LIMITS ON PAIRWISE AMIGABLE ORTHOGONAL DESIGNS

WARREN WOLFE

Introduction. An orthogonal design in order n of type $\left(u_{1}, \ldots, u_{t}\right)$ on the commuting variables x_{1}, \ldots, x_{t} is an $n \times n$ matrix X with entries $0, \pm x_{1}, \ldots, \pm x_{\imath}$ such that

$$
X X^{t}=\left(u_{1} x_{1}{ }^{2}+\ldots+u_{t} x_{t}{ }^{2}\right) I_{n} .
$$

In [5] Geramita and Wallis show that if $n=2^{4 a+b} \cdot n_{0}$, where n_{0} is odd and $0 \leqq b<4$, then $t \leqq \rho(n)=8 a+2^{b}$. The result is essentially Radon's limit on the number of anti-commuting, real, anti-symmetric, orthogonal matrices in order n. Garamita and Pullman show that this limit is sharp for orthogonal designs: i.e., given n, there exists an orthogonal design in order n with $\rho(n)$ variables [6].

Two orthogonal designs, X and Y, are called amicable if $X Y^{t}=Y X^{t}$. Such pairs of orthogonal designs are especially useful in generating new orthogonal designs [5] or [6]. In [9] it is shown that the total number of variables which can appear in such a pair is bounded by $\rho(n)=8 a+$ $2 b+2$ and that this bound is sharp. In [8] Shapiro has found the same limiting functions on the dimensions of spaces of similarities of quadratic forms.

The interested reader is referred to [7] for a more complete discourse on orthogonal designs.

In this paper, a set of t pairwise amicable orthogonal designs in order n is considered. Such sets would again be productive generators of new orthogonal designs. It is shown that the total number of variables which can appear in such a set is bounded by $8 a+2 b+t$. If $b=0$, then this bound is always sharp. However, if $b=1,2$, or 3 , there are cases when the limit is actually less than $8 a+2 b+t$.

1. A generalized Hurwitz group. Suppose X_{1}, \ldots, X_{t} are orthogonal designs in order n such that, if $i \neq j, X_{i} X_{j}{ }^{t}=X_{j} X_{i}{ }^{t}$. Let

$$
X_{i}=\sum_{j=1}^{s(i)} A_{i j} x_{i j}
$$

where the $x_{i j}$'s are distinct commuting variables and the $A_{i j}$ are $(0, \pm 1)$ matrices such that $A_{i j} A_{i j}{ }^{t}=u_{i j} I_{n}$: i.e., X_{i} is of type ($u_{i 1}, \ldots, u_{i s(i)}$).

Received September 11, 1979 and in revised form May 20, 1980.

Let

$$
\alpha_{i j}=\frac{1}{\sqrt{u_{i j} u_{11}}} A_{i j} A_{11}{ }^{t} .
$$

Then $\alpha_{11}=I_{n}$ and the set of real matrices $\left\{\alpha_{i j}, 1 \leqq i \leqq t, 1 \leqq j \leqq s(i)\right\}$ satisfy:
(i) ${\alpha_{1 j}}^{2}=-I_{n}, 2 \leqq j \leqq s(1) ; \alpha_{i j}{ }^{2}=I_{n}, i \neq 1,1 \leqq j \leqq s(i)$;
(ii) $\alpha_{i j} \alpha_{i k}=-\alpha_{i k} \alpha_{i j}, 1 \leqq i \leqq t, j \neq k$;
(iii) $\alpha_{1 j} \alpha_{i k}=-\alpha_{i k} \alpha_{1 j}, i \neq 1,2 \leqq j \leqq s(1), 1 \leqq k \leqq s(i)$;
(iv) $\alpha_{i j} \alpha_{k l}=\alpha_{k i} \alpha_{i j}, 2 \leqq i \neq k \leqq t, 1 \leqq j \leqq s(i), 1 \leqq l \leqq s(k)$.

Then consider a group which mimics the above structure.
Definition. If $\{s(1), \ldots, s(t)\}$ is an t-tuple of positive integers where $t \geqq 2$ and $s(1) \geqq 2$, then the generalized Hurwitz group $G=G\{s(1), \ldots$ $s(t)\}$ is the group with generators $\epsilon, a_{12}, \ldots, a_{1 s(1)}, \ldots, a_{t 1}, \ldots, a_{t s(t)}$ and defining relations:
(i) $\epsilon^{2}=1, \epsilon \neq 1, \epsilon a=a \epsilon$ for every a in G;
(ii) $a_{1 j}{ }^{2}=\epsilon, 2 \leqq j \leqq s(1) ; a_{i j}{ }^{2}=1, i \neq 1,1 \leqq j \leqq s(i)$;
(iii) $a_{i j} a_{i k}=\epsilon a_{i k} a_{i j} \quad 1 \leqq i \leqq t, j \neq k$;
(iv) $a_{1 j} a_{i k}=\epsilon a_{i k} a_{i j} \quad i \neq 1,2 \leqq j \leqq s(1), 1 \leqq k \leqq s(i)$;
(v) $a_{i j} a_{k l}=a_{k l} a_{i j} \quad 2 \leqq i \neq k \leqq t, 1 \leqq j \leqq s(i), 1 \leqq l \leqq s(k)$.

Surely the set of normalized matrices obtained from the set of pairwise amicable orthogonal designs in order n is a matrix representation of a generalized Hurwitz group. The goal is to find the minimal degree of such a real representation, F, where $F(\epsilon)=-I_{n}$. The techniques were used by Eckmann in his description of the Hurwitz group [2]. The reader is referred to [1], [3] or [4] for the salient facts regarding group representation theory.

Note. If A is a set, then $|A|$ denotes the order of A.
Let $m=\sum_{1}^{t} s(i)$. It is clear that $|G|=2^{m}$. Also an easy check will show that the commutator subgroup, G^{\prime}, is $\{1, \epsilon\}$. Let $c(G)$ be the number of conjugacy classes in G, let $J=\{i \mid 1 \leqq i \leqq t, s(i)$ is odd $\}$, and let $Z(G)$ denote the centre of the group G.

Lemma 1.1. If $s(i)$ is even for all i then $|Z(G)|=4$.
Otherwise $|Z(G)|=2^{|J|}$.
Proof. Let

$$
a_{1}=\prod_{j=2}^{s(1)} a_{1_{j}} \quad \text { and } \quad a_{i}=\prod_{j=1}^{s(i)} a_{i j} \quad \text { for } i \neq 1
$$

Consider an element ω of $Z(G)$, the centre of G. Then assume without
loss of generality that

$$
\omega=\prod_{i=1}^{t} \prod_{j=1}^{\beta(i)} y_{i j}
$$

where $y_{i j}$ is in $\left\{a_{i k}\right\}, y_{i j} \neq y_{i l}, 0 \leqq \beta(i) \leqq s(i)$. Note that $\epsilon \omega$ is in $Z(G)$. If $0<\beta(1)$, then

$$
y_{11} \omega=\omega y_{11}=\epsilon^{\sum \beta(i)-1} y_{11} \omega
$$

and hence $\sum \beta(i)$ is odd. If $\beta(1)<s(1)-1$, then for some $a_{1 k}$,

$$
a_{1 k} \notin\left\{y_{1 j}\right\}, a_{1 k} \omega=\omega a_{1 k}=\epsilon^{\Sigma \beta(i)} a_{1 k} \omega
$$

and hence $\sum \beta(i)$ is even. Thus either $\beta(1)=0$ and $\sum \beta(i)$ is even or $\beta(1)=s(1)-1$ and $\sum \beta(i)$ is odd.

For $i \neq 1$, a procedure as above yields that either $\beta(i)=0$ and $\beta(1)$ is even or $\beta(i)=s(i)$ and $\beta(i)+\beta(1)$ is odd.

Now assume $\beta(1)=0$. Then for $i \neq 1, \beta(i)=0$ or $\beta(i)=s(i)$ is odd. Thus $\omega=\prod_{i \in I} a_{i}, 1 \notin I \subset J,|I|$ even.

Finally assume that $\beta(1)=s(1) \neq 0$. Now if $s(1)$ is even then $\beta(1)$ is odd and $\beta(i)=s(i)$ is even for $i \neq 1$. Hence $\omega=\prod_{i=1}^{t} a_{i}$.

On the other hand, if $s(1)$ is odd then $\beta(1)$ is even and $\beta(i)=0$ or $\beta(i)=s(i)$ is odd for $i \neq 1$. Then $\omega=\prod_{i \in I} a_{i}, I \subset J,|I|$ even.

The result follows by counting the elements in $Z(G)$.
By the theory of group representations G has 2^{m-1} irreducible complex representations of degree 1 . The following lemma will provide a common degree for those representations of degree >1, and appears as problem 2.13 in [3].

Lemma 1.2. If G is a group such that $|G|=2^{m}$ and $\left|G^{\prime}\right|=2$ then all complex irreducible representations of G of degree >1 have a common degree.

Proof. Let μ_{1}, \ldots, μ_{t} be the characters of all irreducible complex representations of G of degree 1 and let $\chi_{i}, 1 \leqq i \leqq s$ be the characters of those representations, F_{i}, of degrees $d_{i}>1$.

By the orthogonality relations, see [1],

$$
\sum_{1}^{t}\left|\mu_{i}(g)\right|^{2}+\sum_{1}^{s}\left|\chi_{j}(g)\right|^{2}=\left|C_{G}(g)\right|
$$

where $C_{G}(g)$ is the centralizer of g. But, if $g \notin Z(G)$, then

$$
\sum_{1}^{t}\left|\mu_{i}(g)\right|^{2}=|G| /\left|G^{\prime}\right|=2^{m-1} \quad \text { and } \quad\left|C_{G}(g)\right| \leqq 2^{m-1}
$$

Hence $2^{m-1}+\sum_{1}^{t}\left|\chi_{j}(g)\right|^{2} \leqq 2^{m-1}$ so $\chi_{i}(g)=0$. Now if i is fixed,

$$
|G|=\sum_{g \in G}\left|\chi_{i}(g)\right|^{2}=\sum_{\rho \in Z(o)}\left|x_{i}(g)\right|^{2} .
$$

But if $g \in Z(G), F_{i}(g)$ must be a scalar matrix $\alpha_{g} I_{d_{i}}$ where α_{g} is a root of unity. Thus

$$
|G|=\sum_{0 \in \Sigma(G)} d_{i}^{2}=|Z(G)| d_{i}^{2}
$$

i.e., $d_{i}{ }^{2}=|G| /|Z(G)|$ for $1 \leqq i \leqq s$. Thus for all $i, j, d_{i}=d_{j}$.

Consider the case when some $s(i)$ is odd. Then $c(G)=2^{m-1}+2^{|J|-1}$, and this is the number of equivalent irreducible complex representations of G. Since G has 2^{m-1} representations of degree 1 , there must be $2^{|J|-1}$ irreducible complex representations of degree $n>1$. In fact, the proof of the lemma shows that every such representation has degree d where

$$
d^{2}=\frac{|G|}{|Z(G)|}=\frac{2^{m}}{2^{|J|}}
$$

i.e.,

$$
d=2^{(m-|J|) / 2}
$$

Lemma 1.3. If $s(i)$ is even for all i, then there exist 2 irreducible complex representations of G of degree $2^{(m-2) / 2}$.

Otherwise there exist $2^{|J|-1}$ irreducible complex representations of G of degree $2^{(m-|J|) / 2}$.

Proof. The second statement is proved above and the first follows similarly.

For the purpose at hand, it is necessary to find the degrees of real representations of G. If F is an irreducible complex representation of G of degree n, then ϕF is a real representation of G of degree $2 n$ where ϕ is the usual representation of the complex numbers as 2×2 real matrices. However, it is often possible to do better. F is called realizable over \mathbf{R} if the entries in the matrices of $F(G)$ are real complex numbers. The Frobenius Schur Lemma [1] states that a complex representation F is realizable over \mathbf{R} if and only if $\sum_{g \in G} \chi\left(g^{2}\right)>0$ where χ is the character of F. Note also that in the present case it is required that $F(\epsilon)=-I$. Then $\chi(\epsilon)=-n$.

Suppose g is in G and

$$
g=\prod_{i=1}^{t} \prod_{j=1}^{\alpha(i)} y_{i j}
$$

where $y_{i j} \in\left\{a_{i k}\right\}, y_{i j} \neq y_{i l}$, and $0 \leqq \alpha(i) \leqq s(i)$. Let

$$
\mu_{g}=\alpha(1)[\alpha(1)+1]+\sum_{i=2}^{t}(2 \alpha(1) \alpha(i)+\alpha(i)[\alpha(i)-1]) .
$$

Then

$$
(\epsilon g)^{2}=g^{2}=\epsilon^{\mu_{g} / 2}= \begin{cases}1 & \text { if } \mu_{g} \equiv 0(\bmod 4) \\ \epsilon & \text { if } \mu_{g} \equiv 2(\bmod 4)\end{cases}
$$

and $\chi\left(g^{2}\right)= \pm n$, depending upon μ_{g}. Consequently $\sum_{g \in G} \chi\left(g^{2}\right)=2 n T$ where

$$
T=\left|\left\{g \mid \mu_{g} \equiv 0(\bmod 4)\right\}\right|-\left|\left\{g \mid \mu_{g} \equiv 2(\bmod 4)\right\}\right|
$$

Now F is realizable over \mathbf{R} if and only if $T>0$.
A suitable counting device for T is suggested in [2]. If p is a positive integer, let $z_{p}=(1+i)^{p}=x_{p}+i y_{p}$.

$$
\begin{aligned}
& x_{p}=\binom{p}{0}-\binom{p}{2}+\binom{p}{4} \ldots y_{p}=\binom{p}{1}-\binom{p}{3}+\binom{p}{5} \ldots \\
& x_{p}+y_{p}=\binom{p}{0}+\binom{p}{1}-\binom{p}{2}-\binom{p}{3}+\ldots \\
& x_{p}-y_{p}=\binom{p}{0}-\binom{p}{1}-\binom{p}{2}+\binom{p}{3}+\ldots
\end{aligned}
$$

The following table gives values,-+ , or 0 for these numbers for various values of p.

Table 1.1

$p(\bmod 8)$	0	1	2	3	4	5	6	7
x_{p}	+	+	0	-	-	-	0	+
y_{p}	0	+	+	+	0	-	-	-
$x_{p}+y_{p}$	+	+	+	0	-	-	-	0
$x_{p}-y_{p}$	+	0	-	-	-	0	+	+

Lemma 1.4.

$$
T=x_{s(1)} \prod_{j=2}^{t}\left(x_{s(j)}+y_{s(j)}\right)-y_{s(1)} \prod_{j=2}^{t}\left(x_{s(j)}-y_{s(j)}\right)
$$

Proof. There are $\binom{s(1)-1}{\alpha(1)}$ ways of choosing a word of $\alpha(1)$ distinct elements from the set $\left\{a_{1 j}\right\} ;\binom{s(i)}{\alpha(i)}$ ways of choosing a word of $\alpha(i)$ distinct elements from $\left\{a_{i j}\right\}$ if $i \neq 1$.

Let T_{i} be the contribution to T by elements g, where $\alpha(1) \equiv i(\bmod 4)$, for $i=0,1,2,3$. There are

$$
\left[\binom{s(1)-1}{i}+\binom{s(1)-1}{4+i}+\ldots\right]
$$

such elements, and

$$
\mu_{0} \equiv\left(i(i+1)+\sum_{j=2}^{t} \alpha(j)[2 i+\alpha(j)-1]\right)(\bmod 4)
$$

Suppose $i=0$; then

$$
\mu_{\varepsilon}=\sum_{j=2}^{t} \alpha(j)(\alpha(j)-1) \equiv 0(\bmod 4)
$$

if and only if there are an even number of j 's such that $\alpha(j) \equiv 2$ or 3 $(\bmod 4)$. Now proceed by induction on t.

If $t=2$, then $\mu_{g} \equiv 0(\bmod 4)$ if and only if $\alpha(2) \equiv 0$ or $1(\bmod 4)$. Hence

$$
T_{0}=\left[\binom{s(1)-1}{0}+\binom{s(1)-1}{4}+\ldots\right]\left(x_{s(2)}+y_{s(2)}\right) .
$$

Now assume that for $t=k$

$$
\begin{aligned}
T_{0}=\left[\binom{s(1)-1}{0}+\binom{s(1)-1}{4}\right. & +\ldots] \\
& \times\left(x_{s(2)}+y_{s(2)}\right) \ldots\left(x_{s(k)}+y_{s(k)}\right) .
\end{aligned}
$$

Let

$$
g=\left(\prod_{i=1}^{k} \prod_{j=1}^{\alpha(i)} y_{i j}\right) \prod_{j=1}^{\alpha(k+1)} y_{(k+1) j}=g_{k} \prod_{j=1}^{\alpha(k+1)} y_{(k+1) j}
$$

Then $\mu_{g}=\mu_{o_{k}}+\alpha(k+1)(\alpha(k+1)-1)$ and $\mu_{g} \equiv 0(\bmod 4)$ if and only if

$$
\begin{aligned}
& \mu_{g_{k}} \equiv \alpha(k+1)(\alpha(k+1)-1)(\bmod 4) \\
& T_{0}=\left[\text { number of times } \mu_{\rho_{k}} \equiv 0(\bmod 4)\right]\left(x_{s(k+1)}+y_{s(k+1)}\right) \\
&-\left[\text { number of times } \mu_{g k} \equiv 2(\bmod 4)\right]\left(x_{s(k+1)}+y_{s(k+1)}\right) \\
&= {\left[\binom{s(1)-1}{0}+\binom{s(1)-1}{4}+\ldots\right] } \\
& \quad \times\left(x_{s(2)}+y_{s(2)}\right) \ldots\left(x_{s(k+1)}+y_{s(k+1)}\right) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& T_{1}=(-1)\left[\binom{s(1)-1}{1}+\binom{s(1)-1}{1}+\ldots\right] \\
& \times\left(x_{s(2)}-y_{s(2)}\right) \ldots\left(x_{s(t)}-y_{s(t)}\right) \\
& T_{2}=(-1)\left[\binom{s(1)-1}{2}+\binom{s(1)-1}{6}+\ldots\right] \\
& \times\left(x_{s(2)}+y_{s(2)}\right) \ldots\left(x_{s(t)}+y_{s(t)}\right) \\
& T_{3}=\left[\binom{s(1)-1}{3}+\binom{s(1)-1}{7}+\ldots\right] \\
& \times\left(x_{s(2)}-y_{s(2)}\right) \ldots\left(x_{s(t)}-y_{s(t)}\right) .
\end{aligned}
$$

Then

$$
T=\left(T_{0}+T_{2}\right)+\left(T_{1}+T_{3}\right) \text { and the lemma follows. }
$$

The lemma shows that T depends upon the values of the $s(i)(\bmod 8)$.
Let

$$
n_{\alpha}=\left|\left\{i \mid 2 \leqq i \leqq t, s_{i} \equiv \alpha(\bmod 8)\right\}\right|, 0 \leqq \alpha \leqq 8
$$

Note from Table 1.1 that if for some $i, j \neq 1, s(i) \equiv 1(\bmod 4)$ and $s(j) \equiv 3(\bmod 4)$, then $T=0$.

Begin by assuming $n_{1}+n_{5}>0$ and $n_{3}=n_{7}=0$. Then

$$
T=x_{s(1)-1}\left(x_{s(2)}+y_{s(2)}\right) \ldots\left(x_{s(t)}+y_{s(t)}\right)
$$

Since $x_{s(i)}+y_{s(i)}>0$ for all i such that $s(i) \equiv 0$, 1 , or $2(\bmod 8)$, and $x_{s(i)}+y_{s(i)}<0$ for all j such that $s(j) \equiv 4,5$, or $6(\bmod 8)$, it is sufficient to assume that

$$
T=(-1)^{n_{4}+n_{5}+n_{6}} x_{s(1)-1}
$$

Thus $T>0$ if and only if either

1) $n_{4}+n_{5}+n_{6}$ is even, $s(1) \equiv 0,1$, or $2(\bmod 8)$;
or
2) $n_{4}+n_{5}+n_{6}$ is odd, $s(1) \equiv 4,5$, or $6(\bmod 8)$.

Similarly if $n_{3}+n_{7}>0$ and $n_{1}=n_{5}=0$, then $T>0$ if and only if either

1) $n_{2}+n_{3}+n_{4}$ is even, $s(1) \equiv 0,6$, or $7(\bmod 8)$;
or
2) $n_{2}+n_{3}+n_{4}$ is odd, $s(1) \equiv 2,3$, or $4(\bmod 8)$.

Now suppose $n_{1}=n_{3}=n_{5}=n_{7}=0$. By Table 1.1 we can assume that

$$
\begin{aligned}
T= & (-1)^{n_{4}}\left[x_{s(1)-1}\left(x_{s(2)}+y_{s(2)}\right) \ldots\left(x_{s(q)}+y_{s(q)}\right)\right. \\
& \left.-y_{s(1)-1}\left(x_{s(2)}-y_{s(2)}\right) \ldots\left(x_{s(q)}-y_{s(q)}\right)\right]
\end{aligned}
$$

where $s(i) \equiv 2$ or $6(\bmod 4)$ for $2 \leqq i \leqq q$, and $q=n_{2}+n_{6}$.
Note that if $n_{2}+n_{6}=0$ then $T=(-1)^{n_{4}} x_{(s(1)-1)}-y_{(s(1)-1)}$.
If $s(i) \equiv 2$ or $6(\bmod 4)$ then $x_{s}(i)=0$ and

$$
\begin{aligned}
T & =(-1)^{n_{4}}\left[x_{(s(1)-1)} y_{x(2)} \ldots y_{x(q)}-y_{(s(1)-1)}\left(-y_{s(2)}\right) \ldots\left(-y_{s(q)}\right)\right] \\
& =(-1)^{n_{4}} y_{s(2)} \ldots y_{s(q)}\left[x_{(s(1)-1)}+(-1)^{q+1} y_{(s(1)-1)}\right] \\
& =(-1)^{n_{4}+n_{6}}\left[x_{(s(1)-1)}+(-1)^{n_{2}+n_{6}+1} y_{(s(1)-1)}\right] .
\end{aligned}
$$

Under the assumption that $n_{1}=n_{3}=n_{5}=n_{7}=0$, then $T>0$ if and only if one of the following

1) $n_{2}=n_{6}=0$ and either:
a) n_{4} is even, $s(1) \equiv 0,1,7(\bmod 8)$;
or
b) n_{4} is odd, $s(1) \equiv 3,4,5(\bmod 8)$;
2) $n_{2}+n_{6}>0$ and either:
a) $n_{4}+n_{6}$ is even, $n_{2}+n_{6}$ is even, $s(1) \equiv 0,1,7(\bmod 8)$
or
b) $n_{4}+n_{6}$ is even, $n_{2}+n_{6}$ is odd, $s(1) \equiv 1,2,3(\bmod S)$
or
c) $n_{4}+n_{6}$ is odd, $n_{2}+n_{6}$ is even, $s(1) \equiv 3,4,5(\bmod 8)$
or
d) $n_{4}+n_{6}$ is odd, $n_{2}+n_{6}$ is odd, $s(1) \equiv 5,6,7(\bmod 8)$.

Let d be the degree of a real representation of G of minimal degree >1. Lemma 1.3 combines with the above calculations as follows:

Case 1. If $s(1)$ is odd and $s(i)$ is even for all $i, 2 \leqq i \leqq t$, then $d=2^{(m-1) / 2}$ if
i) $n_{2}+n_{6}$ is even, $n_{4}+n_{6}$ is even, $s(1) \equiv 1,7(\bmod 8)$ or
ii) $n_{2}+n_{6}$ is even, $n_{4}+n_{6}$ is odd, $s(1) \equiv 3,5(\bmod s)$
or
iii) $n_{2}+n_{6}$ is odd, $n_{4}+n_{6}$ is even, $s(1) \equiv 1,3(\bmod 8)$
or
iv) $n_{2}+n_{6}$ is odd, $n_{4}+n_{6}$ is odd, $s(1) \equiv 5,7(\bmod 8)$
and $d=2^{(m+1) / 2}$ otherwise.
Case 2 . If $s(1)$ and $s(i)$ are odd for some $i, 2 \leqq i \leqq t$, then

$$
d=2^{\left(m-n_{1}-n_{5}-1\right) / 2} \text { if } n_{1}+n_{5}>0, n_{3}=n_{7}=0
$$

and either
i) $n_{4}+n_{5}+n_{6}$ is even, $s(1) \equiv 1(\bmod 8)$
or
ii) $n_{4}+n_{5}+n_{6}$ is odd, $s(1) \equiv 5(\bmod x)$.
$d=2^{\left(m-n_{3}-n_{7}-1\right) / 2}$ if $n_{3}+n_{7}>0, n_{1}=n_{5}=0$
and either
i) $n_{2}+n_{3}+n_{4}$ is even, $s(1) \equiv 7(\bmod 8)$
or
ii) $n_{2}+n_{3}+n_{4}$ is odd, $s(1) \equiv 3(\bmod 8)$.
$d=2^{\left(m-n_{1}-n_{3}-n_{5}-n_{7}+1\right) / 2}$ otherwise.
Case 3. If $s(i)$ is even for all $i, 1 \leqq i \leqq t$, then $d=2^{(m-2) / 2}$ if
i) $n_{2}+n_{6}$ is even, $n_{4}+n_{6}$ is even, $s(1) \equiv 0(\bmod 8)$
or
ii) $n_{2}+n_{6}$ is even, $n_{4}+n_{6}$ is odd, $s(1) \equiv 4(\bmod 8)$
or
iii) $n_{2}+n_{6}$ is odd, $n_{4}+n_{6}$ is even, $s(1) \equiv 2(\bmod 8)$
or
iv) $n_{2}+n_{6}$ is odd, $n_{4}+n_{6}$ is odd, $s(1) \equiv 6(\bmod 8)$.
$d=2^{m / 2}$ otherwise.
Case 4. If $s(1)$ is even and $s(i)$ is odd for some $i, a \leqq i \leqq t$, then

$$
d=2^{\left(m-n_{1}-n_{5}\right) / 2} \text { if } n_{1}+n_{5}>0, n_{3}=n_{7}=0,
$$

and either
i) $n_{4}+n_{5}+n_{6}$ is even, $s(1) \equiv 0,2(\bmod s)$
or
ii) $n_{4}+n_{5}+n_{6}$ is odd, $s(1) \equiv 4,6(\bmod 8)$.

$$
d=2^{\left(m-n_{3}-n_{7}\right) / 2} \text { if } n_{3}+n_{7}>0, n_{1}=n_{5}=0,
$$

and either
i) $n_{2}+n_{3}+n_{4}$ is even, $s(1) \equiv 6,0(\bmod 8)$
or
ii) $n_{2}+n_{3}+n_{4}$ is odd, $s(1)=2,4(\bmod s)$.

2. Limits on the variables. Now given a i-cuple $[s(1 ; \ldots, \infty)]$ is posale to the the minimal degree n such that there exisis a at at pan tixe dumable orthogonal designs where s(i) is the bumber of vaibibles in the t th design for $1 \leqq t \leqslant t$ Again let $m-\sum_{1}^{t}$)

Let $\delta_{l}(n)$ be the maximum number of variables which can appear in t pairwise amicable orthogonal designs in order n. Set $n=2^{4 a+b} \cdot n_{0}$ where n_{0} is odd, $0 \leqq b<4$. Then it has been shown that $\delta_{1}(n)=8 a+2^{b}$ and that $\delta_{2}(n)=8 a+2 b+2$ [see Introduction]. Partial bounds for $\delta_{t}(n)$ can now be found by using Section 1.

Theorem 2.1. For $t>1, \delta_{t}(n) \leqq 8 a+2 b+t$.
Proof. By the calculations in Section 1, it is clear that the degree of a representation of the group G corresponding to a set of pairwise amicable orthogonal designs must have degree $\geqq 2^{(m-t) / 2}$.

In fact this situation will occur only if all the $s(i)$ are odd and congruent $(\bmod 4)$. Then

$$
2^{4 a+b} \geqq 2^{(m-t) / 2} \text { and } \delta_{t}(n)=m \leqq 8 a+2 b+t .
$$

Corollary 2.2. If $b=1$ and $t \not \equiv 3(\bmod 4)$, then $\delta_{t}(n) \leqq 8 a+t-1$.
Proof. Assume that $\delta_{t}(n)=m=8 a+t+2$. Then $m \equiv t+2(\bmod$ $8)$ and all the $s(i)$ must be odd and congruent $(\bmod 4)$.

Assume $s(i) \equiv 1(\bmod 4)$ for all i, then let $s(i)=4 p_{i}+1$. Then

$$
m=\sum_{i=1}^{t} s(i)=\sum_{i=1}^{t}\left(4 p_{i}+1\right)=4\left(\sum_{i=1}^{t} p_{i}\right)+t \equiv t(\bmod 4) .
$$

This contradicts the conclusion that $m=t+2(\bmod 8)$.
Assume $s(i) \equiv 3(\bmod 4)$ for all i. Then

$$
m \equiv s(1)+3 n_{3}+7 n_{7}(\bmod 8) .
$$

(Recall: $\left.n_{\alpha}=\left|\left\{i \mid 2 \leqq i \leqq t, s_{i} \equiv \alpha(\bmod 8)\right\}\right|\right)$. Hence

$$
\begin{aligned}
s(1) & \equiv m-3 n_{3}+n_{7}(\bmod 8) \\
& \equiv(t+2)-3 n_{3}+\left(t-n_{3}-1\right)(\bmod 8) \\
& \equiv 2 t+1-4 n_{3}(\bmod 8) .
\end{aligned}
$$

Now, if n_{3} is odd, then by case 2 after Lemma 1.4, $s(1) \equiv 3(\bmod 8)$. By the above calculation, $s(1) \equiv 2 t+5(\bmod 8)$, and hence $t \equiv 3(\bmod 4)$, contrary to hypothesis. If n_{3} is even, the same contradiction is achieved.

Thus, the conclusion is that $\delta_{t}(n) \leqq 8 a+t+1$.
Corollary 2.3. If $b=2$ and $t \not \equiv 2(\bmod 4)$, then $\delta_{t}(n) \leqq 8 a+t+3$.
Corollary 2.4. If $b=3$ and $t \equiv 1(\bmod 4)$, then $\delta_{t}(n) \leqq 8 a+t+5$.
Both of the above corollaries are proven in a manner similar to that used for Corollary 2.2.

Theorem 2.5. If $n=2^{4 a} \cdot n_{0}$, where n_{0} is odd, then for each $t>1$, $\delta_{t}(n)=8 a+t$.

Proof. In [9] it is shown that there exist $\rho(n / 2)+1=8 a+1$ anticommuting, symmetric, orthogonal, disjoint, $(0, \pm 1)$ matrices in order n, say $A_{1}, \ldots, A_{8 a+1}$.

Let $X_{1}=I_{n} x_{1}, \ldots, X_{t-1}=I_{n} x_{t-1}, X_{t}=\sum A_{i} y_{i}$ where the x_{i} and y_{j} are distinct commuting variables. Then $\left\{X_{1}, \ldots, X_{t}\right\}$ is a set of pairwise amicable orthogonal designs in order n with $8 a+t$ variables.

Construction 2.6. If there exists a set of t pairwise amicable orthogonal designs in order n with p variables, then there exists a similar set in order $2^{4} \cdot n$ with $p+8$ variables.

Proof. Let $\left\{X_{i}=\sum_{j=1}^{s(i)} A_{i j} x_{i j}, 1 \leqq i \leqq t\right\}$ be the given set of designs in order n. Let $Z u$ and $\sum_{1}^{9} W_{i} v_{i}$ be the amicable orthogonal designs in order 2^{4} constructed in [9]. Then let

$$
\begin{aligned}
& \bar{X}_{1}=\left(A_{11} \otimes Z\right) z_{11}+\sum_{j=2}^{s(1)}\left(A_{1_{j}} \otimes W_{1}\right) z_{1_{j}} \\
& \bar{X}_{2}=\sum_{j=1}^{s(2)}\left(A_{2_{j}} \otimes W_{1}\right) z_{2 j}+\sum_{k=2}^{9}\left(A_{11} \otimes W_{k}\right) w_{2 k} \\
& \bar{X}_{i}=\sum_{j=1}^{s(i)}\left(A_{i j} \otimes Z\right) z_{i j} \quad \text { for } 3 \leqq i \leqq t
\end{aligned}
$$

where the $z_{i j}, w_{2 k}$ are distinct commuting variables. Then $\left\{\bar{X}_{1}, \ldots, \bar{X}_{t}\right\}$ is a set of pairwise amicable orthogonal designs in order $2^{4} \cdot n$ with $\sum_{i=1}^{t} s(i)+8=p+8$ variables.

Theorem 2.7.

$$
\delta_{3}(n)=\left\{\begin{array}{l}
4 \quad \text { if } a=0, b=1 \\
8 a+3 \text { if } b=0 \\
8 a+5 \text { if } b=1, a>0 \\
8 a+6 \text { if } b=2 \\
8 a+8 \text { if } b=3
\end{array}\right.
$$

Proof. If $a=0, b=1$ then a pair of amicable orthogonal designs exists in order n with 4 variables. Hence $4 \leqq \delta_{3}(n) \leqq 5$. Careful consideration of all possible values for $s(1), s(2)$, and $s(3)$ will show that in fact $\delta_{3}(n)=5$ is impossible.

If $b=0$, then Theorem 2.5 shows that $\delta_{3}(n)=8 a+3$.

If $b=1, a>0$, then let

$$
\begin{aligned}
& A_{00}=I_{32} A_{11}=P \otimes P \otimes P \otimes P \otimes P \\
& A_{21}=Q \otimes A \otimes Q \otimes A \otimes I_{2} \\
& A_{01}=P \otimes A \otimes I_{8} A_{12}=P \otimes P \otimes P \otimes P \otimes Q \\
& A_{22}=Q \otimes A \otimes I_{2} \otimes Q \otimes A \\
& A_{02}=A \otimes I_{16} A_{13}=P \otimes P \otimes P \otimes Q \otimes I_{2} \\
& A_{23}=Q \otimes A \otimes Q \otimes P \otimes A \\
& A_{14}=P \otimes P \otimes Q \otimes I_{4} \\
& A_{15}=P \otimes Q \otimes I_{8} \\
& A_{16}=Q \otimes I_{16} \\
& A_{17}=P \otimes P \otimes A \otimes Q \otimes A
\end{aligned}
$$

where

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right], \quad P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad Q=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Then $\left\{X_{i}=\sum_{j} A_{i j} x_{i j}\right\}$, where $x_{i j}$ are distinct commuting variables, is a set of 3 pairwise amicable orthogonal designs in order 2^{5} with 13 variables. Now by induction on a and Construction 2.6, $\delta_{3}(n) \geqq 8 a+5$. By Theorem 2.1, $\delta_{3}(n) \leqq 8 a+5$ so there is equality.

If $b=2$, Corollary 2.2 shows that $\delta_{3}(n) \leqq 8 a+6$, but, since a pair of amicable orthogonal designs exist in order n with $8 a+6$ variables $\lfloor 9], \hat{o}_{3}(n)=8 a+6$.

Similarly Corollary 2.3 and the construction given in [9] show that if $b=3$, then $\delta_{3}(n)=8 a+8$.

References

1. L. Wornhoil, Group representation theory, part A (Marcel Dekker, New York, 1971). 2. B. Licknann, Gruppentheoretischer Beweis des Satzes won Hurwitz-Radon uiber die Komposition quadratischer Formen, Comment. Math. Helv. 15 (1943).
2. 3. M. Isaces, Character theory of finite groups (Academic Press, New York, 1976).
1. 2. N. Herstein, Non-commutative rings, Carus Math. Mono. 15, M.A.A. (Wiley, New York, 1968)
1. A. V. Geramita, J. M. Geramita and J. S. Wallis, Orthogonal designs, J. Linear and Vulutinear Alg. 3 ($1975 / 76$)
2. A. V. Geramia and N. J. Pullman, A theorem of Hurwitz and Radon and orthogonal projeatae modutes, Proc. A.M.S. 42 (1974).
". V. Gerama and). Seberry, Orthogonal designs (Marcel Dekker, New York, 1979.
i4. D. Dapro, Spaces of simikerines IV: (s, t famines, Pac. J. Math. 69 (1977).
3. :. Wole, Amiwhe orthogonai designs--existence, Can. J. Math. 28 (1976).

Gowi Kouds Miniary College,
I'ittoria, British Columbin

