ON PROPERTIES POSSESSED BY SOLVABLE
AND NILPOTENT GROUPS

CHRISTINE AYOUB

(Received 5 June 1967)

The object of this note is to study two properties of groups, which we will denote by (*) and (**). The property (*) is possessed by solvable groups (and in fact, by groups which have a solvable invariant system) and the property (**) is possessed by nilpotent groups (and in fact, by groups which have a central system).

It is quite easy to show that if a group satisfies (*) locally, then it satisfies (*); this gives a short proof of Malcev's theorem that a locally solvable group cannot be simple unless it is cyclic of prime order. It should be remarked, however, that the proof given is simply an adaption of Malcev's proof — its only virtue is that it is short and easy.

Theorem 2 states that a finitely generated group G satisfying (*) and the minimum condition for normal subgroups is finite and solvable, and Theorem 3 studies the connection between property (*) and a property studied by Ore.

Theorem 5 states that if the group G — with hypercentre C — satisfies (**), then G/C satisfies (**); from this we deduce that if G satisfies (**) and the minimum condition for normal subgroups, G is hypercentral.

Notations

$[a, b] = a^{-1}b^{-1}ab.$

$n(U) =$ normalizer of the subgroup U in $G.$

$Z(G) =$ centre of the group $G.$

$A \leq B: =$ A is a subgroup of $B.$

$A < B: =$ A is a proper subgroup of $B.$

$A \triangleleft B: =$ A is a normal subgroup of $B.$

$E =$ trivial subgroup (consisting of the identity element).

Following Kurosh we call G an SI-group (SN-group) if it has an invariant (normal) system with abelian factors (see Kurosh [5, p. 171—73

1 This paper was written while the author held an NSF Science Faculty Fellowship.

218

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 02 Nov 2019 at 13:55:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700005796
and we call G a Z-group if it has a central system — see Kurosh [5, p. 218]. We say that G is a ZA-group if the upper central chain for G, possibly continued transfinitely, leads up to G — see Kurosh [5, p. 218—19]. (Baer calls such a group hypercentral and uses the equivalent definition that G is hypercentral if every epimorphic image ($\neq E$) has a non-trivial centre.) G is an SI^*-group if it has a solvable ascending invariant series (this is what Baer calls hyperabelian; again an equivalent definition is that the group G is hyperabelian if every epimorphic image ($\neq E$) has a non-trivial normal abelian subgroup).

The property (*)

Definition 1. The group G satisfies (*) if: given elements $a, b (\neq 1, 1)$ in G, there is a normal subgroup $C = C(a, b)$ of G such that $[a, b]$ is in C but not both a and b are in C.

Remark. If G satisfies (*), and $a, b (\neq 1, 1)$ are elements of G, we can define

$$C_{a,b} = \{n \in G : [a, b] \in C \text{ and not both } a \text{ and } b \text{ are in } C\}.$$

Clearly $C_{a,b}$ is normal in G, $[a, b]$ is in $C_{a,b}$ but not both a and b are in $C_{a,b}$. $C_{a,b}$ is the unique smallest normal subgroup of G with these properties.

Lemma 1. (i) If S is a subgroup of the group G and if G satisfies (*), then S satisfies (*).

(ii) If N is a normal subgroup of the group G and if G satisfies (*), then given elements $a, b (\neq 1, 1)$ in N there exists a normal subgroup C of G such that $C < N$, $[a, b] \in C$ and not both a and b are in C.

Thus if G has a local system each of whose subgroups satisfies (*), the finitely generated subgroups of G satisfy (*).

Proposition 1. If G is an SI-group, then G satisfies (*). In particular, if G is solvable, G satisfies (*).

Proof. Let Σ be an invariant system for G with abelian factors. Let $a, b (\neq 1, 1)$ be any two elements of G and define

$$\bar{C} = \{\cap N : N \in \Sigma, a \text{ and } b \text{ both } \in N\},$$

$$C = \{\cup K : K \in \Sigma, \text{ not both } a \text{ and } b \in K\}.$$

Then $C < \bar{C}$ is a jump in Σ; hence \bar{C}/C is abelian so that $[a, b] \in C$. Clearly C is a normal subgroup of G and not both a and b belong to C.

Proposition 2. Let G be a group and assume that for each pair of elements $a, b (\neq 1, 1)$ a normal subgroup $C_{a,b}$ can be chosen so that $[a, b] \in C_{a,b}$, but not both a and b are in $C_{a,b}$ and that in addition these subgroups can be chosen
in such a way that for \(a, b(\neq 1, 1), c, d(\neq 1, 1) \) in \(G \) either \(C_{a,b} \leq C_{c,d} \) or \(C_{c,d} \leq C_{a,b} \) (i.e. in such a way that the subgroups are linearly ordered). Then \(G \) is an SI-group.

Proof. Complete the system of normal subgroups \(\{C_{a,b}\} \) to a system \(\Sigma \). We show that if \(K < L \) is a jump in \(\Sigma \), then \(L/K \) is abelian. For suppose not; then there are elements \(a \) and \(b \) in \(L \) with \([a, b] \) not in \(K \). Now if \(L \leq C_{a,b} \), \(a \) and \(b \) both lie in \(C_{a,b} \), which is impossible. Hence \(C_{a,b} < L \), which implies that \(C_{a,b} \leq K \). But then \([a, b] \in K \), a contradiction.

Theorem 1. If the group \(G \) satisfies (*) locally, then \(G \) satisfies (*).

Proof. Let \(\Sigma \) consist of all finitely generated subgroups of \(G \). For \(A \) in \(\Sigma \) and \(a, b(\neq 1, 1) \) in \(A \) let \(C_{a,b}(A) \) be a fixed normal subgroup of \(A \) such that \(a \) and \(b \) are not both in \(C_{a,b}(A) \) but \([a, b] \in C_{a,b}(A) \).

For \(a, b(\neq 1, 1) \) in \(G \) and \(S \) a finite subset of \(G \) define

\[
K_{a,b}(S) = \{ \cap C_{a,b}(A) \mid A \in \Sigma, \{a, b, S\} \subseteq A \}.
\]

Clearly if \(S_1 \subseteq S_2 \) are finite subsets of \(G \), \(K_{a,b}(S_1) \leq K_{a,b}(S_2) \). Thus for arbitrary finite subsets \(S_1 \) and \(S_2 \) of \(G \), \(K_{a,b}(S_1) \leq K_{a,b}(S_2 \cup S_2) \) for \(i = 1, 2 \).

Let \(H_{a,b} = \{ \cup K_{a,b}(S) \mid S \text{ a finite subset of } G \} \). It is clear that \(H_{a,b} \) is a subgroup of \(G \) which contains \([a, b] \) but does not contain both \(a \) and \(b \). It remains to verify that \(H_{a,b} \) is normal in \(G \). So let \(c \in H_{a,b} \) and \(d \in G \). Then \(c \in K_{a,b}(S) \) for some finite subset \(S \) of \(G \) and we can assume that \(d \in S \). Now \(c \in C_{a,b}(A) \) for each \(A \) in \(\Sigma \) with \(\{a, b, S\} \subseteq A \). Hence by the normality of \(C_{a,b}(A) \) in \(A \), \(d^{-1}cd \) is in \(C_{a,b}(A) \) for each \(A \) in \(\Sigma \) with \(\{a, b, S\} \subseteq A \). Hence \(d^{-1}cd \in K_{a,b}(S) \) and this implies that \(d^{-1}cd \in H_{a,b} \).

Corollary 1. If \(G \) is locally solvable and not cyclic of prime order, then \(G \) is not simple.

As noted in the introduction the proof of Theorem 1 is just Malcev's proof adapted to the case considered. Malcev's Theorem states that if a group has the property SI locally then it is an SI-group. For a proof see Kurosh [5, p. 183—87].

Definition 2. Let \(V \) be a maximal normal subgroup of the group \(U \); then \(U/V \) is a tor of \(U \).

Lemma 2. Let \(G \) be a group which satisfies (*) and the minimum condition for normal subgroups. Then if \(K \) is a normal subgroup of \(G \), any tor of \(K \) is abelian.

Proof. Assume that the lemma is false and let \(U \) be a minimal normal subgroup of \(G \) with a non-abelian tor.\(^2\) Hence there exists \(V < U \) such that

\(^2\) i.e. \(U \) is a normal subgroup of \(G \), has a non-abelian tor and is minimal with respect to this property.
U/V is simple non-abelian. Thus there exist elements a and b in U such that $[a, b] \notin V$. Let C be a normal subgroup of G such that $C < U$, $[a, b] \in C$ and not both a and $b \in C$. Then $V \leq VC \leq U$ and $V \neq VC$ since $[a, b] \in C$ but $[a, b] \notin V$. Hence by the maximality of $V, U = VC$.

Now $U/V = VC/V \cong C/V \cap C$. Thus C is a normal subgroup of G with a non-abelian tor and $C < U$. This contradicts the minimality of U.

Theorem 2. Let G be a finitely generated group which satisfies (*) and the minimum condition for normal subgroups. Then G is a finite, solvable group.

Proof. Let K be a normal subgroup of G and assume K is minimal such that G/K is finite and solvable. Assume $K \neq E$. Then since K is finitely generated, it possesses a maximal normal subgroup M. By Lemma 2, K/M is abelian and hence cyclic of prime order. Let $\overline{M} = \{ \cap M^{|x|} | x \in G \}$. Since M is of finite index in G, \overline{M} is also of finite index in G. Furthermore, \overline{M} is normal in G and G/\overline{M} is solvable since K/\overline{M} is solvable. But $\overline{M} < K$ so that the minimality of K is contradicted. Hence $K = E$ and G is finite and solvable.

Corollary 2. Let G be a group which satisfies (*) and the minimum condition for subgroups U such that $n(U) > U$. Then G is locally finite and locally solvable. Furthermore, G is an SI^*-group.

Proof. If H is a finitely generated subgroup of G, H satisfies (*) and the minimum condition for normal subgroups. Hence H is finite and solvable. In particular, H is an SI-group. By the local theorem for SI-groups, G is an SI-group and by the minimum condition for normal subgroups, G is an SI^*-group.

We now consider a property which Kurosh denotes by (Q), and a somewhat weaker one which will be denoted by (Q'). The property (Q) was introduced by Ore (see Kurosh [5, p. 181] and Ore [7, p. 251, Theorem 9]).

Definition 3. The subgroup A of G is almost normal in G if there exists a normal subgroup N of G such that $G = AN$ and $A \cap N < G$.

Definition 4. The group G satisfies (Q) if $A < B \leq G$, and A maximal in B, implies that A is almost normal in B.

Definition 5. The group G satisfies (Q') if $A < B \leq G$, and A maximal in B, implies that either $A < B$, or there exists a proper normal subgroup N of B such that $B = AN$.

It is clear that if G satisfies (Q), it satisfies (Q').

Theorem 3. (i) If the group G satisfies $(*)$, it satisfies (Q').

(ii) If the group G satisfies $(*)$ and the minimum condition for subgroups U such that $n(U) > U$, then G satisfies (Q).
(iii) If the group G satisfies (Q') and the minimum condition for subgroups, then G satisfies (\ast).

Proof. (i): Let $A < B \subseteq G$ with A maximal in B. If A is not normal in B, let a and b be elements of B with $[a, b]$ not in A. By (\ast) there is a subgroup $C < B$ which does not contain both a and b but which contains $[a, b]$. Then $A \leq AC \leq B$ but $C \not\subseteq A$. Hence by the maximality of A, $AC = B$.

(ii): By Corollary 2, G is an SI*-group and from this fact it follows that G satisfies (Q) (see Kurosh [5, p. 183]). However, it is easy to give a proof which does not use the local theorem for SI-groups (which is needed for Corollary 2): Let $A < B \leq G$ with A maximal in B. Since the normal subgroups of B satisfy the minimum condition, we can choose a minimal subgroup K such that $K < B$ and $B = AK$. Now $A \cap K \neq A$; if $A \cap K < K$, then $A \cap K < B$. So assume that $A \cap K$ is not normal in K and let a and b be elements of K such that $[a, b] \notin A \cap K$. By (\ast) there exists a subgroup C of K such that $C < B$, $[a, b] \in C$, but not both a and b are in C. Hence $A < AC \leq B$ since $[a, b] \notin A$. Thus $B = AC$ and the minimality of K is contradicted.

(iii): Assume that the group G satisfies the hypotheses of (iii) but does not satisfy (\ast). Let H be a minimal subgroup of G which does not satisfy (\ast). If H is not finitely generated, all the finitely generated subgroups of H satisfy (\ast); but this implies that H satisfies (\ast) by Theorem 1. Hence H is finitely generated.

If H contains a maximal subgroup M which is normal, then H/M is cyclic of prime order. Hence M is finitely generated and satisfies (\ast) by the minimality of H. Therefore, by Theorem 2, M is (finite and) solvable. But this implies that H is solvable so that by Proposition 1, H satisfies (\ast) — a contradiction.

So assume that every maximal subgroup of H is not normal and let A be a maximal subgroup of H. Then by (Q') there is a proper normal subgroup N of H such that $H = NA$. Let M be a maximal normal subgroup of H containing N. Then $H = MA$. H/M is simple and non-abelian. Also $H/M = MA/M \cong A/M \cap A$ so that A has a non-abelian tor. But A satisfies (\ast) since it is a proper subgroup of H, and hence by Lemma 2, any tor of A is abelian. Thus we have a contradiction and the theorem is proved.

Corollary 3. Let G be a group which satisfies the minimum condition for subgroups. Then the following are equivalent:

1. G is solvable.
2. G satisfies (\ast).
3. G satisfies (Q).
4. G satisfies (Q').

PROOF. By Proposition 1, (1) implies (2). (2) implies (3) by Theorem 3 (ii). Clearly (3) implies (4). So assume (4). Then by Theorem 3 (iii) G satisfies (*). Hence by Corollary 2, G is an SI^*-group. Therefore, by a theorem of Cernikov, G is solvable (see Kurosh [5, p. 191]).

REMARK: Since submitting this paper it has been drawn to my attention that Baer has two papers to appear shortly ([1] and [2]) in which he considers among other things the properties (Q) and (Q'). The main theorem of [1] gives a number of criteria for a group G to be artinian and solvable. One of these is:

(a) Abelian subgroups of G are artinian.

(b) If F is a finitely generated subgroup of G, then the normal subgroups of F satisfy the minimum condition.

(b') If S is a maximal subgroup of F, then S is almost normal in F.

This criterion implies that if G is artinian, then G is solvable if, and only if G satisfies (Q). But, of course, it is a much stronger result.

In the same spirit we could prove: G is artinian and solvable if, and only if

(a) Abelian subgroups of G are artinian.

(b) If F is a finitely generated subgroup of G, then the normal subgroups of F satisfy the minimum condition.

(b') F satisfies (*).

This follows from our Theorem 2 and the theorem of Cernikov (see [4]) which states: Let G be locally finite and locally solvable. Then if abelian subgroups of G are artinian, G is artinian and solvable.

In Baer’s paper ‘Normalizatorreiche Gruppen’ there is another proof of the fact that an artinian group G is solvable if, and only if it satisfies (Q') (see [2] Hilfsatz 3.6).

The property (**)

DEFINITION 6. The group G satisfies (**): given an element $a(\neq 1)$ in G, there is a normal subgroup $N = N(a)$ of G such that $[a, x] e N \forall x \in G$ but $a \notin N$.

REMARK. If G satisfies (**) and $a(\neq 1)$ is an element of G, we can define $N_a = \{ \cap N | N < G, a \notin N \}$ and $[a, x] e N \forall x \in G$ then $N_a < G, a \notin N_a$ and $[a, x] e N_a$. N_a is the unique smallest normal subgroup of G with these properties.

As in the case of (*) we have:

LEMMA 3. (i) If S is a subgroup of the group G, and if G satisfies (**), then S satisfies (**).
(ii) If \(K \) is a normal subgroup of the group \(G \), and if \(G \) satisfies (**), then given an element \(a \neq 1 \) in \(K \) there exists a normal subgroup \(N \) of \(G \) such that \(N < K \), \(a \notin N \) but \([a, x] \in N \ \forall x \in G\).

It is clear that (***) implies (*). For if \(a, b \neq 1 \) are elements of the group \(G \), then if \(a \neq 1 \) we can find a normal subgroup \(N \) of \(G \) such that \(a \notin N \) but \([a, x] \in N \) for all \(x \in G \). Thus \([a, b] \in N \) but not both \(a \) and \(b \) are in \(N \). If \(a = 1, b \neq 1 \) and we interchange the roles of \(a \) and \(b \).

PROPOSITION 3. If \(G \) is a Z-group, then \(G \) satisfies (**). In particular, if \(G \) is nilpotent, \(G \) satisfies (**).

PROOF. Let \(\Sigma \) be a central system for \(G \). Let \(a \neq 1 \) be an element of \(G \) and define
\[
N = \{ \cap K | K \in \Sigma, \ a \in K \} \\
N = \{ \cup L | L \in \Sigma, \ a \notin L \}
\]
Then \(N < N \) is a jump in \(\Sigma \); hence \(N/N \leq Z(G/N) \) and this implies that \([a, x] \in N \ \forall x \in G\).

PROPOSITION 4. Let \(G \) be a group and assume that for each element \(a \neq 1 \) a normal subgroup \(N_a \) can be chosen so that \(a \nsubseteq N_a \) but \([a, x] \in N_a \ \forall x \in G \) and that in addition these subgroups are linearly ordered. Then \(G \) is a Z-group.

The proof of this proposition is quite similar to the proof of Proposition 2 and will be omitted.

THEOREM 4. If the group \(G \) satisfies (***) locally, then \(G \) satisfies (**).

PROOF. Let \(\Sigma \) consist of all finitely generated subgroups of \(G \). For \(H \) in \(\Sigma \) and \(a \neq 1 \) in \(H \) let \(N_a(H) \) be a fixed normal subgroup of \(H \) such that \(a \nsubseteq N_a(H) \) but \([a, x] \in N_a(H) \ \forall x \in H \).

For \(a \neq 1 \) in \(G \) and \(S \) a finite subset of \(G \) containing \(a \), define \(K_a(S) = \{ \cap N_a(H) | H \in \Sigma, S \subseteq H \} \). Let \(K_a = \{ \cup K_a(S) | S \) a finite subset of \(G \) containing \(a \} \). It is easy to verify that \(K_a \) is a normal subgroup of \(G \) such that \(a \nsubseteq K_a \) but \([a, x] \in K_a \ \forall x \in G \).

LEMMA 4. Let \(G \) be a group which satisfies (***) and \(Z \) a subgroup of the centre of \(G \). Then \(G/Z \) satisfies (**).

PROOF. Let \(a \in G \setminus Z \) and let \(N_a \) be the minimal normal subgroup of \(G \) such that \(a \nsubseteq N_a \) but \([a, x] \in N_a, \ \forall x \in G \). Then \(ZN_a/Z < G/Z \) and \([Za, Zx] \in ZN_a/Z, \ \forall x \in G \). We have to verify that \(Z \notin ZN_a/Z \).

So suppose that \(a \in ZN_a \). Then we can write: \(a = zc \), where \(z \in Z \) and \(c \in N_a \).

Now let \(N_c \) be a normal subgroup of \(G \) such that \(c \nsubseteq N_c \), but \([c, x] \in N_c, \ \forall x \in G \). Then \(N_c \cap N_a < G \) and \(N_c \cap N_a < N_a \) since \(c \nsubseteq N_a \) but \(c \in N_a \). Clearly \(a \nsubseteq N_c \cap N_a \) since \(a \nsubseteq N_c \). For any element \(x \in G \), we have:
On properties possessed by solvable and nilpotent groups

\[[a, x] = [zc, x] = [z, x]c[c, x] = [c, x] \text{ since } z \text{ is a central element.} \]

Hence \([a, x] \in N_a \cap N_c\), and the minimality of \(N_a\) is contradicted. Thus \(a \notin ZN_a\) so that \(Za \notin ZN_a\).

Theorem 5. If the group \(G\) satisfies (**) and if \(C\) is the hypercentre of \(G\), then \(G/C\) satisfies (**) for \(C\).

Proof. We define the ascending central chain of \(G\) by \(Z_o = E, Z_1 = Z(G), \ldots, Z_{\beta+1}/Z_{\beta} = Z(G/Z_{\beta})\) and \(Z_{\alpha} = \cup Z_{\beta}|\beta < \alpha\) for \(\alpha\) a limit ordinal. Then there is an ordinal \(v\) such that \(Z_v = Z_{v+1}\). \(C = Z_v\) is the hypercentre of \(G\).

We prove by transfinite induction that each \(G/Z_a\) satisfies (**) for \(\alpha\) a limit ordinal. Clearly \(G/Z_o\) satisfies (**) for \(\alpha = 0\).

Case 1. \(\alpha = \beta + 1\) and \(G/Z_{\beta}\) satisfies (**) for \(\beta < \alpha\). Then \(G/Z_{\alpha} \cong G/Z_{\beta}/Z_{\beta+1}/Z_{\beta} = G/Z_{\beta}\) satisfies (**) by Lemma 4.

Case 2. \(\alpha\) is a limit ordinal, and \(G/Z_{\beta}\) satisfies (**) for \(\beta < \alpha\). Thus if \(a \in G \setminus Z_{\beta}\), there exists \(U/Z_{\beta} \leq G/Z_{\beta}\) such that \(a \notin U\) but \([a, x] \in U\) for all \(x \in G\). Hence \(Z_{\beta} \leq U \triangleleft G\), \(a \notin U\) but \([a, x] \in U\) for all \(x \in G\). Let \(V_{\beta}(a) = \{U/Z_{\beta} \leq U \triangleleft G, a \notin U, [a, x] \in U \forall x \in G\}\).

Then \(Z_{\beta} \leq V_{\beta}(a) \supset G, a \notin V_{\beta}(a)\) and \([a, x] \in V_{\beta}(a) \forall x \in G\), and \(V_{\beta}(a)\) is the unique minimal subgroup of \(G\) with these properties.

We verify that if \(\beta \leq \gamma < \alpha\) and \(a \in G \setminus Z_{\gamma}\), then \(V_{\beta}(a) \leq V_{\gamma}(a)\). For \(Z_{\beta} \leq Z_{\gamma} \leq V_{\gamma}(a), a \notin V_{\gamma}(a)\) and \([a, x] \in V_{\gamma}(a) \forall x \in G\). Hence by the minimality of \(V_{\gamma}(a), V_{\beta}(a) \leq V_{\gamma}(a)\).

Now let \(a \in G \setminus Z_{\alpha}\). Then \(a \in G \setminus Z_{\beta}\) for all \(\beta < \alpha\). Define \(V(a) = \{U/V_{\beta}(a)|\beta < \alpha\}\). Since the \(V_{\beta}(a)\) are linearly ordered and normal, \(V(a)\) is a normal subgroup of \(G\); \(a \notin V(a)\) but \([a, x] \in V(a) \forall x \in G\). Also, \(Z_{\beta} \leq V_{\alpha}(a)\) for \(\beta < \alpha \Rightarrow Z_{\alpha} = \cup Z_{\beta} \leq \cup V_{\beta}(a) = V(a)\).

Hence \(G/Z_{\alpha}\) satisfies (**) in this case also.

Lemma 5. If the group \(G(\neq E)\) satisfies (**) and the minimum condition for normal subgroups then for \(E < H \triangleleft G\), \(H \cap Z(G) \neq E\).

Proof. Let \(N\) be a minimal normal subgroup of \(G\) contained in \(H\). If \(N \triangleleft Z(G)\), there are elements \(a \in N\) and \(x \in G\) such that \([a, x] \neq 1\). By (**) and Lemma 3 (ii) we can find a normal subgroup \(N_a\) of \(G\) such that \(N_a < N, a \notin N_a\) and \([a, y] \in N_a \forall y \in G\). Hence \(1 \neq [a, x] \in N_a\) so that \(E < N_a < N\) contrary to the minimality of \(N\). Thus \(N \leq H \triangleleft Z(G)\).
THEOREM 6. If the group G satisfies (***) and the minimum condition for normal subgroups, then G is a ZA-group.

PROOF. Let C be the hypercentre of G. If $C \neq G$, G/C satisfies (***) by Theorem 5. Hence since G/C satisfies the minimum condition for normal subgroups, $Z(G/C) \neq E$ (provided $G \neq C$) by Lemma 5. But this is impossible. Hence $G = C$ and G is a ZA-group.

COROLLARY 4. If G is a finitely generated group satisfying (***) and the minimum condition for normal subgroups, then G is finite and nilpotent.

PROOF. By Theorem 2, G is finite and by Theorem 6, G is a ZA-group. Hence G is finite and nilpotent.

Finally we recall two further conditions which may be imposed on groups:

DEFINITION 7. The group G is an N-group if the normalizer condition holds in G, i.e. if every proper subgroup of G is distinct from its normalizer.

DEFINITION 8. A group G is an \bar{N}-group if in every subgroup B of G every maximal subgroup A is normal.

THEOREM 7. Let G be a group satisfying the minimum condition for subgroups. Then the following are equivalent:

(1) G is a ZA-group.
(2) G is an N-group.
(3) G is an \bar{N}-group.
(4) G satisfies (**).
(5) G is locally finite and locally nilpotent.

PROOF. It is well-known that (1) implies (2) (see e.g. Kurosh p. 215 and p. 219). A group G is an N-group if and only if through each subgroup of G there passes an ascending normal series, while G is an \bar{N}-group if for every subgroup of G there is some normal system passing through it (see Kurosh pp. 220—21). Hence (3) follows from (2).

Now assume that G is an \bar{N}-group which does not satisfy (**), and let H be a minimal subgroup of G which does not satisfy (**). By Theorem 4, H is finitely generated. Let M be a maximal subgroup of H. Then M is normal in H, and hence of finite index. Thus M is a finitely generated subgroup of G which satisfies (**). By Corollary 4, M is finite. But this implies that H is finite and a finite \bar{N}-group is nilpotent (see Kurosh p. 216). Hence by Proposition 3, H satisfies (**) — contrary to the choice of H. Therefore, (3) implies (4).

(5) follows from (4) by Corollary 4. Finally if G satisfies (5), it is a Z-group and hence a ZA-group since it satisfies the minimum condition for subgroups.
REMARK. It should be noted that the (equivalent) conditions in Theorem 7 do not imply that \(G \) is nilpotent. For example, let \(A \) be a group of type \(p^\infty \) and let \(B \) be cyclic of order \(p \). Then \(G = A \wr B \) (the wreath product of \(A \) and \(B \)) is solvable and satisfies the minimum condition. Any finitely generated subgroup \(H \) of \(G \) is solvable and satisfies the minimum condition. Hence \(H \) is a finite \(p \)-group and so nilpotent. Therefore, \(G \) is locally nilpotent. But \(G \) is not nilpotent since \(A \) is not bounded (see Baumslag [3, § 3]).

References

Pennsylvania State University
University Park, Pennsylvania
and
University of Frankfurt
Frankfurt am Main, Germany