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LIMITS ON PAIRWISE AMICABLE
ORTHOGONAL DESIGNS

WARREN WOLFE

Introduction. An orthogonal design in order n of type (uy, . .., u,) on
the commuting variables xi, ..., x,is an # X # matrix X with entries
0, +x;, ..., =x, such that

XX‘ = (u1x12 + e + u,xf)],v

In [5] Geramita and Wallis show that if » = 24+%. 5, where n,is odd and
0 <b <4, then t £ p(n) = 8a + 2°. The result is essentially Radon’s
limit on the number of anti-commuting, real, anti-symmetric, orthogonal
matrices in order #. Garamita and Pullman show that this limit is sharp
for orthogonal designs: i.e., given 7, there exists an orthogonal design in
order n with p(n) variables [6].

Two orthogonal designs, X and Y, are called amicable if XY' = VX"
Such pairs of orthogonal designs are especially useful in generating new
orthogonal designs [5] or [6]. In [9] it is shown that the total number of
variables which can appear in such a pair is bounded by p(n) = S8a +
2b + 2 and that this bound is sharp. In [8] Shapiro has found the same
limiting functions on the dimensions of spaces of similarities of quadratic
forms.

The interested reader is referred to [7] for a more complete discourse
on orthogonal designs.

In this paper, a set of ¢ pairwise amicable orthogonal designs in order n
is considered. Such sets would again be productive generators of new
orthogonal designs. It is shown that the total number of variables which
can appear in such a set is bounded by 8a + 2b + ¢. If b = 0, then this
bound is always sharp. However, if b = 1, 2, or 3, there are cases when
the limit is actually less than 8a + 2b + ¢.

1. A generalized Hurwitz group. Suppose X3, . . . , X, are orthogonal
designs in order » such that, if 2 # j, X, X ;' = X,X," Let

s(1)
X = Z; A4 7527
j:

where the x,,'s are distinct commuting variables and the 4 ,; are (0, £1)
matrices such that 4 ;4 ;' = uy;1,: i.e., Xiisof type (4, . . ., tiscn)-
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Let

444 11 .
\/ut]ull

Then a;; = I, and the set of real matrices {a;;, 1 £ i <1, 1 £ £ s(0)}
satisfy:

(l) a1j2 = _Iny2 éj é S(l);aijz = In,i;ﬁ 17 1 é] é 5(71),

(ii) Q0 = —OiQ iy, 12425 t,j # k;
(]ll) 10 = 00y, l ?E 1, 2 é] é 5(1), 1 é k é S(’L),
(iV) Qo = oy, 2 = 1# k=125 s(i), 1=1= S(k)~

Then consider a group which mimics the above structure.

Definition. If {s(1), .., s(¢)} is an t-tuple of positive integers where
t =2 2and s(1) = 2, then the generalized Hurwiiz group G = G{s(1), .
s(t)} is the group with generators €, ayz, - - ., G151y, - - -y Aoty - -y Qrs(p)

and defining relations:
(1) & =1, ¢ # 1, ea = ae for every a in G;
{at=¢2=27s);a:;2=1,1#1,1 27 = s(@);

(lll) A0 = €A xQq; 1 g i é ty] 7 kr
(iv) a0 = eanaq; 1#1,2=7=<s5(1),1 =2k =s50);
(V) aijakl=ak,a¢j 2§’L?£k§1,1é]és(t),l§l§s(k).

Surely the set of normalized matrices obtained from the set of pairwise
amicable orthogonal designs in order # is a matrix representation of a
generalized Hurwitz group. The goal is to find the minimal degree of
such a real representation, F, where F(e) = —1I,. The techniques were
used by Eckmann in his description of the Hurwitz group [2]. The
reader is referred to [1], {3] or [4] for the salient facts regarding group
representation theory.

Note. 1f 4 is a set, then |4| denotes the order of 4.

Let m = 3 _{s(i). It is clear that |G| = 2™. Also an easy check will
show that the commutator subgroup, G’,is {1, €}. Let ¢(G) be the number
of conjugacy classes in G, let J = {i|]1 £ i £ ¢, s(¢) is odd}, and let Z(G)
denote the centre of the group G.

LeEmMA 1.1. If 5(2) is even for all i then |Z(G)| = 4.

Otherwise |Z(G)| = 271

Proof. Let

s(1) s(1)
=[lay, and a;=]J]a; foris=1.
j=2 j=1

Consider an element w of Z(G), the centre of G. Then assume without
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loss of generality that
8

~

)
Yij

11
w =
=1 7

where y; is in {au}, ¥:; # ¥:1, 0 = B(2) = 5(¢). Note that ew is in Z(G).
If 0 < B(1), then

<,
Il
—

V1w = wyi; = e2B(H—1 Viiw
and hence Y. 3(1) is odd. If (1) < s(1) — 1, then for some ay,
an & (Y14}, anw = way = e¥FPayw

and hence X 3(7) is even. Thus either 8(1) = 0 and > 6(z) is even or
B(1) = s(1) — 1 and > G(2) is odd.

For 7 # 1, a procedure as above yields that either 8(¢) = 0 and (1)
is even or 3(¢) = s(¢) and B(z) + B(1) is odd.

Now assume (1) = 0. Then forz % 1, 8(¢) = Oor 8(z) = s(7) is odd.
Thus w =H1€1ai, 1¢ICJ,|I| even.

Finally assume that (1) = s(1) ¢ 0. Now if s(1) is even then §(1)
is odd and 8(i) = s(¢) is even for ¢ # 1. Hence w = [[i=1 a+.

On the other hand, if s(1) is odd then 8(1) is even and 8(¢) = 0 or
B(2) = s(i) is odd for 7 # 1. Then w = Hiel a, I CJ, |I] even.

The result follows by counting the elements in Z(G).

By the theory of group representations G has 2”—! irreducible complex
representations of degree 1. The following lemma will provide a common
degree for those representations of degree > 1, and appears as problem
2.13 in [3].

LemMmA 1.2. If G is a group such that |G| = 2™ and |G’'| = 2 then all
complex irreducible representations of G of degree > 1 have a common
degree.

Proof. Let pi, ..., u, be the characters of all irreducible complex
representations of G of degree 1 and let x;, 1 < 7 £ s be the characters
of those representations, F;, of degrees d; > 1.

By the orthogonality relations, see [1}],

12 'ﬂt(g)'z + ; IXj(g)|2 = |Ce(g)]
where C¢(g) is the centralizer of g. But, if g ¢ Z(G), then
§1: k@) = [G|/|G’] = 2"7" and |Ce(g)| < 2"

Hence 2™—! 4 le [x;(g)]? < 21 so x:(g) = 0. Now if < is fixed,
6l =2 @l = 2 @l

g€G Z(9)
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But if g € Z(G), Fi(g) must be a scalar matrix a,/4; where a, is a root
of unity. Thus

IGl = 2 di=1ZG)d/
g€ Z(G)

ie,d?=|G|/|Z(G)|forl1 =7 < 5. Thusforallzs,j, d; = d,

Consider the case when some s(z) is odd. Then ¢(G) = 2m-1 4 2171-1
and this is the number of equivalent irreducible complex representations
of G. Since G has 2™ representations of degree 1, there must be 2!7I-!
irreducible complex representations of degree » > 1. In fact, the proof
of the lemma shows that every such representation has degree d where

go ez
~ 1z T2V
ie.,
d = 2(m—-[J|)/2‘

LeMMA 1.3. If s(2) is even for all i, then there exist 2 irreducible complex
representations of G of degree 2(m=2/2,

Otherwise there exist 21711 irreducible complex representations of G of
degree 20170 /2,

Proof. The second statement is proved above and the first follows
similarly.

For the purpose at hand, it is necessary to find the degrees of real
representations of G. If F is an irreducible complex representation of G
of degree n, then ¢ F is a real representation of G of degree 2n where ¢ is
the usual representation of the complex numbers as 2 X 2 real matrices.
However, it is often possible to do better. F is called realizable over R
if the entries in the matrices of F(G) are real complex numbers. The
Frobenius Schur Lemma (1] states that a complex representation F is
realizable over R if and only if ZaeG x(g?) > 0 where x is the character
of F. Note also that in the present case it is required that F(e¢) = —1.
Then x(e) = —n.

Suppose g is in G and

1
g=H Vs

i=1 j=1

where y; € {au}, vi; # vi, and 0 £ a(7) £ s(7). Let

tg = a(l)[e(l) + 1] + Z; Ra(D)a(@) + a(@)[a(z) — 1]).
Then , -
2 2 wp/2 1 ifyoEO(mOd‘Q
()" =g = & = {e if u, = 2(mod 4)
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and x(g?) = =n, depending upon p,. Consequently Y_,cs x(g2) = 20T
where

T = |{glu, = 0 (mod H)}| — |{glu, = 2 (mod 4)}|.

Now F is realizable over R if and only if 7" > 0.
A suitable counting device for T is suggested in [2]. If p is a positive
integer, let z, = (1 4+ 2)? = x, + y,.

e () ) ) () - () ()

e )+ (-0 ()
e ()0 )

The following table gives values —, 4, or 0 for these numbers for various

values of p.
TasLE 1.1
p(mod 8) 0 1 2 3 4 5 5 7
X + + 0 - - - 0 +
Y 0 + + + 0 ~ - -
Xp + ¥ + + + 0 - 0
Xp — Y + 0 - - - 0 + +
LEMMA 1.4
l t
T = x50 Il @+ ¥:0) — ¥s [ G = ve0)-
J= j=2
. s(1) — 1 . ..
Proof. There are a(1) ways of choosing a word of a(1) distinct

s(2)
at
tinct elements from {a;} if 7 & 1.

Let T'; be the contribution to 7" by elements g, where a(1) = ¢ (mod 4),
forz = 0,1, 2, 3. There are

(905 -

such elements, and

elements from the set {ay,}; ( ) ways of choosing a word of «(z) dis-

b= GG+ 1) + 2 ali)2i + alj) — 1])mod 4).

j=2
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Suppose 7 = 0; then

t

pe = 2 a(f)(@(j) — 1) = 0(mod 4)

=

if and only if there are an even number of j's such that a(j) = 2 or 3
(mod 4). Now proceed by induction on ¢.

If t = 2, then p, = 0 (mod 4) if and only if «(2) = 0 or 1 (mod 4).
Hence

Ty = [(s(l)o_ 1) + (s(1)4* 1) + .. ] (s + Ys@)-

Now assume that for { = &

e () (0

X (xs + ¥s@) -+ Gosm + Vsw)-

Let
ko ad) a(k+1) a(k+1)
g = ITI 1113’” Hl Y+ = Lk I_Il Y@+
=1 j= j= j=

Then p, = u,, + a(k 4+ 1)(a(k +1) — 1) and p, = 0 (mod 4) if and
only if

by, = a(k + 1)(a(k + 1) — 1) (mod 4).
T’y = [number of times p,, = 0 (mod 4)] (x;a+1) + Ysa+1)

— [number of times p,, = 2 (mod 4)] (X;41) + Vsaan)

E0 ) (0

X (o) + Ys@) o Esarn + Voarn)-
Similarly

I= ("1)[(5(”1_ 1) * (5(1)1_ 1) T ]

X (s — Ys) -+ @ — Ysn)
Ty = (—1)[(5(1)2— 1) + (5(1)6— 1) + .. ]

X (®s@ + ¥s@) - - @ + Vs(n)

60 4 ()

X (e — Ys@) « -« @ — Vs(n)-
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Then
T = (Ty+ T:) + (I'y + T;) and the lemma follows.

The lemma shows that 7" depends upon the values of the s(z) (mod 8).
Let

na =2 =15t s =a(mod8)}],0=a=8.

Note from Table 1.1 that if for some 7, j # 1, s(z) = 1 (mod 4) and
s(j) = 3 (mod 4), then T = 0.
Begin by assuming n; + n; > 0 and n; = n; = 0. Then
T = x;m-1(xs@ + ¥s@) -+« (s + Ysen)-

Since x5 + Ysn > 0 for all 2 such that s(z) = 0, 1, or 2 (mod 8), and
X5y + Y5y < 0 for all j such that s(j) =4, 5, or 6 (mod 8), it is
sufficient to assume that

T = (—1)retmstrog gy .
Thus 7" > 0 if and only if either

1) ny + ns + ne is even, s(1) = 0, 1, or 2 (mod 8);
or

2) ny + ns + neis odd, s(1) = 4, 5, or 6 (mod 8).

Similarly if n3 + n; > 0 and #; = n; = 0, then 7" > 0 if and only if
either

1) ns + n3 + nyiseven, s(1) = 0, 6, or 7 (mod 8);
or

2) ny + n3 + nyisodd, s(1) = 2, 3, or 4 (mod 8).

Now suppose n; = n3 = n; = n; = 0. By Table 1.1 we can assume
that

T = (=)™ [xq-1(xs + ¥5) -+ Eso + Vs))
—Ysm—-1 s — Ys@) -+ Ky — Vo))

where s(z) = 2 or 6 (mod 4) for 2 <7 < ¢, and ¢ = ns + ns.
Note that if #, + 76 = 0 then T = (—1)"%1y—1) — Vs)—1)-
If s(2) = 2 or 6 (mod 4) then x,(z) = 0 and

T

(=)™ [x-0Ye@ - -+ Yoo — Ys-(—=Ys@) + - . (—=¥s@)]
= (=1)"y0 .. Y50 Ecm-p + (=1 y0)-n]

(=) [xay—ny + (= 1)ty gy _p).

Under the assumption that n; = n3 = n; = #; = 0, then " > 0 if and
only if one of the following

I
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1) ny = ng = 0 and either:

a) ngiseven, s(1) = 0,1, 7 (mod R);

or
) nyis odd, s(1) = 3,4, 5 (mod R);
2) ns + ne > 0 and either:
a) ny + ngis even, ns -+ ng is even, s(1) = 0, 1, 7 (mod 8)
or
b) ny + e is even, ny + ng is odd, s(1) = 1, 2,3 (mod 8)
o1
c) ny -+ ne is odd, ns + ne is even, s(1) = 3,4, 5 (mod ¥)
or
= 5,6,7 (mod 8).

d) ny -+ ne is odd, ny + 6 is odd, s(1)
Let d be the degree of a real representation of ¢ of minimal degree > 1.

Lemma 1.3 combines with the above calculations as follows:
, 2 <1 < ¢, then

Case 1. If s(1) is odd and s(z) is even for all 1

d — 2(m-»1)/2 lf
1) my + ng is even, ny + ng is even, s(1) = 1,7 (mod 8)

or
1) #» + me is even, ny + ng is odd, s(1) = 3,5 (mod §)

or
3 (mod 8)

’

i) ns + neis odd, ny + ngis even, s(1) =1

or
5, 7 (mod §)

V) ne -+ ng s odd, ny + ne is odd, s(1) = .

and d = 20072 gtherwise.
< 1 £ t, then

Case 2. 1f s(1) and s(7) are odd for some 7, 2
=0

d = 20m—re= D24 oy > 0, ng = Hg

and either
1) ni 4+ ns 4+ ne is even, s(1) = 1 (mod &)

Or
1) ny + ns -+ ne is odd, s(1) = 5 (mod ).

d = 20D 2 g e b oy > 0, ny o= oy = )
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and either
1) n2 + ny -+ ngis even, s(1) = 7 (mod 8)
or
i) n2 + 73 + nyis odd, s(1) = 3 (mod 8).
d = 2m—m—ns=ns=n1+1) /2 gtherwise.
Case 3. If s(z) iseven for all 7, 1 £ ¢ £ {, then d = 2"=D/2 jf
1) ma2 + ng is even, ny + ng is even, s(1) = 0 (mod ¥)
or
1) na + ng is even, ny + ngis odd, s(1) = 4 (mod §)

or

|

1i1) ne 4+ ns is odd, ny 4 ns is even, s(1) = 2 (mod 8)
or
1v) ng 4 ne 1s odd, n4 4+ ng 1s odd, s(1) = 6 (mod 8).
d = 2™2 otherwise.
Case 4. 1f s(1) is even and s(z) is odd for some 7z, « < 7 £ ¢, then
d o= 20 2 gy s > 0,y = ny = 0,
amd etther

1) ny -+ ns 4 ng1s even, s(1) = 0,2 (mod 8)

i) ny + ny + ngis odd, s(1) = 4, 6 (mod 8).
o = s g g oy > 0, my o= o, == (),
and erther
i) 1o+ ny + nyis even, s(1) = 6,0 (mod 8)
or
i) ny ot g A nois odd, s(1) = 2,4 (mod &),

¥ B Bl (5§ il eml g bl

o e 20 Grherwise.

2. Limits on the variables. Now given a c-tuple {50t 000, s 0 s
sesecde to tind e minimal degree wosuch thar there eariie o et ol
pavase ammcable orthogonal designs where (1) 15 e waanber o

vaieibles i the ith design tor 1€ 0 < £ Again let m ~ 3100
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Let 6,(n) be the maximum number of variables which can appear in ¢
pairwise amicable orthogonal designs in order n. Set n = 24+?. 5, where
nois odd, 0 £ b < 4. Then it has been shown that 8;:(n) = 8¢ + 2° and
that 8:(n) = 8a + 2b + 2 [see Introduction]. Partial bounds for §,(n)
can now be found by using Section 1.

THEOREM 2.1. For t > 1, 6,(n) £ 8a + 2b + t.

Proof. By the calculations in Section 1, it is clear that the degree of a
representation of the group G corresponding to a set of pairwise amicable
orthogonal designs must have degree =2™—9/2,

In fact this situation will occur only if all the s(¢) are odd and congruent
(mod 4). Then

24a+0 > 2m=072 and §,(n) = m < S8a + 2b + .
COROLLARY 2.2. Ifb = 1 and ¢t # 3 (mod 4), then §,(n) < 8a + ¢t — 1.

Proof. Assume that 6,(n) = m = 8a + t + 2. Then m = ¢ + 2 (mod
8) and all the s(Z) must be odd and congruent (mod 4).
Assume s(7) = 1 (mod 4) for all 7, then let s(z) = 4p, + 1. Then

! l

m = le(i) = ; “4p:+ 1) = 4(;1%) + ¢ = t(mod 4.

i=

This contradicts the conclusion that m = ¢t + 2 (mod 8).
Assume s(7) = 3 (mod 4) for all 7. Then

m = s(1) + 3nz + 7n; (mod 8).
(Recall: n, = |[{#]2 £ 7 = ¢, 5; = a (mod 8)}|). Hence

s(1) = m — 3n3 + n; (mod 8)
= (¢t+2)—3ns+ (¢ —n; — 1) (mod 8)
= 2t 4+ 1 — 4n; (mod 8).
Now, if #3 is odd, then by case 2 after Lemma 1.4, s(1) = 3 (mod 8). By
the above calculation, s(1) = 2t + 5 (mod 8), and hence { = 3 (mod 4),

contrary to hypothesis. If n; is even, the same contradiction is achieved.
Thus, the conclusion is that §,(rn) < 8a + ¢ + 1.

CoOROLLARY 2.3. If b

2andt # 2 (mod 4), then §,(n) < 8a + ¢t + 3.
COROLLARY 2.4. If b

Il

3andt = 1(mod 4), then 8,(n) < 8a + t + 5.

Both of the above corollaries are proven in a manner similar to that
used for Corollary 2.2.
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THEOREM 2.5. If n = 2%%-n,, where n, is odd, then for each t > 1,
6,(n) = 8a + t.

Proof. In [9] it is shown that there exist p(n/2) + 1 = 8a + 1 anti-
commuting, symmetric, orthogonal, disjoint, (0, 4=1) matrices in order 7,
say Ay, ..., Asgay1.

Let X1 =ILx1, ..., X1 =Lx,1, X, = > A;y: where the x; and v,
are distinct commuting variables. Then {X;, ..., X} is a set of pairwise
amicable orthogonal designs in order #» with 8a + ¢ variables.

CONSTRUCTION 2.6. If there exists a set of t pairwise amicable orthogonal
designs in order n with p variables, then there exists a similar set in order
24 n with p + 8 variables.

Proof. Let {X,; = Zj(:’f Aqixi, 1 <1 £t} be the given set of designs
in order n. Let Zu and Z‘i W w,; be the amicable orthogonal designs in
order 2¢ constructed in [9]. Then let

s(1)

Xi=(Au® Z)zu + 22 (41, ® Wy)zy,
=

$(2) 9

X, = Zl (A2; ® Wi)ze; + Z (A1 @ Wi)wa
=

k=2

s (1)

Xl:Z(A‘L]@Z)Z” f0r3§z§t,
=1

where the z;;, wy are distinct commuting variables. Then {X,, ..., X}
is a set of pairwise amicable orthogonal designs in order 2!z with

>t s(G) + 8 = p + 8 variables.

THEOREM 2.7.

4 ifa=0,b=1
8a+3ib=0
ds(n) =(8a +5ifb=1,a >0
S8a+61fb =2
S8a + 8if b = 3.

Proof. If @ =0, b = 1 then a pair of amicable orthogonal designs
exists in order n with 4 variables. Hence 4 < §;(n) < 5. Careful con-
sideration of all possible values for s(1), s(2), and s(3) will show that in
fact 63(n) = 5 is impossible.

If b = 0, then Theorem 2.5 shows that §;(n) = 8a + 3.
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[fh =1 a>0,thenlet

Ao = L Awy=PQ@PQPQRPQ®P

An =00 4000 AR I,
PRPRPRPQRQ

A =000 41, Q0 A4
PRIPRPRQQRI,

A =0 A0 PR 4
An=rP@Pe0Q®I,
=P ®Q QI
A = Q ® I
A =PRPQRAR(QQ 4

Am:P@A@]x Al?.

“102 = A X 115 “'113

A 15

where

o1 ,a[o 11 ’ _[1 o]
4= {,-1 u]' P=11 of md 0=y |-

Then jX, = Z Aix.1, where x;; are distinct commuting variables, is
a set of 3 pairwise amicable orthogonal designs in order 2° with 13
variables. Now by induction on « and Construction 2.6, 6;3(n) = Sa + 5.
By Theorem 2.1, 83(n) < Sa + 5 so there is equality.

It b = 2, Corollary 2.2 shows that §;(n) < Sa + 6, but, since a pair
of amicable orthogonal designs exist in order # with 8¢ 4+ 6 variables
91, 65(n) = Su + 6.

Similarly Corollary 2.3 and the construction given in [9] show that
if b = 3, then 6;(n) = Sa + 8.
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