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Quantum algorithms have been proposed to accelerate the simulation of the chaotic
dynamical systems that are ubiquitous in the physics of plasmas. Quantum computers
without error correction might even use noise to their advantage to calculate the Lyapunov
exponent by measuring the Loschmidt echo fidelity decay rate. For the first time,
digital Hamiltonian simulations of the quantum sawtooth map, performed on the IBM-Q
quantum hardware platform, show that the fidelity decay rate of a digital quantum
simulation increases during the transition from dynamical localization to chaotic diffusion
in the map. The observed error per CNOT gate increases by 1.5× as the dynamics
varies from localized to diffusive, while only changing the phases of virtual RZ gates
and keeping the overall gate count constant. A gate-based Lindblad noise model that
captures the effective change in relaxation and dephasing errors during gate operation
qualitatively explains the effect of dynamics on fidelity as being due to the localization
and entanglement of the states created. Specifically, highly delocalized states that are
entangled with random phases show an increased sensitivity to dephasing and, on average,
a similar sensitivity to relaxation as localized states. In contrast, delocalized unentangled
states show an increased sensitivity to dephasing but a lower sensitivity to relaxation. This
gate-based Lindblad model is shown to be a useful benchmarking tool by estimating the
effective Lindblad coherence times during CNOT gates and finding a consistent 2–3×
shorter T2 time than reported for idle qubits. Thus, the interplay of the dynamics of
a simulation with the noise processes that are active can strongly influence the overall
fidelity decay rate.

Key words: plasma dynamics, plasma simulation

1. Introduction
1.1. Motivation

Quantum computers may eventually become indispensable to scientific computing due
to their ability to accelerate many calculations of interest. Because the physics of
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plasmas crucially relies on understanding how the motion of charged particles responds to
electromagnetic fields and how the fields, in turn, respond to the particles, understanding
how quantum computers can be used to accelerate the simulation of complex nonlinear
dynamics is of great importance to the field. Plasma transport strongly depends on whether
the particle motion possesses adiabatic invariants, such as the magnetic moment, or
whether the invariants are destroyed and the motion is chaotic. While the former is the
basis for particle confinement, the latter is used for heating plasmas to fusion relevant
temperatures. In many situations of interest, the dynamics of the fields are often chaotic
or even turbulent, which enhances the transport of particles, heat and momentum through
the plasma. Thus, a key research direction for quantum algorithms for plasma physics is
to accelerate the simulation of the nonlinear, chaotic and turbulent dynamics of plasmas
(Joseph et al. 2023).

Interactions between particles and fields in a plasma are often classified into
wave–particle and wave–wave interactions. Wave–particle interactions refer to the change
in the trajectories of particles due to the electromagnetic fields, the change in the
trajectories of wave packets due to scattering from particles and the resulting exchanges
of energy and momentum (Nicholson 1983; Davidson 2012). The electromagnetic forces
generate evolution of the particle distribution function (p.d.f.) in phase space, and there are
analogous processes that cause wave packets to evolve in wavenumber, k, and frequency,
ω, space. Wave–particle interactions such as Landau damping, quasilinear theory, plasma
echos and induced scattering are ubiquitous. Wave–wave interactions refer to nonlinear
interactions between wave packets of different types, which can, in fact, be mediated
through the particles. This includes calculations of the wave–wave scattering process,
as well as both strong and weak turbulence theory (Nazarenko 2011; Zakharov, L’vov
& Falkovich 2012). At a fundamental level, all of these processes can be viewed as the
evolution of a plasma as a nonlinear dynamical system.

For small amplitude waves, the effects of nonlinear interactions can be understood
through an expansion in wave amplitude. The linear response for wave–particle
interactions is largest at a resonance between the particle velocity and the phase velocity
of the wave, ω = k · v, where the phase velocity, ω/k, matches the particle velocity v.
If the p.d.f. decays in velocity at the location of the resonance relative to the bulk, then
the waves experience Landau damping. The opposite case is unstable and inverse Landau
damping causes the wave amplitude to grow. For a finite wave amplitude, E, particles
are trapped in an island in phase space of finite width, δv = √

2E, for a particle of
unit charge and mass. When multiple waves are present with different frequencies and
wavenumbers, resonances can occur at the phase velocity of the nonlinear beat wave,∑

i ωi =∑i ki · v, which generalizes the resonance condition for wave–wave interactions.
Once the islands generated by waves at different phase velocities begin to overlap,
i.e. above the Chirikov criterion (Chirikov 1979), there is a transition to chaotic particle
motion, where particles effectively diffuse in momentum space. Quasilinear theory derives
the effective diffusion that particles experience due to the wave power spectrum and the
transfer of energy and momentum between waves and particles. In fact, this transition
to chaos is generic for any dynamical system. However, in the chaotic regions of phase
space, the true motion is rather complex and accurate numerical simulations are required
to determine the evolution of the p.d.f.

In general, plasma simulations must be addressed with computational approaches for
solving the relevant partial differential equations (PDEs), e.g. the Vlasov–Poisson or
Vlasov–Maxwell system. This requires both an accurate calculation of the particle orbits
in the force field generated by the waves and an accurate calculation of the response of
the waves to the charge and current density of the particles. Due to the high-dimensional
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phase space, solving for the motion of the particle p.d.f. is computationally demanding
and is the largest computational overhead in today’s kinetic codes, both for Lagrangian
(particle-in-cell) and Eulerian (e.g. finite volume or finite element) approaches. Moreover,
self-consistent calculations are highly demanding precisely because plasma evolution
often leads to chaotic and turbulent dynamics that require extremely high spatial resolution
for accurate results.

The power of quantum computers to apply useful operations to high-dimensional
Hilbert spaces, essentially in parallel, implies that it may one day be possible to
accelerate calculations of wave–particle interactions. In fact, we recently proposed the
Koopman–von Neumann approach (Joseph 2020; Joseph et al. 2023) for using quantum
computers to evolve all trajectories at once in an efficient manner, potentially leading
to exponential speedup for the evolution of the p.d.f. In this work we shift focus from
designing algorithms for future fault-tolerant quantum computers to understanding how
such algorithms perform in practice on one of today’s hardware platforms. In order to
make the problem more tractable, we consider simulating a toy model of wave–particle
interactions by simulating the evolution of the p.d.f. in a fixed electrostatic potential.
Another paper in this special issue (Shi et al. 2024) tests the ability of present day quantum
computers to simulate a toy model of the chaotic dynamics of wave–wave interactions as
a proxy for nonlinear PDEs of interest to plasma physics.

However, the present era of quantum computing has been dubbed the noisy
intermediate-scale quantum (NISQ) era because present day quantum computers are
limited in the fidelity of the basic gate operations as well as in the overall number of
gates (gate depth) that can be applied coherently. The presence of errors in the calculation
requires some type of error characterization and mitigation strategy, and, without error
correction, it is not yet possible to perform the high-precision calculations necessary for
plasma simulation. Our conclusion is that it is important to control the type and strength
of various noise processes in order to obtain accurate results.

1.2. Quantum maps
The first step in simulating wave–particle interactions is to compute how the particle
trajectories changes in response to the fields. In the early days of plasma research,
physicists explored the chaotic dynamics of the particle motion through the study of
discrete time dynamical systems called nonlinear maps (Lichtenberg & Lieberman 1992).
Relatively simple nonlinear maps, such as the Chirikov standard map (Chirikov 1979),
generate chaotic motion by breaking time invariance with a series of periodic kicks
in time. Nonlinear maps are both simpler and more accurate to study than nonlinear
differential equations because they avoid numerical integration in time. Hence, they
have no truncation errors associated with the discrete approximation of the integrals
and, perhaps more importantly, they require far fewer operations per time step, so that
numerical errors associated with finite precision arithmetic are kept to a minimum.
Thus, nonlinear maps can be computed very efficiently and allow one to explore
the rich structure of the chaotic dynamics of natural plasma processes such as the
heating of magnetized plasmas by cyclotron waves (Lichtenberg & Lieberman 1992).
Although the dynamics is controlled by a small set of parameters, it usually displays
rich structural properties due to the multitude of bifurcations in the number and
types of fixed points of the mapping as the parameters are varied (Guckenheimer &
Holmes 2013).

While there are formally exact methods for developing quantum algorithms that
simulate classical dynamics (Joseph 2020; Liu et al. 2021; Joseph et al. 2023), for small
system sizes the method of quantization is cheaper in terms of resource requirements,
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 1. Husimi-Q quasiprobability distribution for the quantum standard map (same
decomposition as (2.2)), but with the potential in (2.1) modified to K(1 − cos θ̂ ) starting from
the initial condition p = 3N/8 (J = 3π/4) for 10 qubits. The map is evolved for 1000 time steps
and then the final probability distribution is averaged over the last 50 time steps. Parameters:
L = 1 and (a,b) K = 0.95 below the destruction of the last KAM surface, (c,d) K = 1.0 above
the destruction of the last KAM surface, (e, f ) K = 1.5 chaotic diffusive regime. Calculations
performed on a classical computer without noise.

i.e. number of qubits and quantum gates. A symplectic nonlinear map can be quantized
by embedding the dynamics within a unitary transformation in a manner that reproduces
the classical dynamics in the semiclassical limit (Benenti, Casati & Montangero 2004).
While achieving the semiclassical limit is challenging classically, the exponential memory
resources of a quantum computer and the ability to simulate superpositions efficiently
make this approach feasible quantumly. For example, the quantized version of the
Chirikov standard map, the prototypical example of chaotic particle motion in response
to a nonlinear wave, is shown in figure 1. The map is run starting from an initial
condition localized in momentum space that then explores the accessible phase space
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over time. One can clearly see a large-scale island in the centre of the figure, whose
width scales as K1/2, as expected. The fact that the map is kicked periodically in time
also generates islands at other phase velocities and chaotic motion occurs near the regions
where islands overlap. As the map parameter K varies across the point at which the last
Kolmogorov–Arnold–Moser (KAM) surface is destroyed (estimated as K � 0.971635406
using Greene’s method Lichtenberg & Lieberman 1992), the wavefunction begins to
diffuse over the entire phase space. Thus, simulating the quantized evolution can be
thought of as a quantum walk algorithm that accelerates the exploration of and averaging
over the accessible chaotic region (Di Molfetta & Debbasch 2016; Joseph et al. 2023).

Simulation of the exact quantum dynamics (Brodin & Zamanian 2022), including
quantum wave–particle interactions (Misra & Brodin 2022), is of great scientific interest,
but challenging using classical computers due to the memory and time required to directly
simulate the exponentially large Hilbert space for the fully quantized system. Hence,
quantum simulation using quantum computers is one of the main applications of interest
for achieving a near term quantum advantage (Babbush et al. 2021). Simulating chaotic
dynamics is of particular interest due to the provable difficulty of simulating chaos. Recent
claims of quantum supremacy relied on the difficulty of simulating chaotic quantum
circuits (Boixo et al. 2018; Arute et al. 2019) and, among paths to quantum advantage,
simulating chaotic dynamics may be the most qubit efficient (Babbush 2021). Thus,
direct simulation of the quantized system opens the pathway both for simulating the
intrinsically quantum dynamics as well as for accelerating the simulation of classical
dynamics.

This work explores the quantum sawtooth map (QSM) as a prototypical point example
of both the classical and quantum plasma physics simulations that quantum computers
may one day accelerate. The QSM is one of the cheapest possible maps to simulate
(Benenti et al. 2001) because it only depends quadratically on the momentum and the
position, which significantly reduces the number of arithmetic operations per time step,
both classically and quantumly. This has led to a proposal to use the QSM as a benchmark
problem to measure the ability of quantum algorithms to accelerate the simulation of
dynamical systems (Benenti et al. 2004). The result of evolving the QSM from a localized
initial momentum state is shown in figure 2. Again, one can clearly see a transition to the
regime of chaotic diffusion as the map parameter increases (compare with the standard
map in figure 1).

Both chaotic/diffusive dynamics and dynamical localization, which is an intrinsically
quantum effect, can be observed in the QSM. (Here, we use the term diffusive rather than
chaotic because the dynamics is not clearly chaotic until a sufficient number of qubits is
used (Porter & Joseph 2022).) The transition from diffusion to localization occurs when
the ratio of diffusion strength to effective Planck’s constant (�) is small and quantum
interference dominates.

1.3. Leveraging noise
The NISQ devices that are available today provide a unique platform for exploring
the dynamics of many-body quantum systems. However, the ubiquitous presence
of interactions with the environment generates noise that adds complexity to the
interpretation of the results. Depending on context, noise can affect the simulation
dynamics in different ways. It may completely wash out the dynamics of interest or it can
potentially be used to measure key signatures of the dynamics (Porter & Joseph 2022).

An important feature of quantum transport simulations is that they can be performed
in the presence of noise. In fact, the algorithm for calculating the Lyapunov exponent
measures the fidelity decay rate of a Loschmidt echo experiment that crucially relies
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 2. Husimi-Q quasiprobability distribution for the QSM (2.2) for n = 10 qubits, starting
from the initial condition p = 3N/8 (J = 3π/4). The map is evolved for 1000 time steps and
then the final probability distribution is averaged over the last 50 time steps. Parameters: L = 1
and (a,b) K = −0.1 regular motion, (c,d) K = 0.1 anomalous diffusion, (e, f ) K = 1.5 chaotic
diffusive regime. Calculations performed on a classical computer without noise.

on noise being present as part of the calculation. On future error-corrected quantum
computers, one can carefully introduce effective noise sources into the calculation by
design. For today’s NISQ computers, one might utilize specific types of hardware noise
that may already be present to one’s advantage, as long as the strength of the noise and
the strength of the Lyapunov exponent can be chosen to reside within a certain window in
parameter space (Porter & Joseph 2022). The ability to characterize and control the types
of noise present could enable this by leveraging tailored noise (Guimarães et al. 2023; Van
Den Berg et al. 2023). Quantum hardware platforms with enough qubits and with the right
magnitude of noise to perform such calculations may be available in the near future.

Measuring the decay of fidelity can provide an exponentially efficient measure of the
classical Lyapunov exponent (Benenti & Casati 2002; Benenti et al. 2004) and chaotic
decoherence (Poulin et al. 2004). Measuring dynamical localization of classically chaotic
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systems may yield a similar speedup (Georgeot & Shepelyansky 2001). The fidelities
of quantized versions of classically chaotic Hamiltonian systems can decay differently
(often faster) than for integrable dynamics (Peres 1984; Lysne et al. 2020; Porter & Joseph
2022). Quantum chaos can magnify the effect of Trotter errors (Sieberer et al. 2019) while
quantum localization can reduce the upper bound on their impact (Heyl, Hauke & Zoller
2019).

1.4. Summary of results
In this work we ask the question: How do dynamics, entanglement and noise impact
the fidelity of the results? We show experimentally that varying the dynamics of the
QSM alters the fidelity decay rate. Henry et al. (2006) and Pizzamiglio et al. (2021)
initiated the use of the QSM to characterize experimental noise by using the degree of
localization as a test of device fidelity. We extend previous work by studying the phase
transition from localization to diffusion and the Loschmidt echo fidelity throughout this
transition, opening the door to probing the interaction between quantum map dynamics
and experimental noise.

The main results are as follows. (1) We report on the first experimental evidence
demonstrating that the Loschmidt echo fidelity of a digital quantum simulation decreases
as the dynamics transitions from integrable to chaotic even as the gate count remains
constant. (2) While this behaviour was anticipated by previous studies, we found that the
parametric noise models that others had explored cannot explain the experimental results.
(3) Instead, this behaviour can be phenomenologically explained by the fact that chaotic
evolution creates randomly entangled states, defined as having significant amplitude on all
basis states with random relative phases on each, that are more sensitive to dephasing
and similarly sensitive to relaxation as localized states. This can be attributed to an
increase both in superposition, which increases the effect of pure dephasing and reduces
the effect of relaxation, and in entanglement with random phases, which increases the
effect of relaxation. (4) Three noise models that we explore agree on a common value of
the effective T2 time during gate operation that, as is to be expected, is far shorter than
IBM-Q’s reported value for T2E from a Hahn echo experiment.

We introduce a gate-based Lindblad model that both captures the effect of dynamics on
fidelity in a minimal physically motivated model and results in an effective T2 time similar
to that from a Qiskit Aer model fit. In contrast, the parametric noise model often used
by other authors in the quantum maps literature does not capture the correct form of the
fidelity decay, and randomized benchmarking (RB) with depolarizing noise does not have
the minimum two parameters required to describe a fidelity that depends on more than
gate count.

1.5. Overview of contents
In § 2 the QSM is introduced, its conditions for dynamical localization are described and
its gate decomposition is given. In § 3 the experimental results are presented and compared
with IBM-Q reported metrics. In § 4 noise models are described and fit to experimental
data to extract effective decoherence times. Appendix E provides background rationale for
the gate-based Lindblad model that is a primary tool in this section. Sections 4.2 and 4.3
consider single-qubit Lindblad noise models, § 4.4 considers the qiskit Aer noise model
and § 4.5 fits the three resulting models to the data. Lastly § 5 provides a summary of our
results. Discussion of the parametric noise model considered in previous work is relegated
to Appendix D.
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2. Quantum sawtooth map
2.1. Definition

The QSM is defined by the dimensionless time-periodic Hamiltonian

HQSM = Ĵ2

2
−
∑

n

K
θ̂ 2

2
δ(t − n) for θ mod 2π, (2.1)

which is derived in Porter & Joseph (2022) from the classical Hamiltonian by quantizing
in dimensionless � to get Ĵ = �p̂ and discretizing to get θ̂ = 2πq̂/N to yield momentum
and position operators p̂ and q̂, respectively, with eigenvalues −N/2 ≤ p, q < N/2. The
quantum evolution propagator over one period is then

UQSM = T̂ exp
(

−i
∫ 1

0
HQSM dt/�

)
= UkinUpot,

Upot(q̂) = exp(i k(βq̂)2/2), Ukin(p̂) = exp(−i �p̂2
/2),

⎫⎪⎬
⎪⎭ (2.2)

where T̂ is the time-ordering operator, k ≡ K/� is the quantum kicking parameter and
β ≡ 2π/N for N basis states. In the context of quantum computing N = 2n for n qubits.
Equation (2.2) is exact with no Trotter error due to the delta-function potential that is
kicked periodically in time. In this instant the potential energy overwhelms the kinetic
energy and so can be considered to occur at the beginning of each time step, entirely
before the kinetic evolution. The whole single-period propagator is often called a Floquet
operator with periodicity one (Rudner & Lindner 2020) since it uses a time-periodic
Hamiltonian, but since it corresponds to a classical map it is also known as a quantum map.
(See the conclusions and outlook section of Mori (2023) for a review of Floquet theory
in the context of open quantum systems.) Periodicity matching between the classical and
quantum systems gives � = 2πL/N for positive integer L (Porter & Joseph 2022).

Note a partial symmetry between the phases of Ukin and Upot: � = L ∗ 2π/N while
−kβ2 = −K/L ∗ 2π/N. Typically, the qubits are mapped to the p basis, but mapping
instead to the q basis would swap the roles of L and −K/L.

2.2. Localization and initial conditions
The QSM is integrable when K = −4,−3,−2,−1, 0 and, hence, the wavefunctions are
localized for these cases. For the intermediate region, K ∈ (−4, 0), the dynamics is not
localized, but has a zero Lyapunov exponent. The dynamics of the QSM are chaotic for
K < −4 and K > 0. For 0 < K < 1, the wavefunction is chaotic, but it is in a regime of
anomalously slow diffusion. Figure 2 illustrates the difference in QSM dynamics between
the zero Lyapunov case, K = −0.1, the anomalous slow diffusion case, K = +0.1, and
the standard chaotic case, K = 1.5. Since the focus of this paper is on chaotic dynamics,
from now on only K > 0 will be considered.

The presence of broken cantori in the classical system can slow diffusion at small K, so
there are two regimes given by the classical diffusion coefficient

DK ≈
{
(π2/3)K2 for K > 1,
3.3K5/2 for 0 < K < 1,

(2.3)

which measures the rate of trajectories diffusing through the phase space (Benenti et al.
2001). When DK is small compared with �

2, the QSM is predicted to reach a steady state
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FIGURE 3. Exact noiseless simulations of the QSM, showing the localized case k = 0.1 (blue)
and the diffusive case k = 4.55 (red) for t = 1, 2, 4, 8. Initial state prepared in |p = −2〉.
Parameters: n = 3 (N = 8),L = 1; k = 4K/π, kloc ≈ 1.87. The horizontal axis corresponds to
the vertical axis of figure 2, but at different N.

after the Heisenberg time that is exponentially localized around an initial momentum state
|p0〉 as

Pp = | 〈p|ψ〉 |2 ≈ 1
�

exp
(

−2|p − p0|
�

)
(2.4)

with localization length (Benenti et al. 2004)

� ≈ DK/�
2. (2.5)

The Heisenberg time or ‘break’ time (Benenti et al. 2004) is the time to resolve the energy
levels, defined as the inverse mean energy level spacing (Shepelyansky 2020; Šuntajs et al.
2020).

Due to the periodicity and finite size of the system, localization only occurs if the
localization length is small enough to have a global maximum at its central peak. This
occurs when (Porter & Joseph 2022)

k < kloc ≡

⎧⎪⎪⎨
⎪⎪⎩

√
3

ln(2)π2
N ≈ 0.66N1/2 for K > 1,(

1

3.3
√

2π ln(2)

N3/2

L1/2

)2/5

≈ 0.50N3/5L−1/5 for 0 < K < 1,

= max(0.66N1/2, 0.50N3/5L−1/5) (2.6)

with diffusion occurring otherwise. These two dynamical regimes are demonstrated in
figure 3.

When localization is strong (� � N), the above formula for average � does not uniformly
apply to all initial conditions, with � instead depending on the initial condition in a
manner dependent on L. Less localized clusters of momentum eigenstates appear at L
equally spaced locations in momentum space, reducing � for initial momentum states in
the vicinity of these groups. Once L ∼ N this transitions to more uniform � with just
|p = 0〉 strongly localized. This is how Henry et al. (2006) and Pizzamiglio et al. (2021)
used N = 8,L = 7 to obtain strong localization at |p = 0〉, despite other states being less
localized. In this study we fix L = 1 to keep the state-dependent effect on localization
length constant. When demonstrating strong localization in figure 3 we show a single
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initial condition |p〉 with p 
= 0 to avoid early delocalization. But in other figures the
fidelity is averaged over all initial conditions to average out state-dependent effects. This
averaging of fidelity is motivated by the standard approach to observing the Lyapunov
exponent in the fidelity decay rate (Benenti & Casati 2002).

It is also worth noting that the initial conditions are chosen to be momentum eigenstates,
which in the strongly localized limit are not perfectly localized since they are not quantum
map eigenstates. Rather, in this limit the map eigenstates are complex superpositions of
|p〉 and |−p〉. As the quantum map causes the phase of each map eigenstate to evolve at a
rate proportional to its quasienergy, pairs of states will fall out of phase, causing an initial
state |p〉 to evolve to |−p〉 after a phase difference π. However, in the localized limit the
quasienergies of these map eigenstate pairs are close together, making this process long
and irrelevant for the short-time scales discussed in this paper. The fact that we reverse the
map to calculate fidelity further reduces the relevance of this effect.

2.3. The QSM algorithm
There is a natural mapping of the QSM to a qubit-based quantum computer. The N
momentum eigenstates can be mapped to the 2n qubit states when N = 2n. The unitary
UQSM can then be implemented exactly in four steps (Georgeot & Shepelyansky 2001;
Benenti et al. 2004; Porter & Joseph 2022), written compactly as

UQSM = UkinU−1
QFTUpotUQFT, (2.7)

where the operators Ukin = Uphase(�) and Upot = Uphase(−kβ2) are many-qubit diagonal
phase operators in the position and momentum bases, respectively, defined in (2.2), and
UQFT is the quantum Fourier transform (QFT) used to alternate between the momentum
and position bases. The diagonal phase operators can be implemented exactly due to a
method for decomposing order-P polynomial terms in the Hamiltonian into polynomially
many P-qubit gates, given in Appendix B (Georgeot & Shepelyansky 2001). A similar
yet approximate algorithm exists for any quantum map whose Hamiltonian has separable
kinetic and potential energy terms each with a convergent power series expansion, such
as the standard map (Georgeot & Shepelyansky 2001) or kicked Harper model (Lévi &
Georgeot 2004). An exact representation of trigonometric terms requires ancilla qubits.
Compared with these trigonometic potentials, the QSM algorithm has a particularly
efficient algorithm due to its quadratic potential requiring only quadratically many
two-qubit gates. While any polynomial length algorithm may be considered ‘efficient’,
the QSM is the second-most efficient among quantum maps when using the Georgeot
algorithm (Porter & Joseph 2022). For the UQFT steps, we use the standard algorithm from
IBM’s library, which is exact, efficient and requires no ancilla qubits (Nielsen & Chuang
2010; IBM 2021b).

Using the derivation in Appendix B, the efficient circuit decomposition for the QSM is

UQFT =
n/2−1∏
j1=0

SWAPj1,n−1−j1

n−1∏
j1=0

(
n−1∏
j2>j1

CPn−1−j1,n−1−j2(π/2
j2−j1)

)
Hn−1−j1,

Upot =
n−1∏
j1=0

(
n−1∏
j2>j1

CPj1,j2(kβ
22j1+j2)

)
Pj1(kβ

222j1−1 − kβ2N2j1−1),

Ukin =
n−1∏
j1=0

(
n−1∏
j2>j1

CPj1,j2(−�2j1+j2)

)
Pj1(−�22j1−1 + �N2j1−1),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)
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(a)

(b)

(c)

FIGURE 4. Circuit for a single forward map iteration of the three-qubit QSM algorithm from
(2.8), both in block form and in algorithmic form before conversion to hardware connectivity
and transpilation to native gates. Two-qubit CPHASE gates are used. Here Upot and Ukin steps
use PHASE and CPHASE gates, while UQFT steps use CPHASE and H gates. We use k = 4.55
here.

where H is a Hadamard gate, P and CP are one-qubit phase and two-qubit controlled-phase
gates, respectively, and UQFT follows the Qiskit reverse-ordering convention. The second
term in the argument of each P gate translates the domain to p ∈ [−N/2, (N − 1)/2],
as described in Appendix B. This algorithm is shown for three qubits in figure 4, with
the SWAP gates from UQFT having been eliminated by reversing the order of qubits
during Upot.

Since our algorithm is exact while maintaining polynomial gate scaling, there is no
clear benefit to methods that scale near optimally with error such as quantum signal
processing (QSP) (Low & Chuang 2017). Moreover, QSP has a large constant overhead
cost and requires ancilla qubits that make it inappropriate for few-qubit applications.
Another approach, a decomposition of diagonal unitaries to Walsh functions provided by
Welch et al. (2014), is also an approximation and so unnecessary here. Furthermore, it
is only efficient if the diagonal Hamiltonian is smooth enough that the number of Walsh
functions k is independent of the qubits n at any fixed approximation error. However, as
one reduces the error tolerance, the number of required gates would grow as 2k.

The initial conditions used in this work will vary between figures, as specified in their
captions. However, all basis states are valid initial conditions for exploring the dynamics
of the QSM.

3. Experimental results
3.1. Fidelity definition

This section discusses the core experimental results. The main result concerns the
Loschmidt echo fidelity, which is defined as the probability of evolving a state and then
reversing that evolution perfectly in the presence of noise. In an experiment noise is
naturally present in both the ‘forward’ and ‘backward’ steps. For the QSM, an initial pure
state |ψ〉 is evolved under the unitary UQSM in the presence of noise for t/2 time steps,
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followed by its inverse U−1
QSM with the same noise processes for t/2 time steps, resulting

in the total noisy evolution Φt and the final mixed state σ (t) = Φt(|ψ〉 〈ψ |). Then for an
initial computational basis state |ψ〉 = |p〉, the Loschmidt echo fidelity is

f (t) = 〈p| σ (t) |p〉 = Probt(|p〉). (3.1)

For simulations and experiments, we use t ≡ 2 ∗ tfb to define tfb, the number of
forward-and-back pairs of steps. Hence, the fidelity is given by f (t) ≡ f (2 ∗ tfb) and plotted
with respect to tfb. For a more thorough description of the Loschmidt echo, see § 4. The
main experimental result is that the rates of fidelity decay in figure 6 increase as the QSM
increases its quantum kick parameter k. This only alters the phases of transpiled RZ gates
in Upot (see Appendix A), and does not change the CNOT gate count. Note, however,
that the change in fidelity is correlated with the transition between localized and diffusive
dynamics and saturates to limiting values at both low and high values of k. This behaviour
resembles but is distinct from the semiclassical regime (Porter & Joseph 2022) where the
fidelity decay rate can be controlled by the Lyapunov exponent and, hence, the strength of
chaos in the system. This regime it not yet experimentally accessible on IBM-Q.

The phrase ‘diffusive dynamics’ above refers to dynamics that, taken in the classical
limit of infinite qubits, would recover the chaotic classical diffusion discussed in § 2.2.
However, in the context of small quantum systems, diffused quantum states fully explore
the Hilbert space and have essentially random phases on each basis state. These states will
be referred to as ‘randomly entangled’ states in § 4.2.

3.2. Dynamical localization
One goal of simulating the QSM on present day hardware is to assess the hardware’s
ability to execute complex dynamical simulations. Figure 5 shows the results of simulating
the QSM ‘forward only’ (ideally UQSM) on the ibmq_manila device in both the localized
and diffusive regimes. The effect of dynamics is clearly apparent, and the localized
state’s probability is an informal metric of the fidelity of the quantum hardware. The raw
data shows the localized state retains the maximum probability among the eight states
through t = 7. However, the results of figure 6 for simulating ‘forward and back’ (ideally
U−1

QSMUQSM) retain fidelity through at least tfb = 5, suggesting the forward-only localized
case may retain information about its initial state through at least t = 10.

The metric of the localized state’s probability was used more thoroughly in Pizzamiglio
et al. (2021). Figure 5 does not easily compare to Pizzamiglio et al. (2021) because
different map parameters were used, namely L = 1 in this work and L = 7 in Pizzamiglio
et al. (2021). This significantly changes the eigenstates, independently of k, and therefore,
changes the degree of localization. Different parameters were used in the present work to
achieve more strongly localized dynamics, as explained in § 2.2.

3.3. Fidelity and dynamics
The Loschmidt echo fidelity is a more quantitative metric of hardware ability for exploring
the effect of dynamics on the fidelity. It is described in §§ 3.1 and 4.1.

By varying the parameter k of the QSM the interaction between experimental noise
and dynamics can be measured, as shown in figure 6. As predicted by the single-qubit
Lindblad noise models in §§ 4.2 and 4.3, localized and diffusive dynamics have different
fidelity decay rates during the various substeps of the simulation. The experiment shows
a continuous transition in the fidelity decay rate as the dynamics change from localized
to diffusive. The noise models are used in § 4.5 to fit the data and extract effective
decoherence parameters.
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FIGURE 5. Dynamics of the QSM for three qubits on the ibmq_manila device, showing
localization (k = 0.1) and diffusion (k = 4.55) for t = 1, 2, 4, 8 and the initial condition
|p = −2〉 (|ψ〉 = |010〉) for best localization. Compare to figure 3. Hereafter 8192 experimental
shots were taken for each k, t and initial condition, giving statistical uncertainty 1/

√
Nshots ≈

1.1 %. The experiment was performed on April 11, 2022 at 10:19 pm EST. Here ibmq_manila is
recalibrated every 1–2 h to adjust for drift that can increase error.

FIGURE 6. Average Loschmidt echo fidelity of the QSM on the ibmq_manila device for three
qubits and varying k. Localization occurs below kloc ≈ 1.87. Data are averaged over all eight
initial computational basis states. Statistical uncertainty per data point is 1/

√
8192 ∗ 8 ≈ 0.4 %.

The number of CNOT gates per forward-and-back step is MCNOT = 66. The absolute fidelity gap
at tfb = 1 between the most localized and most diffusive cases is 10.6 %. The experiment was
performed on January 28, 2022 at 2:44 pm EST.

Note that for n = 3,L = 1 as used here, the predicted transition to full diffusion should
occur at kloc ≈ 1.87. In the experiment, the largest three k values have indistinguishable
fidelities up to a 1.5 % absolute difference despite k = 1.0 being below the transition
threshold. Further resolution of the observed transition value kloc requires greater statistics
and a larger system size. The smallest three k values show a gradual transition from the
strongly localized k = 0.1 to the weakly localized k = 0.45.

3.4. Gate error
The most direct metric for comparing our simulation results to reported metrics from
IBM-Q is the CNOT gate error. This does not rely on any noise model, as it is a
single-parameter fit (gate error) for each k. In table 2, error fits are reported using just
the first time step f (1) and the state preparation and measurement (SPAM) error f (0).
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(a) (b) (c) (d)
No. of physical

Device, no. of No. of CNOTs No. of CNOTs single-qubit Fidelity f (1)
qubits (connectivity) (raw Qiskit) ((2.8) + Qiskit) ((2.8) + Qiskit) ((2.8) + Qiskit)

ibmq_manila, n = 2 4 4 12–16 0.88–0.90
ibmq_manila, n = 3 (linear) 136 66 28–32 0.27–0.37
ibmq_5_york,
town, n = 3 (triangular) 82 38 26–30 0.125 (1/N)

TABLE 1. Native gate counts and fidelity for executing each forward-and-back iteration of the
QSM experimentally on IBM-Q devices. We include ibmq_5_yorktown to compare the effect of
higher connectivity. To calculate forward-only gate counts as for figure 5, divide by two. (a) The
CNOT gate count when Qiskit transpiler attempts direct gate decomposition of the QSM unitary.
(b) The CNOT gate count when using the efficient algorithm (2.8) plus transpiler optimization
on linear qubit connectivity. (c) Physical single-qubit gate count, not including virtual RZ gates.
Range is over initial condition and dynamical map parameter k. (d) Fidelity as measured by the
one-step Loschmidt echo, partly from figure 6. The range is over k, varied from diffusive to
localizing dynamics, after averaging over initial conditions. The experiment on ibmq_5_yorktown
was performed on October 22, 2020 at 4:41pm EST and experiments on ibmq_manila were
performed on the date and time in figure 6. Fidelities include measurement error and are at
full decoherence reach 1/N.

CNOT error (localized) CNOT error (diffusive)

ibmq_manila reported n = 2 5.79 × 10−3 5.79 × 10−3

ibmq_manila experiment n = 3 1.76 × 10−2 2.59 × 10−2

Ratio of experiment:reported 3.0 4.5

TABLE 2. Comparison of IBM-Q’s reported RB gate error to error extracted from a three-qubit
experiment with localized (k = 0.1) or diffusive (k = 4.55) dynamics. The experimental error ε
is calculated from fidelity decay f (t) via f (1) = ( f (0)− 1/2n)(1 − ε)66 + 1/2n.

The fidelity dependence on dynamics is codified here as gate error dependence on
dynamics, with a factor of 1.5× in gate error between the extreme dynamical cases.

More interestingly, this range of observed errors is 3.0−4.5× worse than the error
reported by IBM-Q on their online ‘Systems’ screen at the time the experiment was
performed (IBM 2022). Their reported error comes from standard two-qubit RB with
a depolarizing noise model (McKay et al. 2019). The nature of RB circuits makes this
difference in observed error unsurprising. However, it is worth describing several possible
contributors.

There are two main ways in which RB circuits reduce their observed error: the uniformly
randomized Clifford gates effectively depolarize the error, reducing the effect of coherent
errors relative to general circuits; and the same randomization causes low-frequency noise
to ‘echo’ and partially cancel, similar to a dynamical decoupling protocol. While these
do simplify the interpretation of RB, they also make it an overly optimistic metric for
predicting the performance of general circuits.
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Another cause of the error difference is the extra crosstalk from adding a third qubit
relative to two-qubit RB. The role of third qubit crosstalk has been investigated with
simultaneous RB (McKay et al. 2019), where the average CNOT error per gate was
found to increase from 1.63 × 10−2 for two-qubit RB to 2.70 × 10−2 for (2+1)-qubit
simultaneous RB, a factor increase due to a crosstalk of 1.66. How this factor varies across
devices and between experiments is however less clear.

There are also differences between the dynamics of the QSM circuit and RB Clifford
gates that may contribute. Recent research suggests Clifford gates have different quantum
scrambling properties than general unitary dynamics: out-of-time-order correlators
(OTOCs), which are measures of quantum chaos and scrambling and close relatives of
the Loschmidt echo fidelity, reach very different asymptotic values under Clifford and
non-Clifford unitary evolution (Roberts & Yoshida 2017; Leone, Oliviero & Hamma
2021). This may relate to the Clifford group being a 2-design on qudits (and a 3-design
on qubits) (Webb 2015; Roberts & Yoshida 2017; Zhu 2017). Since OTOCs for quantum
chaotic systems only grow exponentially until the Ehrenfest time τE (Hashimoto, Murata
& Yoshii 2017), the QSM that has τE ∼ 1 (see Appendix C) saturates OTOCs quickly.
While this faster, more thorough quantum scrambling may influence the fidelity, we leave
the quantification of such an effect to future work.

Most of these effects could be captured in a process matrix picture, in which certain
elements of the CNOT process matrix are more strongly enacted in the QSM circuit
relative to an average over RB circuits. However, the effect of crosstalk goes beyond
a static process matrix, as it causes the process matrix to depend on the number of
qubits. This is because even spectator qubits can increase error (McKay et al. 2019).
The limited connectivity of IBM-Q devices becomes desirable here, as it reduces the
number of neighbours per qubit that should limit the magnitude of crosstalk when scaling
to many-qubit algorithms.

Lastly, the depolarizing noise model determined through RB is clearly unable to capture
or explain the fidelity dependence on dynamics. Its single parameter α2Q of two-qubit
gate error measures an average tendency towards the state ρ = I/N, rather than capturing
important details of how different density matrix elements contribute different rates of
decay. Additionally, its focus on averaging over unitary errors, while mathematically
convenient, is perhaps less appropriate than decoherence for describing present day
superconducting quantum devices.

4. Noise models
4.1. Types of noise and fidelities

Present day quantum devices are impacted by many different types of noise. This motivates
studies of the types of noise that are present and how the errors impact algorithms of
interest. On the IBM-Q platform errors occur primarily during two-qubit gates that in the
QSM algorithm contribute about 10 times more to the total error over single-qubit gates,
as discussed in Appendix A. The types of error that occur may be incoherent Markovian
relaxation and dephasing error (T1 and T2, respectively), coherent error, multi-qubit
incoherent errors or something else. Here three models of noise based on Lindblad
master equations are considered for understanding the effects of errors: (1) an approximate
analytic theory of the effects of relaxation and dephasing, (2) a Lindblad master equation
simulation using single-qubit Lindblad errors with the four substeps of UQSM in (2.7) rather
than the actual gate decomposition, and (3) the IBM-Q Aer simulator that uses the exact
gate decomposition and a Kraus noise process model based on single-qubit relaxation and
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dephasing. In Appendix D we prove that a stochastic Hamiltonian parametric noise model
cannot explain the experimental results.

The overall impact of noise can be studied by its effect on the rate of fidelity decay of our
quantum system. When the noise is unitary, such as parametric noise (see Appendix D),
with total evolution Uε and noise amplitude ε, and a pure state |ψ〉 is used as an initial
condition, the fidelity of the evolution can be measured by

f (t) = | 〈ψ | U−t
ε′ U t

ε |ψ〉 |2, (4.1)

which is also known as the Loschmidt echo. Here ε ′ indicates the same magnitude as ε
while being statistically independent. For non-unitary noise, such as Lindblad noise, one
must use the more general density matrix formulation

f (ρ, σ ) =
(

Tr
√√

ρσ
√

ρ

)2

(4.2)

for ideal (initial) and noisy (final) density matrices ρ and σ , respectively. In the noiseless
case, σ should again return to its initial state ρ due to the forward-and-back evolution. For
an initial pure state ρ = |ψ〉〈ψ |, this simplifies to

f (t) = 〈ψ | σ (t) |ψ〉
=
∑

i,j

〈ψ |i〉 〈i| σ (t) |j〉 〈j|ψ〉 =
∑

i,j

σi,j(t)ρ∗
i,j, (4.3)

which is used in §§ 3.1 and 4.2.
Contrary to previous studies, noise here occurs during both forward-and-backward

evolution to connect simulation to experiment. This increases the total time relative to the
number of forward map steps by a factor of two, and therefore, the observed fidelity decay
rate by the same factor. In all cases we average the fidelity over the N initial conditions
|p〉 of the computational basis in order to study the average dynamics (Benenti & Casati
2002).

4.2. Effects of dynamics on Lindblad noise
The Lindblad master equation is the most general type of completely positive
trace-preserving Markovian master equation (Gorini, Kossakowski & Sudarshan 1976;
Lindblad 1976; Gardiner & Zoller 2004; Stéphane, Joye & Pillet 2006; Pearle 2012;
Manzano 2020). It can be written in dimensionless form as

∂σ

∂t
= −i[H, σ ] +

∑
i

νi

(
LiσL†

i −
1
2
{L†

i Li, σ }
)

(4.4)

for general Lindblad operators {Li}, where t = tphys/Tstep has units in the number of map
steps, Tstep is the dimensioned time to execute UQSM on hardware, H = HphysTstep/� with the
forms of H and Hphys depending on the substep of the algorithm and νi = νi,physTstep. The
Loschmidt echo fidelity f (t) comes from reversing the unitary evolution from H without
inverting the noise processes Li. This is modified in the case of parametric noise; see
Appendix D for details.
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As for the Lindblad operators in (4.4), we use 2n single-qubit operators {L1,j, L2,j},
defined as

L1,j = I ⊗ · · ·
(

0 1
0 0

)
j

· · · ⊗ I, (4.5)

L2,j = I ⊗ · · ·
(

0 0
0 1

)
j

· · · ⊗ I, (4.6)

causing relaxation to the ground state at rate ν1 and pure dephasing at rate ν2 for each qubit
j, as described in Appendix C. These relate to the relaxation time T1 and total dephasing
time T2 via

1/T1 = ν1, 1/T2 = ν1/2 + ν2/2, (4.7)

as can be seen by comparing Appendix C to Krantz et al. (2019). For calculating the
fidelity, the ideal expected density matrix, which is also the initial density matrix, will be
denoted ρ, and the noisy evolving density matrix will be denoted σ .

The main interaction between dynamics and Lindblad noise is that different types of
dynamics have different typical density matrices that are influenced by each decoherence
effect to different degrees. These include on-diagonal relaxation (of computational
basis states), off-diagonal relaxation (of superpositions of basis states) and off-diagonal
dephasing. In Appendix C we analytically determine the decay of fidelity for pure states
in the two dynamical limits of being highly localized and highly diffusive, as well as the
case of uniform superposition, all three of which are summarized in this section. Briefly,
the fidelity of localized pure states is affected only by on-diagonal relaxation due to their
lack of off-diagonal terms, while the fidelity of diffusive pure states is affected only by
off-diagonal relaxation and dephasing due to a cancellation of on-diagonal effects. The
key findings here are that the ν1 dependence is the same for both despite differing origins
while the ν2 dependence is greater in the diffusive case.

Starting with the fully localized case that has k = 0, initial conditions |ψ〉 = |p〉 of
computational basis states and fidelity f = σp,p, the evolution of |ψ〉 due to the diagonal
Hamiltonian has no effect on the density matrix σ and, therefore, on the fidelity. The
Lindblad evolution acts alone, causing relaxation of each qubit towards the ground state at
rate ν1. If one averages the fidelity over all possible initial states |p〉, the result is

fL(t, n) = (1 + e−2νsinglet
)n
/2n (4.8)

so that the initial effective decay rate is

fL(t, n) ≈ 1 − νefft + O(ν2
efft

2) ≈ e−νefft,

νeff(n) = nνsingle,

}
(4.9)

where
νsingle = ν1/2 = 1/2T1 (4.10)

for the localized case. The factor of 1/2 derives from the average 1/2 chance of each qubit
starting in the excited state. The factor of n due to n qubits decaying is an important aspect
of interpreting measured T1 and T2 times. Dynamics that are less than fully localized will
start to show effects of the diffusive case described below.

Between the localized and diffusive cases, another interesting case is the decay of a
uniform superposition state, where all n qubits are in |+〉 states that are unentangled
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relative to the computational basis. The fidelity is a product of the single-qubit fidelities.
This may look like a simple model of a diffused state since the probability has spread
to all states equally, but a general diffused state would also be entangled with random,
independent phases on each of the 2n states. The uniform superposition state is then a
useful test of the relative roles of spreading probability versus entanglement in quantum
state diffusion. Only half of the single-qubit fidelity decays, similar to the averaging factor
of one half in the localized case. The same (4.8) and (4.9) apply with

νsingle = (ν1 + ν2)/4 = 1/2T2. (4.11)

In the diffusive case the Hamiltonian evolution becomes important, but for the QSM, we
have found it can be abstracted away to simplify the problem and still produce predictions
that agree well with simulation, as we describe here. To simplify, note that chaotic mixing
occurs on faster time scales than Lindblad decay. Then the density matrix can be expected
to quickly reach a randomly entangled pure state, having (approximately) uniformly spread
probability and random relative phases, after which the Hamiltonian evolution has little
qualitative effect aside from rapidly changing the precise values of the phases; see (C14)
for a model of a randomly entangled state. Fidelity decay during diffusive dynamics can
then be approximated as the decay of this random pure state under Lindblad evolution.
Averaging over initial conditions (basis states) allows this random state to be analysed
via the average behaviour of the statistical ensemble it belongs to. For a chaotic system,
this corresponds to averaging over the entire accessible phase space. Such averaging
contributes to an averaging over these random phases, causing the phase-dependent terms
in f to vanish. Inspecting f =∑i,j σi,jρ

∗
i,j shows that only σi,j terms that retain their

initial phase from ρi,j survive due to phase cancellation in f . Surprisingly, this causes the
qubits to effectively disentangle for off-diagonal terms σi,jρ

∗
i,j, in a manner describable by

two pieces: a non-trace-preserving single-qubit decay and a trace-preserving correction.
Along the n-qubit diagonal the flat ρi,i = 1/2n causes relaxation effects across σi,iρ

∗
i,i to

cancel out. This leaves only effects from dephasing and off-diagonal relaxation, where
the random phase averaging removes the gain to lower states but not the loss from
higher states. The exact fidelity expression for the diffusive case is provided in (C26)
in Appendix C, but its initial decay rate using (4.9) is simply

νsingle = ν1/2 + ν2/4

= 1/4T1 + 1/2T2 ≥ 1/2T1, (4.12)

which is strictly faster than both the localized and superposition cases, and any
unentangled case, when ν1, ν2 > 0. Random entanglement has the same dephasing rate
as unentangled superposition, but it has an additional relaxation effect due to the average
over random phases between the excited and decaying states.

Figure 7 compares the full analytic fidelity evolution for each dynamical case. Each
fidelity has the expected feature of starting with an exponential decay that gradually
relaxes to the uniformly mixed value of 1/N. In superconducting qubits the ν2 rate often
dominates, so three types of dynamics are compared for that case in figure 7(b). These
fidelity decay rates do not account for the gate implementation used in the experiment,
which is partly rectified in the next section.

4.3. Gate-based Lindblad model
The theoretical expressions for the localized and diffusive dynamical cases can now
be modified to a gate-based form to better match experimental observations in which
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(a) (b)

FIGURE 7. Theoretical Lindblad fidelity evolution from forward-and-back noise for ν1 = 0.1
and ν2 = 0.2: (a) comparing the decay of a diffusive state for three, six and nine qubits;
(b) comparing the decay of localized, superposition and diffusive states for six qubits. The
average fidelity plateaus at the uniformly mixed limit 1/N when no information about the original
state remains.

the majority of errors occur during certain specific gates. Since two-qubit gates are the
dominant source of error on IBM-Q, one can model circuit error to lowest order as solely
being due to the two-qubit gates causing an enhanced Lindblad decay for each of the
target qubits. Further rationale for this model is provided in Appendix E. Averaged over the
possible two-qubit subsystems on which the gates act during a circuit, this is approximately
described by the dynamics-dependent expressions previously derived, with the number of
qubits set to two. If the gates are performed serially then the serial gate-based fidelity
fGB, S(t, n) can be given in terms of the dynamics-dependent expressions for the Lindblad
fidelity fL(t′, n′) of (4.9) as

fGB,S(t, n) = ( fL(1/M, 2))Mt(1 − 1/2n)+ 1/2n, (4.13)

where M is the number of gates per map step, t = 1 is the time to complete a map step, n is
the total number of qubits in the circuit, n′ = 2 is the number of decaying qubits per gate
duration and t′ = 1/M is the time per gate duration as a fraction of a map step. Note the
late-time (average) fidelity should always approach 1/2n = 1/N. For large M, the Lindblad
expression simplifies to fL(t � 1, n) ≈ e−nνsinglet, so

fGB,S(t, n) ≈ e−2νsinglet(1 − 1/2n)+ 1/2n. (4.14)

This model will be seen in § 4.5 to qualitatively match experimental results for n = 3.
Compared with a model that assumes all three qubits are decaying at equal rates, when
fitted to the experimental data this gate-based model measures ν1 and ν2 that are about 3/2
larger.

Performing some gates in parallel would increase the average number of simultaneously
targeted qubits from two to neff ≡ 2 ∗ �n/2� ≤ n and decrease gate depth from M to D =
2M/neff. Then the fidelity would be

fGB,P(t, n) = ( fL(1/D, neff))
Dt(1 − 1/2n)+ 1/2n. (4.15)

For large M, this simplifies to

fGB,P(t, n) ≈ exp(−neffνsinglet)(1 − 1/2n)+ 1/2n. (4.16)
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(a) (b)

FIGURE 8. Comparing Lindblad evolutions from full simulation (solid) to the theoretical
steady-state approximation (dashed) for the fully localized (blue), semi-localized (purple, k =
0.1) and fully diffusive (red, k = 10.0) cases. Using ν1 = 0.1 and ν2 = 0.2. Results are shown
for (a) n = 3 (neff = 2) and (b) n = 6 (neff = 6).

Since νsingle = νsingle,physTstep depends on the physical map step time Tstep, which is neff/2
times shorter for the parallel case compared with the serial case, the two cases yield the
same fidelity as a function of map step t. This just reflects the fact that total fidelity is the
product of gate fidelities when gate error is much greater than idle error. As gate error
approaches idle error and the number of idle qubits increases, idle errors complicate this
analysis and a benefit to parallelization appears.

To test the theoretical predictions of (4.13) and (4.15), we use QuTiP’s (Johansson,
Nation & Nori 2012) master equation solver. To partially mimic a circuit model, we
simulate the four unitary steps of (2.7) sequentially, rather than simulating the whole
Hamiltonian at once. This turns out to be especially important for the localized case, as
described below. For the three-qubit simulation, we also mimic two-qubit gates by only
applying Lindblad operators to two qubits at a time, alternating the qubit pairs [0, 1] and
[1, 2] to mimic the near-linear connectivity on many IBM-Q devices. This matches the
effective two-qubit decay rate from theory.

The simulation results in figure 8 require a modified interpretation of the theory, as
shown for three qubits with serial gates and six qubits with parallel gates. In the localized
case, a straightforward Hamiltonian simulation would keep the state localized during the
whole map step and would fit well to the theoretical localized decay. But decomposing
the evolution to substeps (or further to gates) reveals that the QFTs take the localized
state to and from a delocalized state during half of each map step. This delocalized state
has phases that are even spaced around the unit circle and, thus, will usually average
to zero. This effect is similar to the derivation of the diffusive fidelity decay rate in
Appendix C, suggesting that the diffusive decay rate could be appropriate here. This is
empirically supported by the simulation results in figure 8 for k = 0.1, which fit better to a
half-localized, half-diffusive model as shown than to a half-localized, half-superposition
model that would decrease νsingle by ν1/8. Therefore, we model the map step fidelity as
fsemi-loc ≈ floc(t/2)fdif(t/2) ≈ ( flocfdif)

1/2. Using (4.9) with (4.10) for floc and (4.12) for fdif
implies a ‘semi-localized’ decay rate given by

νsingle = ν1/2 + ν2/8. (4.17)

With this modified theoretical prediction, the difference between localized simulation
and semi-localized theory is small. One cause of the remaining difference in figure 8
is the small non-zero k allows small, random amplitudes on other states. This creates
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T1,phys (μs) T2,phys (μs) ν1 ν2

ibmq_manila reported n = 1 143 37.4 0.081 0.537
Theory fit to experiment n = 3 34.6 ± 1.7 14.4 ± 0.6 0.334 ± 0.016 1.271 ± 0.068
Lindblad simulation fit n = 3 90.1 ± 41.6 14.3 ± 1.7 0.128 ± 0.059 1.486 ± 0.185
Aer simulator fit n = 3 250 ± 104 13.4 ± 0.8 0.046 ± 0.019 1.68 ± 0.10

TABLE 3. Parameter fits from figure 9. All values are averaged over three qubits connected
in a line on ibmq_manila. Here T1,phys and T2,phys values are converted from simulations
using T1,phys = Tstep/ν1 and T2,phys = Tstep ∗ 2/(ν1 + ν2), where Tstep = 33 ∗ 350ns. Errors
are propagated by assuming zero covariance of ν1 and ν2, as the Lindblad model stipulates.
Relaxation ν1 and pure dephasing ν2 are dimensionless decay rates per single-direction map
step forwards or backwards in time. The analytic theory applies continuous Lindblad decay for
two qubits for each of the 66 gates per map step. The Lindblad simulation continuously applies
Lindblad operators to two qubits in alternating pairs during the eight algorithm substeps. The
modified Aer simulator applies Lindblad decay to one and two qubits as Kraus operators after
each gate.

some random entanglement that enhances the decay rate during the localized part of the
algorithm. This explains some but not all of the difference, with the unexplained portion
growing with increasing n and tfb. For example, at n = 3 the effect of non-zero k accounts
for ≥ 50 % of the difference for tfb ≥ 5, but at n = 6 it explains only 12 % of the difference
at tfb = 5 (note that simulations of this are not shown). The remaining difference between
theory and numerics is attributable to equating between a randomly diffused state and the
QFT of a localized state in deriving (4.17).

In the diffusive case the difference between theory and numerics is generally smaller
despite neglect of the exact Hamiltonian evolution. This suggests that the effect of the
precise Hamiltonian evolution on the fidelity is subdominant.

While this model only includes error from two-qubit gates, it could be modified to
include other gates. The largest correction would come from idle gates for idling qubits,
which have their own decay rates ν1 and ν2. Idle gates are important because CNOT gate
error comes primarily from the duration of the gate, implying that any qubit idling in
parallel with a CNOT gate is experiencing a significant fraction of the error. For more
details, see Appendix A.1.2 for gate specifics and table 3 for experimental fits.

4.4. The IBM Aer gate-based Lindblad simulator
For artificial noisy simulators, IBM offers several options. One option is their
device-specific noise models (IBM 2021a) that are calibrated to each device’s reported
errors. Reported T1 and T2 times and per gate error rates from RB are used as input for a
combined relaxation, dephasing and depolarization error model. However, because these
models are not customizable they cannot be fit to experimental data.

We instead use a custom IBM Aer noise model. Closest to our gate-based Linblad model
is a simple Aer model based on the function thermal_relaxation_error with parameters T1
and T2 and an effective temperature that we set to zero (the default option) (IBM 2021c).
This function applies a single-qubit Lindblad decay to each qubit targeted by a gate based
on the duration of the gate, after the gate is done. When T2 > T1, it applies Kraus operators,
but when T2 < T1, as is common, it probabilistically applies single-qubit gates instead. We
modify this function to always apply Kraus operators. This model will be used in figure 9
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FIGURE 9. Numerical fits of several models to the data in figure 6 for the extreme conditions
of localized (purple, k = 0.1) and diffusive (red, k = 4.55) dynamics. Models are described in
the main text. Note that, for both values of k, the plots for the theory fit and Aer simulation fit
overlap and resemble a solid line.

to compare the relative importance of specifying the full gate dynamics as in Aer versus
simplifying to the four unitary substeps (2.7) as in the gate-based Lindblad model.

4.5. Fitting theory to experiment
Having now described our noise models and performed derivations and simulations that
qualitatively agree with experiment, it is interesting to fit these models to experiment to
extract phenomenological decoherence parameters. The computational models can be fit
through standard variational methods. The analytic gate-based Lindblad model from (4.14)
has a fidelity that decays as

fGB,S(2tfb) ≈ exp(−neffνsingle ∗ 2tfb)(1 − 1/2n)+ 1/2n, (4.18)

where neff = 2 for the two active qubits per gate, t ≡ 2tfb with tfb as the number of
forward-and-back pairs of map steps and νsingle depends on the dynamics of the map. After
adjusting for the dynamics of the full QSM algorithm, the effect of localized dynamics is
that

νsingle = ν1/2 + ν2/8 = 3/8T1 + 1/4T2, (4.19)

while the effect of diffusive dynamics is that

νsingle = ν1/2 + ν2/4 = 1/4T1 + 1/2T2, (4.20)

as explained in §§ 4.2 and 4.3, with further details in Appendix C.
To compare the experiment of figure 6 to this theory, it is convenient to focus on the

extreme cases of k = 0.1 and k = 4.55. An account of continuously changing k in a
Lindblad model and its effect on fidelity would require a careful application of localization
length to the Lindblad model, which is beyond the scope of this paper.

Figure 9 shows numerical fits to experimental fidelity of extreme k for the gate-based
Lindblad theory, the gate-based Lindblad simulations and an IBM-Q Aer simulator
model, all described in § 4. Also included is the default Aer model from the function
AerSimulator.from_backend(FakeManila()), which is designed to fit the error measured
by RB.

The default Aer model underestimates error, but it only underestimates it by a factor of
1.5 instead of 3.0−4.5 from table 2. This is because it draws from a previous device
calibration when the relevant gates were 2.0−3.0× worse, artificially improving its
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accuracy. On average it is likely to be less accurate for the three-qubit QSM than shown
here.

The three higher accuracy model fits demonstrate different approaches. The Lindblad
theory fit uses the gate-based model (4.14) with rates (4.17) for localized dynamics
and (4.12) for diffusive dynamics. The Lindblad simulation fit applies single-qubit
relaxation and dephasing of uniform rates ν1 and ν2 continuously to two out of three
qubits, alternating between qubits 0 and 1 or 1 and 2. This is applied during the
four unitary steps per (2.7) evolved forward and back with QuTiP’s mesolve function.
The Aer simulator fit applies two-qubit and single-qubit gates followed by Kraus
operators on the targeted qubits that are determined from decoherence parameters T1,phys
and T2,phys.

These models of fidelity all have just two parameters: ν1 for relaxation and ν2 for
dephasing, which relate to the physical decoherence times through (4.7) and T1 =
T1,phys/Tstep,T2 = T2,phys/Tstep. Here Tstep is the time to complete a single forward or
backward map step on hardware, with Tstep = 33 ∗ 350ns to match 33 CNOT gates of
average duration ≈ 350ns on each of the forward-and-backward simulation steps. (This
was an accurate average gate time when these experiments were performed, though since
then IBM’s two-qubit gates have changed in type and duration. (IBM 2022).) This only
considers time spent in CNOT gates, in accordance with the single-gate-based Lindblad
model. The Aer simulator model uses the same Tstep to convert between parameters,
despite including single-qubit gates decaying at the same rate as the CNOT gates, since
the single-qubit gates contribute < 5 % to the total duration of gates (1/10 the duration
of a CNOT gate and < 1/2 as many gates). Since it directly fits T1,phys and T2,phys, this
extra error is in the converted ν1 and ν2 values. Measurement error is neglected in all
models, which requires additional parameters to describe the probability of each state
being misclassified, and which has a small effect on the large exponential decay rates
measured here.

The fit of all three models in figure 9 is qualitatively quite good. The Lindblad
simulation is a slightly worse fit than the others, which is surprising since it should be
more accurate than the corresponding simplified theoretical model. The late time fit may
appear to have higher error, but this is only an illusion of plotting the log of fidelity that
accentuates the errors when the fidelity is small.

Table 3 provides the quantitative parameter fits. The most striking result is the consistent
values of T2 across models, as it is also the dominant error source. Here T2 measures
the dephasing of states that are in superposition, and the QSM with diffusive dynamics
produces randomly entangled states that dephase similarly to superposition states (see
Appendix C), so it is well suited to benchmark an effective version of this noise
process. The agreement between models suggests the analytical model might be usable
for lightweight extraction of the effective circuit T2 time.

The variance across the fit ν1 and ν2 values suggests differing effective weights on
each across the three models. The analytic model suggests that ν2 is the sole cause of
a difference between localized and diffusive fidelity decay rates. However, three qubits is
a small system and has poor random phase averaging for the diffusive case, which could
alter the relative roles of ν1 and ν2. For larger system sizes, the simplified theoretical model
should have better agreement with the simulation results.

The average T2 fit of the three models is 14.0 μs, which is 2.7× smaller than the reported
single-qubit idle T2 time from IBM-Q. It is no surprise that a complex circuit decoheres
more quickly than idle qubits. The experimental T1 fit values are less consistent, though
this is due mostly to the small values of ν1 being close to zero and therefore being similar
in magnitude to the error bars, making them difficult to resolve. In particular, the observed
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T1 from the Aer simulator fit is larger than the reported idle value, casting some doubt on
the model’s accuracy with respect to T1.

The ratio of idle T2 to circuit CNOT T2 is also a useful test of the question posed in
Appendix A.1.2: How does the error of a CNOT gate εCNOT compare to the error of an idle
gate of the same duration εIDLE? This test is hampered somewhat by IBM-Q reporting a T2
value measured by the Hahn echo T2E. That experiment is less sensitive to ‘inhomogeneous
broadening’, that is, low-frequency fluctuations that can cause large differences from
trial to trial (Krantz et al. 2019). Since T2E ≥ T2, this only provides an upper bound,
εCNOT/εIDLE � T2E,IDLE/T2,CNOT ≈ 3, when the effective T1 is negligible. This bound is
right in between the limits of εCNOT = εIDLE and εCNOT � εIDLE, suggesting that the
benefit of gate parallelization must be treated carefully. In particular, the approximation
of negligible idle error in § 4.3, which was reasonable to first order here, will become poor
for serially executed circuits if even a few more idle qubits are added.

5. Conclusion

We performed digital quantum simulations of the QSM, a toy model of wave–particle
interactions in plasmas, in order to understand the interaction between chaotic dynamics
and noise on quantum hardware platforms. We chose to simulate the QSM, a quantized
analog of the classical sawtooth map, because it is one of the simplest possible such maps
with one of the shortest possible gate sequences and could be used to test the Lyapunov
algorithm on future NISQ devices. The resulting dynamics can be tuned from integrable
and localized to chaotic and diffusive and leverages the noise that is naturally present on
NISQ quantum hardware platforms to benchmark quantum computations that are relevant
to particle transport in plasmas. An important conclusion of our work is that the dynamics
of a simulation can strongly influence the fidelity decay rate by changing the relative
impact of different noise processes on the fidelity.

In this study the important relationship between dynamics and noise in a quantum
simulation and the resulting effect on fidelity were examined in a minimal and
experimentally accessible context. A gate- and qubit-efficient digital quantum simulation
of the QSM was performed on the open-access IBM-Q platform, and then simulated
with a gate-based Lindblad noise model that was shown to qualitatively capture the
intended effect. Experiment, numerics and analytic theory all demonstrated that as this
quantum map is varied from near-integrable localized dynamics to diffusive and randomly
entangled dynamics the corresponding fidelities decay at an effective multi-qubit T1 rate
and a rate that is faster than the multi-qubit T1 or T2 alone, respectively. In numerics, the
substep decomposition of the algorithm caused these rates to partially mix, though the
further effect of decomposing to native gates was smaller. In analytics, the intermediate
case of diffusive but unentangled dynamics was used to clarify that the difference between
the effects of dephasing and of random entanglement on fidelity decay is, in our simple
model, due only to the greater influence from relaxation in the latter.

The gate-based Lindblad model was used with only single-qubit T1 and T2 noise for the
single gate with the largest error, CNOT. When fit to experimental data, this model extracts
far less information than full process tomography, but more than fitting a depolarizing
noise model. A natural next extension of this model would be to consider multiple gates,
such as by including the identity gate that can have high error due to its long duration in
some circuits. The physical motivation behind the gate-based Lindblad model makes it
ideal for capturing the effects of dynamics at minimal experimental cost.

Treating the experiment as a benchmarking exercise, first the average error per CNOT
gate was estimated. Due to the fidelity dependence on dynamics, the average error varies
by a factor of 1.5× over the dynamics. The observed error is 3.0−4.5× greater than
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reported by IBM-Q’s method of RB with a depolarizing noise model. This discrepancy
is largely explainable by RB being less sensitive to certain noise sources such as coherent
error and low-frequency noise, and by an increase in crosstalk error when using three
qubits rather than two. However, how much the different dynamics between RB and the
QSM also contribute is not yet clear.

The noise models were also fit to experiment to extract effective T1 and T2 times for the
CNOT gate. All models agree well on the effective T2 time, which is dominant, but diverge
on the T1 time, which has a weaker effect and is difficult to resolve. The effective CNOT
T2 time is 2.7× shorter than the T2Echo of an idle qubit, suggesting CNOT error is no more
than ∼ 3× larger than idle gate error when the noise is dominated by T2.

Retrieving useful experimental fidelities for complex Hamiltonian simulation was
enabled by the highly efficient gate decomposition of the QSM. It combines the exactness
of quantum maps, which do not require Trotterization due to the exact decomposition of
the delta-kicked potential, with a polynomial length algorithm for low-order polynomial
Hamiltonians (see Appendix B). On IBM-Q the QSM required only 33 CNOT gates per
evolution time step and 66 CNOT gates per Loschmidt echo time step. This enabled seven
time steps of clearly localized dynamics and five time steps of Loschmidt echo fidelity
decay.

A model of low-frequency parametric noise is also studied in Appendix D, which is
relevant to future experiments on more qubits. This model was previously used to show
that a minimum of six qubits is required to observe the Lyapunov exponent in the QSM.
Here it was combined with Lindblad noise to show that the Lyapunov exponent can still be
observed, but will require seven or more qubits depending on the strength of the Lindblad
noise. The parametric noise model can be applied to determine the Lyapunov exponent
on future fault-tolerant error-corrected quantum computers. However, ensuring that the
Lyapunov algorithm works on NISQ hardware will require the ability to control and tune
the magnitude of the various types of noise processes appropriately.

The existence of a large fidelity gap between different dynamics in digital quantum
simulations also raises the question of whether arbitrary algorithms may have dynamics
that affect their fidelity. In particular, the degrees of entanglement, superposition and
randomness during an algorithm could suggest particular fidelity dependence on the
effective T1 and T2. This could be crucial for anticipating quantum advantage by better
extrapolating limited device characterization to predict the fidelities of NISQ algorithms.
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Appendix A. Implementation
A.1. IBM-Q Implementation

A.1.1. Circuit optimization
Despite the relative simplicity of the QSM algorithm, executing the circuit in (2.8) on

IBM-Q’s state-of-the-art hardware quickly accumulates error. Optimizing the circuit to
reduce error can greatly improve the results.

We only attempt to reduce error by decreasing the gate count of the two-qubit CNOT
gate, the largest error gate. This is motivated by the goal of benchmarking, which would be
complicated by the use of other noise mitigation techniques such as dynamical decoupling.
The focus on CNOT gates is motivated by the small total contribution of single-qubit gate
errors. According to IBM-Q’s reported RB error estimates, each CNOT gate produces
about 30× more error than physical single-qubit gates, namely SX (square-root-of-not)
and X gates. (Note that Z gates are virtual with presumably even smaller error (McKay
et al. 2017).) This can partially be attributed to the gate duration, with a CNOT gate taking
on average about 10 times longer to execute than SX and X gates, which have identical
durations. Combining the observations that single-qubit gate error is 1/30 of the CNOT
gate error and that from table 1 single-qubit gates appear 1/2 as often in the circuit for
ibmq_manila n = 3, it appears that single-qubit gates contribute no more than 2 % of the
total error in this context. This remains true for increasing qubit count n per the faster
scaling of two-qubit gates in (2.8) and the gate decomposition in the next paragraph.

To determine the base CNOT gate count of the circuit (2.8) on IBM-Q, first logic
gates are decomposed to native hardware gates. The simple relations for decomposing
are: PHASE(φ) = RZ(φ) up to an unimportant global phase, where RZ(φ) is a Z
rotation by angle φ; H = RZ(π/2)SX RZ(π/2); SWAP01 = CNOT01CNOT10CNOT01;
and lastly the CPHASE gate is given by CPHASE01(φ) = RZ1(φ/2)CNOT01RZ1(2π −
φ/2)CNOT01RZ0(φ/2). These decompositions are performed automatically by Qiskit’s
transpile function.

Reducing the CNOT gate count is done with the gate count optimizer that is
automatically applied by the transpile function. This does not guarantee optimal results
but provides a useful improvement. For this, the barriers in figure 4 are removed, though
barriers between map steps are retained for scalability with the number of map steps. Using
the above decompositions of each gate on figure 4, the base CNOT count on three fully
connected qubits is 12 × 2 = 24 CNOT gates. Using transpile per Appendix A applies
gate transformations stochastically to search for gate reductions. Out of 100 attempts the
best optimization reduces the gate count from 24 → 19 CNOTs, for a 21 % reduction.
Smaller gate counts were found, but were for incorrect circuits due to a bug described in
Appendix A or used approximations that did not generalize to other values of k.

Retaining a consistent gate count across k is crucial to isolating the effect of dynamics
on fidelity decay. This required avoiding specific values of k, such as 2.0 and 4.5, and
avoiding k � 2π/β2 where some CP gates in Upot approach identity and the transpiler
may eliminate them from the circuit.

Sparse device connectivity increases gate counts, which allows for further gate
count optimization. For two unconnected qubits, a CNOT02 gate is replaced with
SWAP01CNOT12SWAP01, transforming one gate to seven. However, each CPHASE02 gate
only needs one pair of SWAPs despite its base decomposition to two CNOT gates. So
figure 4 before optimization transforms due to linear connectivity from 24 → 48 CNOT
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gates. Gate optimization over 100 transpile attempts reduces the gate count from 48 → 33
CNOTs, a 31 % reduction. The connectivity-caused CNOTs have partially cancelled with
algorithmic CNOTs, reducing the cost of sparse connectivity.

A.1.2. Circuit scaling
The scaling of circuit error is not very relevant to the three-qubit experiments in this

paper, but it is useful for estimating the feasibility of larger simulations, e.g. that could
be used to observe the Lyapunov exponent (Porter & Joseph 2022). It is discussed here
for completeness in understanding the QSM system as a future benchmarking tool. Gate
error is assumed constant for an increasing number of qubits, without accounting for error
sources like crosstalk that are known to increase the average error per CNOT gate (McKay
et al. 2019). Moreover, additional scaling may depend on the device under consideration.

When scaling to more than three qubits, performing CNOT gates in parallel becomes
a crucial tool in reducing total error. The degree to which the total circuit error depends
on gate count versus gate depth of parallel gates depends on how the error of a single
CNOT gate εCNOT compares to idle error of the same duration εIDLE. If εCNOT = εIDLE then
performing two CNOTs in parallel gives the same error as performing a single CNOT
gate with the other qubits idle, meaning performing gates in parallel is a big gain and
gate depth determines circuit error. If εCNOT � εIDLE then two CNOTs in parallel have a
similar error as two in series, meaning parallelization does little and gate count determines
circuit error. The model in § 4.3 assumed εCNOT � εIDLE to determine gate-specific error to
lowest order. When analysing circuit scaling, different hypotheses about this relation can
lead to a range of results. This combines with uncertainty about how parallelized a circuit
is for a total effectiveness of parallelization. This effectiveness reduces error relative to a
serial circuit by a factor between one and n/2. The relationship between εCNOT and εIDLE is
experimentally estimated in § 4.5.

To predict the scaling of circuit error due to CNOT gate count and gate depth to
many qubits, the previous insights can be combined. The base CNOT gate count from
(2.8) scales as O(n2) for n qubits. Worse-case device connectivity (linear) increases this,
as the average single CNOT gate between two arbitrary qubits requires an extra O(n)
SWAPs, each requiring three CNOTs, to connect qubits separated by an average of O(n)
connections. Gate count optimization, e.g. using the transpile function or similar, may
reduce this by up to O(n). Parallelization effectiveness decreases circuit error by between
O(1) and O(n) regardless of connectivity. In summary, a circuit with all-to-all connectivity
has between O(n) and O(n2) circuit error scaling due to CNOT gates, and one with
linear connectivity has between O(n) and O(n3) scaling. These ranges depend on the
effectiveness of gate count optimization and parallelization. They could be refined by
using IBM’s transpiler to see how well CNOT gates parallelize in the QSM across different
topologies.

For the gate count optimization performed by transpile, it is unknown whether an optimal
solution can be found in a scalable fashion. Finding an optimal gate reduction on all-to-all
qubit connectivity is an NP-complete problem (Botea, Kishimoto & Marinescu 2018).
In fact, even for few qubits with linear connectivity transpile struggles to find optimal
results. In table 1 this is demonstrated by comparing the CNOT gate count from the known
algorithm (2.8) plus optimization in column (b) to a naive approach of compiling the raw
unitary UQSM directly in column (a). In each case about one hundred iterations of transpile
is attempted. For n = 3, the naive approach yields over twice the gate count. Whether
this suboptimal optimization can provide a scalable benefit is unclear, though focusing on
optimizing few-qubit subcircuits in large algorithms may be the most practical use case.
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Since these scalings are all polynomial, they would all achieve an exponential speedup
relative to the O(n2n) operations required by a classical computer using the fast Fourier
transform (Benenti et al. 2004). However, one should keep in mind the scaling of the
measurement step, since measuring the entire final state would take an exponential number
of runs and destroy the speedup. The speedup is preserved only for measuring collective
properties like the Lyapunov exponent (Porter & Joseph 2022), localization length or
anamolous diffusion exponent (Benenti et al. 2004).

A.1.3. Choosing a device
At the time of writing IBM-Q freely provides six five-qubit devices, each containing

only linear three-qubit sublattices. Among these we choose to test ibmq_manila based on
its small reported gate error (often< 6.5 × 10−3 on some three-qubit sublattice) and large
quantum volume (32). The now-retired five-qubit device (ibmq_5_yorktown) had a bow-tie
shape with two triangular sublattices but much larger gate error (> 2.0 × 10−2), so we
performed experiments on it to explore the trade off between connectivity and gate error.
In table 1, ibmq_5_yorktown and ibmq_manila are compared, albeit 1.5 years apart, with the
latter giving much better performance. Our experiments on ibmq_santiago contemporary
to the ibmq_5_yorktown experiments gave similar results as the more recent ibmq_manila,
indicating that the time lapse has not had a large effect. A similar result comparing
ibmq_5_yorktown and ibmq_santiago was also found in Pizzamiglio et al. (2021).

A.2. Optimizing performance on IBM-Q
Despite using an efficient algorithm, various difficulties can harm performance. Some
insights for avoiding pitfalls are as follows.

(i) Optimize for qubit connectivity: circuits that are transpiled to devices with sparse
connectivity will add SWAP gates to connect distant qubits. This allows for partial
cancellation between the algorithm CNOT gates and the swapping CNOT gates.
The automated approach to this is to use a stochastic transpiler as offered by
Qiskit. To enable this level of optimization, first set the transpile function’s option
optimization_level from =1 (the default) to =3 (the maximum). Next perform a
trial-and-error optimization over the transpiler seed by iterating over the option
seed_transpiler=seed and looking for the lowest resulting gate count of CNOTs
using circ.count_ops() on the transpiled circuit. Check that the transpiled circuit
produces the expected outcome in a noiseless Aer simulator, due to the bug discussed
below. Consider saving the result as seed behaviour may change. This procedure
does not directly scale to many qubits, but on few-qubit subspaces it may be useful
at NISQ scales, and may eventually be automated for real applications.

(ii) Optimize algorithms: look for small optimizations that can be done by hand. For
example, the QFT algorithm and its inverse require SWAP gates to reverse the qubit
ordering. But this can be cancelled with the argument do_swaps=False and replaced
with a free, manual reversal of qubit ordering for gates in between the QFT pair.

(iii) Optimize coherence times: noise properties of backend devices can drift and worsen
from their reported values. The IBM-Q routinely recalibrates their systems, adjusting
qubit and gate pulse properties to reduce error. Each device is currently recalibrated
between hourly and weekly, with the time since the last calibration reported on each
device’s status screen online. Timing experiments to occur soon after calibration
can help achieve optimal performance for devices that calibrate less than hourly.
Choosing the connected set of qubits with the lowest-error gates is also important
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and should be repeated after a calibration that recharacterizes them, though these
occur less often.

(iv) Watch out for unexpected changes when concatenating circuits: a hidden pitfall (at
the time of this publication) can occur when a circuit without the final measurement
step is transpiled. The final qubit identities can be automatically swapped, despite
the fact that no measurement is present to absorb this change (Porter 2021). An
unsuspecting user may want to repeat an algorithm step, as done in this paper, and
hope to get high gate efficiency at low cost by transpiling one step and repeating it.
However, one should check whether qubit swapping has occurred and either try a
new seed or undo the swaps manually to ensure there are none between steps.

Appendix B. Gate decomposition of polynomial Hamiltonian evolution

The first step in converting the operators of (2.2) into a series of common two-qubit
gates is knowing how to implement p̂ or q̂ (which have an identical form in their
respective bases). Representing a single-body state of quantum number p = 0, . . . ,N − 1
on n = log(N) qubits can be accomplished via the binary representation (Georgeot &
Shepelyansky 2001)

|p〉 → p =
n−1∑
j=0

αj2 j → |αn−1 · · ·α0〉 , (B1)

where αj = 0 or 1 for each qubit j depending on the value of p. One can express diagonal
operators similarly. The operator Up = exp(−i �p̂2/2) can be expressed in the p basis by
noting that

p2 =
∑
j1,j2

αj1αj2 2
j1+j2 and so (B2)

e−i �p2/2 =
∏
j1,j2

exp(−i �αj1αj2 2
j1+j2−1)

=
∏

j1

exp(−i �α2
j1 2

2j1−1)
∏
j1<j2

exp(−i �αj1αj2 2
j1+j2), (B3)

e−i �p̂2/2 →
[(

1
e−i �22n−3

)
⊗ · · ·

(
1

e−i �2−1

)]

×

⎡
⎢⎣ n−2⊗

I ⊗

⎛
⎜⎝

1
1

1
e−i �21

⎞
⎟⎠
⎤
⎥⎦× · · · . (B4)

This describes PHASE gates on every qubit j1 and CPHASE gates on every pair of qubits
j1 < j2 with phase −�2j1+j2 (after merging j1 > j2 into j1 < j2). Since the desired operator
Ukin is shifted by N/2 from Up, because the correct range is p′ = −N/2, . . . , (N − 1)/2,
it gets modified to

Ukin ≡ Uphase(�) = exp(−i �(p̂ − N/2)2/2)

∼ exp
(−i �p̂2/2

)
exp
(
i �Np̂/2

)
(B5)
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with the unobservable global phase neglected. This contributes further PHASE gates
described by

exp(i �Np̂/2) =
∏

j

exp(i �Nαj2j−1). (B6)

This describes the Ukin gate, but the Upot gate is identical in its own basis with � replaced
by −kβ2 and p̂ by q̂ with the same q = 0, . . . ,N − 1:

Upot ≡ Uphase(−kβ2) = exp((i kβ2(q̂ − N/2)2/2)

∼ exp(i kβ2q̂2/2) exp(−i kβ2Nq̂/2). (B7)

Switching between bases as in (2.7) is needed to execute both Ukin and Upot with this
efficient decomposition. The full algorithm is converted to gates in (2.8).

Appendix C. Fidelity decay of localized and diffusive dynamics under single-qubit
Lindblad noise

C.1. Fidelity of pure states
The QSM exhibits dynamics that range from localized to diffusive (chaotic). To study
its interaction with single-qubit Lindblad noise from a theoretical standpoint, we can
make some reasonable simplifying assumptions. The main assumption is that decay of
an evolving density matrix is approximately the decay of a pure state with distribution
and entanglement typical of the evolving state. In the localized limit this is exactly true.
In the diffusive case this requires that the initial evolution to a typical diffusive state
is fast relative to Lindblad decay and that after a typical diffusive state is reached the
ongoing Hamiltonian evolution can be neglected. The goal is to calculate the fidelity of
the decaying state relative to the initial pure state over time. The pure state assumption
allows a simplified form. First, the general fidelity of corrupted density matrix σ relative
to pure state density matrix ρ is

f =
(

Tr
√√

ρσ
√

ρ

)2

. (C1)

But a pure state has the nice property that

ρ2 = |ψ〉 〈ψ |ψ〉 〈ψ | = ρ = √
ρ, (C2)

which simplifies the fidelity to

f = 〈ψ | σ |ψ〉
=
∑

i,j

σi,jρj,i =
∑

i,j

σi,jρ
∗
i,j, (C3)

the Frobenius inner product of the density matrices. It will be useful to consider the
elements of the Hadamard elementwise product

(σ ◦ ρ∗)ij = σi,jρ
∗
i,j, (C4)

which has elements that sum to the fidelity.
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C.2. Localized dynamics
The QSM has a limit of localized dynamics at k → 0. In this limit the Hamiltonian
becomes a diagonal phase matrix H = diag(H0 H1). This only evolves the off-diagonal
elements ρi,j of the density matrix ρ, as seen on a single-qubit example

[H, ρ] =
(

0 (H0 − H1)ρ01
(H1 − H0)ρ10 0

)
. (C5)

If we assume an initial state in the computational basis ρ = diag(0 · · · 1 · · · 0) then the
Hamiltonian evolution has no effect on ρ.

C.2.1. Single-qubit decomposition
The effect of Lindblad noise on the localized state can be trivially decomposed into

single-qubit effects, since both the Lindblad operators and density matrix decompose.
The Lindblad equation (4.4) in the main text describes the noisy time evolution of initial

state ρ. Here we consider only single-qubit Lindblad collapse operators

L1,j = I ⊗ · · ·
(

0 1
0 0

)
j

· · · ⊗ I, (C6)

L2,j = I ⊗ · · ·
(

0 0
0 1

)
j

· · · ⊗ I, (C7)

which describe relaxation at a rate ν1 and pure dephasing (Krantz et al. 2019) at a rate ν2,
respectively, on each qubit j. For a single unentangled qubit, the solution σ to the Lindblad
equation when H has no effect evolves as

σ̇ =
⎛
⎝ ν1σ11 −ν1 + ν2

2
σ01

−ν1 + ν2

2
σ10 −ν1σ11

⎞
⎠ , (C8)

with decay rates that obey ν1 ≡ 1/T1, ν2 ≡ 1/Tϕ and ν1/2 + ν2/2 = 1/T2. Solving this
differential equation is simple, as three of the elements depend only on themselves,
yielding exponential decays, and the σ00 element is determined by trace preservation
Tr(σ ) = 1. Trace preservation is equivalent to the conservation of probability.

Localization simplifies both σ and the fidelity calculation. If the qubit starts in |ψ〉 = |1〉
then

σ =
(

1 − e−ν1t 0
0 e−ν1t

)
(C9)

and f = σ11 = e−ν1t. If it starts in |ψ〉 = |0〉 then f = 1. No off-diagonal terms means no
ν2 dependence.

C.2.2. Average fidelity
It is useful to average the localized fidelity over all initial conditions for comparison

to the diffusive case later. The fidelity for n qubits decomposes into the product of
single-qubit fidelities since both ρ and Li,j decompose. Here j excited qubits then decay
at an exponential rate −jν1. Averaging over initial conditions includes n states decaying at
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−ν1, (n choose 2) states decaying at −2ν1 and so on. These sum to

fave = 1
2n

n∑
j=0

(
n
j

)
e−jν1t =

(
1 + e−ν1t

2

)n

≈ 1 − n
2
ν1t + O(n2ν2

1 t2) ≈ e−n(ν1/2)t. (C10)

The single-qubit decay rate is seen to be −ν1/2, as expected.

C.3. Diffusive dynamics
In the other limit of the QSM, large k leads to chaotic, diffusive dynamics. Hamiltonian
evolution now has an effect, but will be simplified by two assumptions.

The first assumption is that the fast Hamiltonian evolution reaches a fully diffused
state quickly enough to be considered immediate, so that the analysis begins with a
randomly entangled state. To justify this, there are two relevant time scales for the initial
wavefunction spreading: the Ehrenfest time τE and the Heisenberg time τH (see § 2.2). The
Ehrenfest time is how long the quantum dynamics closely match the classical dynamics
(Shepelyansky 2020). For a chaotic system, this implies rapid spreading at the rate eλt.
This must end after reaching the finite system size N. This implies an Ehrenfest time of
τE ∼ ln(N)/λ. To avoid localization, K � N−2/5 when L = 1, implying that λ � N−1/5 and
a bound on Ehrenfest time of τE � ln(N)N1/5. For small system sizes, this is clearly small
and simulations suggest that τE ∼ 1.

Between the Ehrenfest time and Heisenberg time a much slower diffusion occurs.
But after the Heisenberg time the effects of quantum interference are fully realized and
dynamical localization occurs, halting diffusion. The Heisenberg time for localization is
τH ∼ � (Benenti et al. 2004; Shepelyansky 2020), which if extended to the diffusive regime
suggests that τH � N. Since the Ehrenfest time represents the bulk of the spreading and
occurs on a short-time scale, this justifies the assumption of an immediate fully diffused
state.

The second assumption is that Hamiltonian evolution after full diffusion has little
effect on the fidelity decay and can be neglected to simplify the Lindblad evolution. This
assumption is supported by numerical simulation results in figure 8.

A ‘typical’ diffused state will be considered, with random features to be averaged
over. This diffused state is statistically independent of the initial state before Hamiltonian
evolution, so an explicit averaging over initial conditions will not be needed. While both
amplitudes and phases should be random, a further simplification is to assume that the
amplitudes are nearly uniform after the diffusive process occurs, leaving only random
phases. This assumption is justified by ergodicity of the dynamics.

After these simplifications, a diffusive state is characterized by two features: statistically
uniform probability distribution and random entanglement.

C.3.1. Unentangled state
To test uniform probability and random entanglement independently, first consider a

uniform state that is not entangled. Such a state is constructed by initializing in the ground
state and applying a Hadmard gate to each qubit. In this case one can again decompose to
single-qubit evolution (C8), but acting on the initial state

|ψ〉 = 1√
2
(|0〉 + |1〉), ρ = 1

2

(
1 1
1 1

)
. (C11a,b)
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The Lindblad solution for initial condition ρ is

σ = 1
2

(
2 − e−ν1t e−((ν1+ν2)/2)t

e−((ν1+ν2)/2)t e−ν1t

)
. (C12)

The fidelity is again the product of single-qubit fidelities, with each qubit contributing f =
1
2

∑
i,j σi,j = 1

2(1 + e−((ν1+ν2)/2)t) where exponentials on the diagonal cancel. The n-qubit
fidelity for any initial condition is

f =
(

1 + e−((ν1+ν2)/2)t

2

)n

≈ exp(−n(ν1/4 + ν2/4)t), (C13)

which is the same form as the averaged localized case (C10), but with ν1 → (ν1 + ν2)/2.

C.3.2. Entangled states
In a randomly entangled diffusive state, the phases of each n-qubit basis state would be

random, preventing decomposition to single qubits. This means that

|ψ〉 = 1√
2n

(|. . . 00〉 + eiφ1 |. . . 01〉 + eiφ2 |. . . 10〉 + · · · ) , (C14)

ρ = 1
2n

⎛
⎜⎜⎜⎜⎝

1 e−iφ1 e−iφ2 · · ·
eiφ1 1 ei (φ1−φ2)

eiφ2 ei (φ2−φ1) 1
...

. . .

⎞
⎟⎟⎟⎟⎠ . (C15)

The fidelity f =∑i,j σi,jρ
∗
i,j shows these phases cancel out at t = 0 when σ (t = 0) = ρ,

giving f = 4n/4n = 1. But how does an n-qubit σ evolve?
Similarly to (C8), the equation for a given σ̇i,j will have a relaxation term −ν1σi,j for

each qubit that is 1 in both states i and j, a gain term ν1σi+2k,j+2k for each qubit that is 0 in
both states i and j where k is that qubit’s index in the list of qubits, and a dephasing term
−(ν1 + ν2)/2σi,j for each qubit that is 0 in i or j but 1 in the other. With only the gain term
coupling the matrix elements, and only along the same diagonal, it is straightforward if
time consuming to solve the set of equations on each diagonal of σ . Then the elements of
σ ◦ ρ∗ can be summed to calculate the fidelity.

C.3.3. Two qubits
It is instructive to work out the fidelity for two qubits. The main diagonal terms have

the simplest contribution, since
∑
σi,iρi,i =∑ σi,i/2n = 1/2n due to trace preservation

Tr(σ ) = 1. The precise dynamics on the diagonal are irrelevant for the diffusive fidelity,
as was seen even in the unentangled state.

For off-diagonal terms, many high-index elements of σ do not have gain terms, making
them simple exponential decays. For two qubits,

σ̇2,3 = −ν1 + ν2

2
σ2,3 − ν1σ2,3,

σ2,3 = 1
2n

ei (φ2−φ3) exp
(

−3ν1 + ν2

2
t
)
,

⎫⎪⎪⎬
⎪⎪⎭ (C16)

where the indices correspond to binary states, i.e. 2 = 102, 3 = 112. This matrix element
describes qubit 0 in superposition and qubit 1 in state 1, producing the first and second
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terms above, respectively. In contrast, a low-index state depends on decay from high-index
states:

σ̇0,1 = −ν1 + ν2

2
σ0,1 + ν1σ2,3. (C17)

If we insert the ansatz σ0,1 = A eat + B ebt into the equation, then we find that

σ̇0,1 = a(A eat + B ebt)+ B(b − a) ebt,

a = −ν1 + ν2

2
,

b = −3ν1 + ν2

2
,

B = ν1

2n
ei (φ2−φ3)

1
b − a

= − 1
2n

ei (φ2−φ3),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C18)

with initial condition

σ0,1(t = 0) = A + B = 1
2n

e−iφ1,

A = 1
2n

(
e−iφ1 + ei (φ2−φ3)

)
,

⎫⎪⎪⎬
⎪⎪⎭ (C19)

giving the solution

σ0,1 = 1
2n

[(
e−iφ1 + ei (φ2−φ3)

)
e−((ν1+ν2)/2)t − ei (φ2−φ3)e−((3ν1+ν2)/2)t

]
. (C20)

In the unentangled limit where all φi → 0, the fidelity contributions of the two elements
σ2,3 and σ0,1 partially cancel, eliminating the faster decay. But with random phase
entanglement their combined contribution generally does not cancel, instead giving

σ0,1ρ
∗
0,1 + σ2,3ρ

∗
2,3 = 1

(2n)2

[
(1 + exp(i (φ1 + φ2 − φ3))) exp

(
−ν1 + ν2

2
t
)

+ (1 − exp(i (φ1 + φ2 − φ3))) exp
(

−3ν1 + ν2

2
t
)]
. (C21)

In the fidelity this is further combined with its complex conjugate, resulting in cosines of
the phases.

So the effect of random phases from diffusive entanglement does not change which
fidelity decay rates are possible, but rather changes the relative weight of each term. This
lesson will generalize to n qubits.

Since (C3) says fidelity is a sum over matrix elements of σ ◦ ρ∗ (C4), it is helpful to
show this full matrix for two qubits:

σ ◦ ρ∗ = 1
42

⎛
⎜⎜⎜⎜⎝

4 − 4e−ν1t+
e−2ν1 t

(
1 + eiφ123

)
e−((ν1+ν2)/2)t+(−eiφ123

)
e−((3ν1+ν2)/2)t

(
1 + eiφ123

)
e−((ν1+ν2)/2)t+(−eiφ123
)

e−((3ν1+ν2)/2)t e−((2ν1+2ν2)/2)t

c.c. 2e−ν1 t − e−2ν1 t e−((ν1+ν2)/2)t e−((3ν1+ν2)/2)t

c.c. c.c. 2e−ν1 t − e−2ν1 t e−((3ν1+ν2)/2)t

c.c. c.c. c.c. e−2ν1 t

⎞
⎟⎟⎟⎟⎠ .

(C22)
Here φ123 ≡ (φ1 + φ2 − φ3). The diagonal matrix elements only have terms for relaxation
to lower states and gain from higher states. Off-diagonal terms also have dephasing due to
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superposition qubits. The number of superposition qubits for an element can be counted
from its indices, i.e. element (σ ◦ ρ∗)2,3 measures the superposition between states 2 = 102
and 3 = 112, so only qubit 0 is in superposition between 0 and 1. This contributes one
factor of e−((ν1+ν2)/2)t, which combines with the decay term e−ν1t from qubit 1. Off-diagonal
gain terms are the only terms for which the random phase factors of σ and ρ∗ do not cancel,
making them the only way phase dependence enters the fidelity.

C.3.4. n qubits
An n-qubit average fidelity can be found based on this two-qubit example. First, when

ν1 = 0, the coupling between elements disappears, eliminating the phase-dependent terms
in fidelity. This is just the unentangled case with the solution (C13).

When ν1 
= 0, the fidelity f =∑i,j σi,jρ
∗
i,j generally depends on the phases. However, we

can calculate the average fidelity over random phases φi. The motivation for this phase
averaging is twofold. First, the 2n initial conditions of basis states {|p〉} are averaged over,
with each producing statistically independent phases. Second, even if the phases have some
probability distribution with finite variance and zero mean, the number of independent
phases that sum in the fidelity grows quickly with the number of qubits. Two-qubit fidelity
has only one independent phase φ123 per initial condition and time step, but three-qubit
fidelity has four, each appearing with multiple decay rates. As the number of qubits grows,
most decay rate coefficients sum over many independent phases, producing an additional
effective averaging. Between these two averaging effects over the uniform distribution of
phases, the variance of the mean should quickly shrink towards zero.

Some phase-dependent terms will always be controlled by just a few phases, specifically
∼ n phases rather than one due to n-fold symmetry in permuting qubit identities. This
could break the assumption of phase averaging. However, in the worst case a single such
poorly averaged decay rate coefficient will have fidelity contribution ∼ n/4n, so the effect
of each will be small, as well as independent.

Assuming then that averaging over each phase gives an approximately correct total
fidelity, one can use 〈eiφi〉 = 0 to eliminate phase dependence in the fidelity. This does
not reduce to the unentangled case. Off-diagonal elements of σ ◦ ρ∗ lose their gain terms
but not their relaxation and dephasing terms. This means probability flow from high to low
states retains the loss from high but not the gain to low. Equivalently, all coupling terms in
the differential equations for σ can be dropped, greatly simplifying each matrix element
to a single term each. Diagonal elements are not changed by phase averaging since they
have no phase dependence, so they retain their gain terms.

The general n-qubit average fidelity can be constructed from this understanding. The
fidelity is

f = 1
2n

+ 1
4n

n∑
k=1

e−k((ν1+ν2)/2)t

(
n
k

)
2k

n−k∑
l=0

e−lν1t

(
n − k

l

)
. (C23)

This construction goes as follows. First, count the diagonal terms as the sum 1/2n

due to trace preservation. Then for each off-diagonal term σi,j, count the number of
qubits k in superposition between states i and j. For k qubits in superposition, the
effects of dephasing combine for a decay rate contribution of −k((ν1 + ν2)/2). The
number of qubit permutations with k qubits in superposition is (n choose k), and there
are 2k ways the superposition qubits can be flipped between matrix index contribution
ordering 0, 1 and 1, 0, i.e. matrix element 0, 3 = 0002, 0112 and 2, 1 = 0102, 0012 have
the same dephasing rate. These two factors count the number of matrix elements with
that dephasing rate. The non-superposition qubits can each be in state 0 or 1, but
phase averaging has eliminated gain to 0 while preserving relaxation from 1. This
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requires a sum over the number of excited qubits. Elements with l excited qubits have
additional exponential fidelity decay at a rate −lν1, and there are ((n − k) choose l)
permutations of these excited qubits. Lastly, since the diagonal elements must be excluded
from these sums for not following the same rules after averaging, the index k = 0 for
zero superposition qubits must be removed. It is helpful to subtract this term after
the fact.

One validation of (C23) is that it can be easily modified to describe the unentangled
case of (C13). When all phases φi are zero, instead of the gain terms averaging to zero
they perfectly cancel the decay terms. To reflect this, remove the effect of decay in (C23)
via the replacement e−lν1t → 1. The sum over l then evaluates to 2n−k and simplifying
recovers (C13).

The full (C23) simplifies to

f = 1
4n

(
1 + e−ν1t + 2e−((ν1+ν2)/2)t

)n − 1
4n

(
1 + e−ν1t

)n + 1
2n

(C24)

≈ 1 − n (ν1/2 + ν2/4) t + 1
2n

n(ν1/2)t + O(n2(ν1/2 + ν2/4)2t2) (C25)

≈ exp (−n (ν1/2 + ν2/4) t) , (C26)

where both approximations assume early time t � 1/ν1, 1/ν2. Comparing this averaged
diffusive randomly entangled decay to the diffusive unentangled decay (C13), the effect
of ν1 on the initial rate approximately doubled but the effect of ν2 remains the same. The
extra ν1 contribution comes from relaxation terms that no longer cancel with gain terms.

The diffusive fidelity (C26) can be understood more intuitively by noting that the phase
averaging decouples all matrix elements except the n-qubit diagonal. A single decoupled,
phase-averaged qubit within the n-qubit system, ignoring the trace preservation from the
n-qubit diagonal, can be considered as having a fidelity matrix σ ◦ ρ∗ of

1
4

(
1 e−((ν1+ν2)/2)t

e−((ν1+ν2)/2)t e−ν1t,

)
(C27)

where the gain term has been removed relative to (C12). The fidelity f =∑i,j σi,jρ
∗
i,j of

this to the nth power for n qubits forms the first term in (C26). The latter two terms are
corrections for the n-qubit diagonal, since the diagonal has no phases to average as is clear
from initial state (C15). The second term removes the erroneous diagonal term and the
third replaces it with the appropriate 1/2n from trace preservation.

Appendix D. Parametric noise
D.1. Effects of parametric noise

It is worth comparing Lindblad noise models to a parametric noise model that is more
common in the study of dynamics in quantum maps. This section demonstrates that the
forms of the fidelity decay are very different, making this parametric noise model a poor
fit to the experimental results of § 3. However, the simulations of this and the following
section may be useful for explaining future experiments where low-frequency or coherent
noise may dominate.

Hamiltonian noise models have been studied widely in the quantum maps literature
(Benenti et al. 2001; Jacquod, Silvestrov & Beenakker 2001; Benenti & Casati 2002;
Benenti et al. 2002, 2003, 2004; Frahm, Fleckinger & Shepelyansky 2004; Wang, Casati
& Li 2004; Gorin et al. 2006; Jacquod & Petitjean 2009), with noise in a parameter being
a common variant. Hamiltonian noise models use unitary Markovian errors representing
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low-frequency or coherent noise. In this section we study the model of Benenti & Casati
(2002) and Benenti et al. (2003, 2004) in which Hamiltonian evolution is perturbed
stochastically at each discrete map step by k → k +�k. The noise �k is drawn from a
normal distribution with standard deviation σ , where the p.d.f. is given by

p(�k) = 1√
2πσ

exp
(

−�k2

2σ 2

)
. (D1)

This model is discussed more thoroughly in Porter & Joseph (2022). This produces a
similar effect as the fixed Hamiltonian perturbation discussed in Jacquod & Petitjean
(2009), which itself resembles static coherent noise. Coherent noise can be divided into a
component that is consistent over many gates, which can often be fixed through calibration,
and a component that varies, which is more difficult to address. The latter resembles
parametric noise.

When this parametric noise model is used, the initial conditions |p〉 = |0〉 , |−N/2〉 are
excluded from simulations because their symmetry with respect to the map causes their
noise-averaged fidelity to asymptotically approach 2/N rather than 1/N. This effect can
be misleading on small systems so is avoided here for clarity.

In the presence of random parametric noise, the fidelity of a chaotic map initially decays
as e−Angt with Fermi golden rule A ∼ σ 2 for noise magnitude σ and ng gates (Frahm
et al. 2004), until the golden rule breaks down for large σ (Porter & Joseph 2022). In
the presence of static unitary noise the fidelity initially decays tangent to exp(−Anqn2

gt)
with A ∼ σ 2 for nq qubits, but at some fraction of the Heisenberg time this transitions to
a faster Gaussian decay of ln( f ) ∼ −t2 (Frahm et al. 2004). Quantum dynamical effects,
such as Lyapunov and algebraic decay described below, do not immediately set in, so they
do not affect the above initial decay rates.

It was previously shown that in the diffusive regime a minimum of six qubits is needed
to observe the fidelity decaying at the Lyapunov exponent rate (Porter & Joseph 2022).
However, in the localized regime an algebraic decay rate is predicted instead (Cucchietti
2004; Jacquod & Petitjean 2009; Porter & Joseph 2022). This effect is shown in the
QSM in figure 10(b), close to the predicted f ∝ 1/t at intermediate times for dimension
d = 1 and no time autocorrelation of the noise. Since algebraic decay has less stringent
constraints than Lyapunov rate decay, it might be observable on fewer than six qubits,
though no fewer than four as discussed below.

For parametric noise, f (t = 2tfb) still indicates the fidelity during forward-and-back
noise for tfb map step pairs, and its Fermi golden rule decay has double the decay rate
relative to forward-only noise decay, that is, fFGR,fb(t) ≈ fFGR,f (2t), where t is the total
forward-and-back time regardless of noise. But its Lyapunov rate decay depends only
on the number of forward steps, so that fLyap,fb(t) ≈ fLyap,f (t) ≈ e−λt/2 for semiclassical
Lyapunov exponent λ, showing no increased rate (Porter & Joseph 2022). A similar
effect cannot be tested for in algebraic decay, since after fitting the initial fidelities,
falg(t � 1) = f0t0/t and falg(2t � 1) = f0 2t0/2t are equivalent.

Since the diffusive and localized cases have different qualitative behaviour under
parametric noise, a fidelity gap between the two should appear. This might be confused
with the effect of Lindblad noise in a sufficiently noisy experiment, so it is important to
check when algebraic decay might occur. Simulations with only parametric noise show
a gap that is only observed on four or more qubits. On three qubits the gap is in fact
reversed, with diffusive fidelity decaying slightly more slowly than localized fidelity. This
is demonstrated in figure 10(a) where a reversed gap of about 3 % (absolute) appears.
Interpreting this is complicated by the use of a Guassian parametric noise distribution that
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(a) (b)

FIGURE 10. Parametric noise simulations for (a) n = 3 and (b) n = 6 on log–log plots to show
the algebraic decay rate for localized dynamics. Values of the kick k and Gaussian noise σ are
chosen to avoid keff = k +�k < 0 while keeping the number of map steps small. The resulting
localized values of k are further from zero due to this. Using 1000 and 100 realizations of the
stochastic noise plus 6 and 62 initial conditions for (a) and (b), respectively.

in the case shown causes 2 % of map steps to have keff = k +�k < 0, where anomalous
diffusion occurs. However, the reversed gap persists when anomalous diffusion is avoided
with small noise σ � k, so that is not the main cause. A reversed gap or no gap is observed
consistently when comparing 0 ≤ k ≤ 1.9 ≈ kloc to k = 20 at noise values 0 ≤ σ ≤ 1.0.
Comparing the decay rates to 1/t suggests that the localized case is still close to algebraic
decay, but the diffusive case is limited by the system size to an even slower decay. This
result for three qubits suggests the predictions of Lindblad noise are more relevant than
parametric noise in present day experiments.

Dynamical localization displays Poisson-like energy spacing statistics, and so indicates
locally integrable quantum dynamics, which is the source of the algebraic fidelity decay
(Jacquod & Petitjean 2009). But a dynamical fidelity gap can also occur in locally
integrable quantum systems such as Lysne et al. (2020) (see their figure 3).

D.2. Combining Lindblad and parametric noise
The theory of Appendix C demonstrates that Lindblad noise by itself does not cause
the same qualitative behaviour as the parametric noise model; e.g. algebraic decay or
exponential decay at the Lyapunov rate. Combining Lindblad and parametric noise can
generate these effects, but if the parametric noise is small relative to the Lindblad noise
the effects may be difficult to observe.

If the noise processes are statistically independent, then Lindblad and parametric noise
fidelities should multiply together. The simulations of the combined noise model in
figure 11 support this conclusion for both localized and chaotic dynamics. In the chaotic
case the rate slows for 1 ≤ tfb ≤ 4 to the product of the Lindblad diffusive rate and the
Lyapunov rate, matching pure parametric noise simulations. If the two fidelities instead
summed then the slowest exponential rate, namely the Lindblad rate, would dominate
by outlasting the others, but that would predict a 3× slower decay than observed. The
localized case also supports multiplying fidelities, as during 4 ≤ tfb ≤ 7, near the start
of 1/t decay in figure 10, the decay remains faster than either the 1/t or semi-localized
((4.16) and (4.17)) analytic decays, rather than one rate dominating. By tfb = 8 the 1/N
term begins to dominate and slow the decay.
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FIGURE 11. Comparing combined Lindblad and parametric noise simulations (solid) to theory
(dashed) for the semi-localized (purple, k = 1.8) and diffusive (red, k = 10.0) cases. Theory
(dashed) includes 1/t (blue), Lindblad semi-localized (purple) and the product of Lindblad
diffusive and Lyapunov rate decays (red). Simulations average over all 128 initial conditions
at one random realization each. All results use n = 7, ν1 = 0.025, ν2 = 0.05, and σ = 0.9. For
Lyapunov rate decay, theory assumes that ffb,Lyap(tfb) = e−λtfb as observed.

In Porter & Joseph (2022) three bounds were derived on the observability of
Lyapunov decay under parametric noise. However, if dynamical and Lindblad noise do
have multiplicative effects on the fidelity decay, then one can predict how this noise
combination would cause these bounds to change. Bound (1) should remain unchanged, as
Lindblad noise likely affects both Fermi golden rule decay and Lyapunov decay equally,
causing no change in their competition. Bound (2) should also remain unchanged, as the
transition to localization likely occurs at the same parameter value. But bound (3) would
tighten, since it describes the limited time steps available to observe Lyapunov decay,
which the addition of Lindblad noise would certainly reduce.

Appendix E. Rationale for gate-based Lindblad model

Working with a complete decoherence model of quantum gates is quite challenging
because there are many terms that are potentially active (Breuer et al. 2002). For a linear
trace-preserving quantum process model, the number of terms is N4−N2, where N is the
number of states. Clearly, for all-to-all connectivity, a complete characterization is not
scalable to many qubits.

Performing quantum process tomography (Chuang & Nielsen 1997) for a single
entangling gate already requires a relatively large number of measurements. While there
are software packages such as pyGSTi (Nielsen et al. 2020, 2021) that allow one to
automatically characterize a complete set of two-qubit gates, many of the commercial
quantum hardware platforms available today do not allow enough run time to perform
a complete characterization of even a single entangling gate. Moreover, because the
complete protocol takes so long to run, the hardware characteristics may drift significantly
over the duration of the experiments.

To make headway under such circumstances, one must attempt to utilize plausible
simplifications of the number and types of decoherence processes under consideration.
Assume that for each gate, one can identify a simplified set of decoherence processes
that are dominant. One could then perform a restricted form of process tomography to
characterize each gate. One could even characterize an entire gate set – assuming that
the number of independent decoherence processes is small enough that this procedure is
scalable.
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Presumably, a detailed understanding of the physical processes that mediate
decoherence mechanisms would yield a relatively concise mathematical description
of the dominant decoherence processes. However, this could still potentially be quite
complicated, for instance, including non-Markovian processes, and would require custom
experiments to diagnose and verify. Moreover, this could potentially require a physical
model for the environment as well as for the quantum computing hardware, making the
model non-Markovian and more complex than the process tomography paradigm typically
admits.

Yet simply understanding the way that the physical system imposes a mathematical
structure on the decoherence processes is potentially quite valuable. For example,
theoretical studies have proven that the Lindblad master equation (Breuer et al. 2002)
is the appropriate infinitesimal generator of the temporal evolution of a quantum system
coupled to an incoherent process that is both trace preserving and completely positive.
Hence, this implies that the Lindbladian form should be considered primary and that
integrating the master equation over a finite-time interval should be used to determine the
associated process matrix. Clearly, a sparse representation in terms of Lindblad operators
will typically yield a rather dense process matrix. Thus, from the physical perspective, it is
much more likely for the Lindblad representation to be sparse than it is for the associated
process matrix.

Another plausible physical assumption is that the dominant noise processes are from
one- and two-qubit interactions. This reduces the number of processes exponentially, from
O(N4) (the elements of the infinitesimal process matrix) when including up to all-qubit
processes to just O(log2(N)) (the number of qubit pairs) for up to two-qubit processes. In
the infinitesimal process matrix this corresponds to an exponential reduction in the number
of elements. This can be seen by considering the relationship between the Lindblad
equation, which describes the time evolution of the density matrix, and the infinitesimal
process matrix, which describes the coupling of density matrix elements. Most process
matrix elements of a large system couple density matrix elements between which more
than two qubits have differing states. So limiting to one- and two-qubit processes treats
most process matrix elements as zero, leaving an exponentially small number of elements
active.

Two-qubit processes could be further limited to fewer physically plausible channels.
For instance, photon exchange between qubits mediated by the environment could be an
important channel, since it requires only one photon and is an extension of single-qubit
relaxation and excitation processes (K. Wendt, private communication, 2022). A stronger
restriction is limiting interactions to nearest neighbours in a sparsely connected device,
reducing the number of processes to O(log(N)). This also strengthens the assumption that
no more than two-qubit processes need to be considered.

Two-qubit dephasing is a physically plausible channel that we found in our numerical
studies to have very similar qualitative effects as the standard single-qubit dephasing.
Presumably, the reason is that each multi-qubit dephasing process can be understood
as single-qubit dephasing in an alternate basis. Understanding whether or not such
non-standard dephasing terms are important for describing actual quantum hardware
performance could be an interesting subject for future work.

The greatest physical simplification that can plausibly be applied to a Lindblad model
is that only the single-qubit relaxation and dephasing processes are important, averaged
over all qubits for simplicity, but that they are enhanced over their measured values
during gate operation. (For typical quantum hardware platforms, the temperature is so
far below the excitation energy that excitation processes can be considered subdominant.)
While this may be a vast oversimplification, these processes are clearly important
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because they are universally required to model experimental data in practice. The
physical meaning of this model is simple: the physical processes that actuate the gate
renormalize the interaction between the qubit and the environment and, hence, renormalize
the characteristic single-qubit relaxation and dephasing rates. Note, however, that the
predictions are non-trivial because the associated time-integrated process matrix has a
relatively dense form that depends on the products of the rates with the overall gate time.

While many other decoherence processes are likely needed for a truly accurate
description of the quantum hardware evolution, we have found that this simplest Lindblad
model is sufficient for modelling the experimental data described in this work. Our work
here has the restricted goal of attempting to determine the single-qubit decoherence
enhancement for the CNOT gates that clearly dominate the IBM-Q error budget. Moreover,
given the limited experimental data that one is able to obtain using today’s platforms, the
data may not contain enough information to robustly determine additional free parameters
over and above those contained in this simple model. In the future, it could be interesting to
explore a more comprehensive approach to the determination of the relevant decoherence
processes. Perhaps one could even attempt a version of gate set tomography (Nielsen et al.
2021) that deduces the relevant relaxation and dephasing enhancements for every qubit
and every gate in the set.
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