fukushima and Parker (1990). In preliminary 

simulations, we furthermore observed that 𝑘02 does not significantly affect the dynamics of the powder 

snow avalanche, which is also in agreement with the results by Fukushima and Parker (1990), and hence 

𝑘02 was not included in the sensitivity study. Similarly, 𝑘𝑎2 has negligible influence on the results and 

was not varied in the study. The settling velocity of snow particles is assumed between 0.05 and 0.50 

m s−1. Note that our model does not explicitly consider turbulence keeping particles in suspension. To 

compensate for this, lower values of the settling speed probably must be used. In one of the simulations, 

entrainment of a 0.5 m thick, weak snow cover (𝜏𝑐 = 700 Pa) is activated. In all the simulations, 

deposition of the dense core is kept active (with 𝜌𝑑 = 𝜌1, 𝜏𝑑 = 5 kPa and 𝛾𝑑 = 1 m
−1s). Deposition 

was anyway observed to have negligible effects on the simulation results. The internal shear strength 

of the dense core at rest was assumed equal to 𝜏𝑠 = 5 kPa (with 𝛾𝑠 = 1 m
−1s). One additional 

simulation is run with 𝜏𝑠 = 0 to study the influence of snow shear strength on the suspension 

mechanism. 

 

 

Figure 11. Concentration and velocity profiles assumed for the simulations. 
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Different flow dynamics parameters are calculated in each simulation, as proxies for the flow 

mobility and PSC dynamics: 

• The flow mobility is measured by the runout angle 𝛼 (tan 𝛼 = 𝐻/𝑙, where 𝐻 is the drop height 

from the top of the release area to the front of the avalanche, and 𝑙 is the horizontal distance 

between the two points). An 𝛼 angle is calculated for the PSC (𝛼2) which represents its 

mobility. 𝛼2 is calculated from the distal limit where the stagnation pressure at the base of the 

PSC, 

 

 𝑝2b =
1

2
𝜌2b𝑢2b

2   (A2) 

 

drops below 0.5 kPa. The maximum basal stagnation pressure (𝑝2b,max) is also computed at the 

end of the parabola (0°). 

• The normalized maximum flow velocity is calculated for the PSC as (Gauer, 2018, 2020) 

 

  𝜐2,max =
𝑢2,max  

√𝑔𝐻sc/2
 . (A3) 
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Table 2. Summary of material and model parameters used in the sensitivity study on the 2D parabolic tracks. 

Values in bold indicate the default values. 

Parameter Unit Values Comment 

fc (c0, c1, c2) — (1.33, -0.67, 0) Selected qualitatively based on experiments 

(Hermann and Hutter, 1991) 

fu (s0, s1, s2) — (1.4, 0.13, -1.4) Selected qualitatively based on experiments 

(Hermann and Hutter, 1991) 

Density ρ1 kg m–3 200 / 50 / 300 50 used to simulate a fluidized layer 

Friction coeff. μ — 0.25 / 0.15 / 0.40  

Drag coeff. k01 — 0.0025 / 0.0015 / 0.005  

Drag coeff. k12 — 0.04 / 0.02 / 0.05  

Drag coeff. k02 — 𝟎.𝟓 ∙ 𝒌𝟏𝟐  Observed to not significantly influence the 

simulation results 

Drag coeff. ka2 — 0.0 Small value, not affecting the results 

Settling speed ws m s–1 0.25 / 0.05 / 0.50 𝜌𝑠  assumed equal to 𝜌1 

Initial bed depth h0 m 0.0 / 0.5 𝜌0 assumed equal to 𝜌1. One simulation is 

run with bed entrainment active. In the 

simulation with entrainment, the bed shear 

strength is assumed equal to 𝜏𝑐 = 700 Pa 

Shear strength 

deposit τd 

kPa 5.0 All simulations run with deposition active, 

𝜌𝑑 assumed equal to 𝜌1. 𝛾𝑑 = 1.0 m
−1s 

Shear strength dense 

core τs 

kPa 5.0 / 0 𝛾𝑠 = 1.0 m
−1s assumed 

 

The results of the sensitivity study are shown in Figs. 12 and 13 for the long and steep track P1. As 

expected, the flow mobility of the PSC (Fig. 12) is in most cases larger than that of the dense core (𝛼1 ≅

37° in the default simulation), and is sensitive to all the parameters of the model. High values of the 
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Voellmy-friction parameters reduce the velocity of the dense layer, and they consequently also decrease 

the mobility of the PSC. This dependency is particularly significant for the turbulence coefficient 𝑘01, 

which has the largest influence on the dense layer velocity and is hence observed to be negatively 

correlated to the maximum velocity of the PSC. 𝑘12 is instead positively correlated to the mobility and 

maximum velocity of the PSC. High values of 𝑘12 favour suspension of snow from the dense core: 

hence, the effective density of the PSC becomes larger, and so does the driving force due to gravity 

whereas the braking effect of air entrainment depends on ρa but not on ρ2. A high value of the dense 

core internal shear strength (𝜏𝑠 = 5 kPa) retards the formation of the PSC and increases the shear 

resistance at the base of the powder snow cloud (cf. Eqn (20)), thereby reducing its mobility. Large 

values of the snow particle settling velocity (e.g., 𝑤𝑠 = 0.5 m s
−1) reduce the effective density of the 

PSC and its acceleration along the steep part of the parabola and thus its mobility. Entrainment of snow 

(mostly by the dense core) nourishes the PSC and hence increases its mobility and velocity. An ignition 

effect due to snow cover entrainment is also reported in Fukushima and Parker (1990). 

Figure 12 shows that the mobility of the PSC varies strongly with the dense core density 𝜌1 at values 

below 100 kg m−3. In particular, 𝜌1 = 50 kg m
−3 represents a fluidized layer. The low value of 𝜌1 

causes the density of the PSC to be low, which in turn causes large air entrainment, reducing the 

effective driving force. The large entrainment of air for 𝜌1 = 50 kg m
−3 also produces a retarding effect 

on the PSC, whose mobility is hence reduced. However, this effect should be considered an artifact of 

the simplified description of the dense/fluidized layer: Fluidization occurs in the head of the avalanche, 

accompanied by significantly larger flow depths than in the dense core and often with high entrainment 

rates. Thus, even though the fine snow particles are all the more easily suspended if the head is 

completely fluidized, the mass in the fluidized head will nevertheless not decrease, as was the case in 

the simulation with MoT-PSA. This shortcoming of the model will need to be addressed when the 

dense/fluidized layer is modelled more accurately with spatially and temporally variable density.  
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Figure 12. Results of the sensitivity analysis on the runout angle of the powder snow cloud, 𝛼2, on the avalanche 

track P1. 

 

Figure 13 shows the maximum basal stagnation pressure (𝑝2b,max) computed at the end of the 

parabola (0°). As discussed above, a weak PSC (in terms of density and velocity) is formed for the 

simulations with a “slow” dense core (𝑘01 = 0.005), for low suspension capability (𝑘12 = 0.02), for 

heavy snow particles characterized by high settling speed (𝑤𝑠 = 0.5 m s
−1), and for the simulation of 

the fluidized layer (𝜌1 = 50 kg m
−3). For these simulations, the maximum basal stagnation pressure is 

lower than 0.5 kPa. Instead, when a mature PSC forms, it accelerates more significantly along the steep 

parts of the topography, and the stagnation pressures are consequently higher (up to 2 kPa at the end of 

the parabola in the simulations). In agreement with observations, destructive PSCs form from fast-

moving avalanches of loose and dry snow (i.e., with high suspension and low settling).  
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Figure 13. Results of the sensitivity analysis of the maximum basal pressure of the powder snow cloud at the end 

of the parabola, 𝑝2𝑏 ,𝑚𝑎𝑥 (0°), on the avalanche track P1. 

 

The simulations for the shorter avalanche track P2 are presented in Figs. 14 and 15. The track profile 

was chosen to be similar to the cross-section of the Knutstugrovi avalanche, which is back-calculated 

in Sec. 3. The trends for all the parameters are like the simulations on P1. However, on P2 it is observed 

that the simulated powder snow clouds are smaller and less mobile compared to the powder snow clouds 

in P1. This is explained by lower velocities reached on the shorter avalanche track P2, which lead to 

less snow being suspended from the dense core, causing a lower density of the powder snow cloud and 

hence lower driving force. On tracks with smaller drop heights, a mature powder snow cloud can only 

form from dry snow avalanches, i.e., using low values of 𝜇, 𝑘01, 𝑤s, and high values of 𝑘12 in the 

model. Like the simulations on P1, snow cover entrainment produces a more mobile PSC. On the shorter 

track, however, the snow cover needs to be significantly weaker than on larger avalanche tracks for 

entrainment to happen. 
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Figure 14. Results of the sensitivity analysis on the runout angle of the powder snow cloud, 𝛼2, on the avalanche 

track P2. 

 

Figure 15. Results of the sensitivity analysis on the maximum basal pressure of the powder snow cloud at the end 

of the parabola, 𝑝2𝑏 ,𝑚𝑎𝑥 (0°), on the avalanche track P2. 
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