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“The possibility that whole and part may have the same number of terms
is, it must be confessed, shocking to common sense.” (Russell, 1903,
Principles of Mathematics, p. 358)

Abstract. Cantor’s theory of cardinal numbers offers a way to generalize arithmetic from finite
sets to infinite sets using the notion of one-to-one association between two sets. As is well known,
all countable infinite sets have the same ‘size’ in this account, namely that of the cardinality of the
natural numbers. However, throughout the history of reflections on infinity another powerful intuition
has played a major role: if a collection A is properly included in a collection B then the ‘size’ of A
should be less than the ‘size’ of B (part–whole principle). This second intuition was not developed
mathematically in a satisfactory way until quite recently. In this article I begin by reviewing the
contributions of some thinkers who argued in favor of the assignment of different sizes to infinite
collections of natural numbers (Thabit ibn Qurra, Grosseteste, Maignan, Bolzano). Then, I review
some recent mathematical developments that generalize the part–whole principle to infinite sets in
a coherent fashion (Katz, Benci, Di Nasso, Forti). Finally, I show how these new developments are
important for a proper evaluation of a number of positions in philosophy of mathematics which argue
either for the inevitability of the Cantorian notion of infinite number (Gödel) or for the rational nature
of the Cantorian generalization as opposed to that, based on the part–whole principle, envisaged by
Bolzano (Kitcher).

§1. Introduction. Two central issues seem to have determined the reflection on math-
ematical infinity in Western thought. The first concerns its existence. The second whether
it can be measured. In this paper, I will only deal with the second aspect of the issue
although, of course, the two issues cannot always be separated. The structure of the paper
is as follows. First, I will retrace some of the major historical positions that were taken
with respect to the paradoxical properties displayed by infinite sets of natural numbers with
emphasis on whether there could be an arithmetic of infinite sets. In the second part, I will
describe recent mathematical developments that offer a way to measure the size of infinite
sets of natural numbers while preserving the part–whole principle. In the conclusion, I will
offer some philosophical reflections as to how these recent mathematical developments
impact various historical and philosophical claims found in the literature, including Gödel’s
claim, which I contest, as to the inevitability of Cantor’s definition of infinite number. This
is the notion of inevitability referred to in the title of this paper, namely the claim that if
one wants to generalize the notion of number from the finite to the infinite there is only
one possible way to go and that is the Cantorian notion of cardinal number.
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§2. Paradoxes of the infinite up to the middle ages. While paradoxes of the infinite
have often popped up in geometrical contexts—witness the long debates on the one-to-one
correspondence between the points of two segments of different lengths (see Mancosu,
1996, chap. 5) or Torricelli’s determination that there is a solid of infinite length with finite
volume and no center of gravity (see Mancosu & Vailati, 1991; Mancosu, 1996, chap. 5)—
in this paper I will only focus on the paradoxes concerning the determination of sizes of
infinite collections.1 A simple example will unify this paper from beginning to end, namely
the question of whether the collection of natural numbers and that of the square of natural
numbers (or the even numbers) have the same size. The paradox, epitomized in Galileo’s
(1939, 1958) Two New Sciences, consists in persuading us that

(1) There are more natural numbers than squares

(2) The collection of natural numbers has as many elements as the collection of squares.

Ad 1: this seems incontrovertibly true, since there are lots of natural numbers that are
not squares, 2, 3, 5 and so forth.

Ad 2: this also seems true, as we can arrange the natural numbers in order and write
under each one of them the corresponding square, thereby showing that there is a one-to-
one correspondence between the natural numbers and the squares.

We will come back later to the principles that underlie the intuitive pull both in the
direction of (1) and (2).

When does the paradox first find its expression? It is actually unclear when the paradox,
in the numerical form I just gave, appears. In the Greek tradition we have paradoxes that
are related, but are not identical, to it; in this tradition what is claimed to be paradoxical is
the existence of different sizes of infinity. Proclus might be the first source we have where
such an example is discussed. He proposes a paradox that was raised in connection to the
definition of the diameter of a circle:

But if from one diameter two semicircles are produced, and if an indefi-
nite number of diameters can be drawn through the center, it will follow
that the number of semicircles is twice infinity. This difficulty is alleged
by some persons against the infinite divisibility of magnitudes. We reply
that a magnitude is infinitely divisible, but not into an infinite number of
parts. The latter statement makes an infinite number actual, the former
merely potential; the latter assigns existence to the infinite, the other only
genesis. (Proclus, 1992, p. 125)

The ultimate assumption, which Proclus seems to subscribe to, is that an infinite cannot
be twice as large as another infinite. A similar position is found, for instance, in Philoponus
(sixth century A.D.). In De Aeternitate Mundi, he touches on the topic in the process of
arguing against those who deny that the world has a beginning:

Moreover, suppose the kosmos had no beginning, then the number of
individuals down, say, to Socrates will have been infinite. But there will
have been added to it the individuals who came into existence between
Socrates and the present, so that there will be something greater than
infinity, which is impossible. Again, the number of men who have come
into existence will be infinite, but the number of horses which have come

1 For good overviews of issues related to the historical development of the concept of infinity see
Levy, 1987; Moore, 1990; and Zellini, 2005.

https://doi.org/10.1017/S1755020309990128 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020309990128


614 PAOLO MANCOSU

into existence will also be infinite. You will double the infinity; if you add
the number of dogs, you will triple it, and the number will be multiplied
as each of the other species is added. This is one of the most impossible
things. For it is not possible to be larger than infinity, not to say many
times larger. Thus, if these strange consequences must occur, and more
besides, as we shall show elsewhere, if the kosmos is uncreated, then
it cannot be uncreated or lack a beginning. (Philoponus, De Aeternitate
Mundi Contra Proclus, ed. Rabe, pp. 9, 11–14, 17; cited in Sorabij, 1983,
p. 215)

The first occurrence I know of a defense of the existence of different sizes of infinity
given in terms of collections of natural numbers comes from the Islamic philosopher and
mathematician Thabit ibn Qurra (ninth century A.D.). Ibn Qurra’s position comes to us
as a report of answers he gave to questions posed by his disciple Abu Musa Isa ibn
Usayyid preserved in an Arabic manuscript (at the British Library in London) entitled
‘Questions asked of Thabit ibn Qurra al-Harrani’ (MS Add. 7473, folio 12b–16b). The
text has been recently edited by Sabra (1997) (a previous account was given in Pines,
1968).

We questioned him also regarding a proposition put into service by many
revered commentators, namely that an infinite cannot be greater than an
infinite. – He pointed out to us the falsity of this (proposition) also by
reference to numbers. For (the totality of) numbers itself is infinite, and
the even numbers alone are infinite, and so are the odd numbers, and
these two classes are equal, and each is half the totality of numbers. That
they are equal is manifest from the fact that in every two consecutive
numbers one will be even and the other odd; that the (totality of) numbers
is twice each of the two [other classes] is due to their equality and the fact
that they (together) exhaust (that totality), leaving out no other division
in it, and therefore each of them is half (the totality) of numbers. – It
is also clear that an infinite is one third of an infinite, or a quarter, or
a fifth, or any assumed part of one and the same (totality of) numbers.
For the numbers divisible by three are infinite, and they are one third
of the totality of numbers; and the numbers divisible by four are one
fourth of the totality of numbers; and the numbers divisible by five are
one fifth of the totality of numbers; and so on for all other parts of (the
totality of numbers). For we find in every three consecutive numbers
one that is divisible by three, and in every four consecutive numbers one
that is divisible by four, and in every five (consecutive numbers) one
that is divisible by five; and in every multitude of consecutive numbers,
whatever the multitude’s number, one number that has a part named after
the multitude’s number. (Sabra, 1997, pp. 24–25)

This might well be the first occurrence in which an arithmetic of infinite collections
comes to the fore. Whatever the complexities related to the interpretation of the text, it
is quite obvious that ibn Qurra defends an infinitistic position according to which there
are infinite numbers and that an infinite can be larger than another infinite. An intuitive
principle deployed by ibn Qurra is that if A and B (disjoint) are such that they together are
equal to a collection C then, if the size of A is equal to the size of B, the size of C is twice
the size of A (and twice the size of B).
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When ibn Qurra states that odd numbers and even numbers have the same size one
should be careful not to immediately read his argument as being the standard one based
on one-to-one correspondence, for the motivation adduced does not generalize to other
arbitrary infinite sets. Rather, it would seem that some informal notion of frequency (how
often do even numbers (respectively odd numbers) show up?) is in the background of ibn
Qurra’s conception of infinite sizes (“we find in every three consecutive numbers one that
is divisible by 3”).

What would he have replied to the possible objection that there are as many even num-
bers as natural numbers based on a one-to-one correspondence between the two collec-
tions? The text is silent on this issue.

The Latin middle ages ignored these classical and Islamic sources. As Murdoch puts
it, “on the basis of the available influence, then, philosophers and mathematicians in the
Latin West appear to have realized the importance of the paradox on their own” (Murdoch,
1982, p. 569). It is of course here out of the question to rehearse the lively debates found on
this topic in the thirteenth and the fourteenth centuries although, with very few exceptions,
these authors rarely use natural numbers for their examples.2 The recent volume edited

2 In addition to those mentioned in the main text, exceptions include Duns Scotus, Oresme,
and Bradwardine. For Scotus’ positions see Scotus (1639), Quaestio IX on the third book
on the physics, p. 203. For Oresme see the discussion by Sesiano (1996). The text with the
comparison of odd and natural numbers reads: “Omnis multitudo infinita est simpliciter infinita,
ergo nulla talis est alia maior vel minor. Consequentia patet, quia non dicitur quod unum infinitum
simpliciter, id est undique, sit maius e<o>dem consimiliter infinito, et potest argui sicut prius
<quod> sibi invicem su<per>posita non excedunt nec exceduntur. Probatur antecedens, et
capiatur multitudo numerorum imparium et quadratorum [videtur videtur perfectior]; tunc, cum
ibi sit primus, secundus, tertius et quartus et sic sine fine [omnium] <secundum> ordinationem
<omnium> numerorum, sequitur quod multitudo numerorum <imparium> non est minor quam
multitudo omnium numerorum quorumqumque, et ita argueretur quod multitudo omnium partium
proportionalium imparium non est minor tota multitudine parium et imparium, vel tota multitudo
partium mediaetatis quam totius” (Kirschner, 1997, pp. 260–261). Bradwardine’s Geometria
Speculativa attempts to set up a paradox of infinity using the notion of ratio. In proposition
3.35 he concludes an argument by claiming “therefore all infinities are mutually equal.” But
the conclusion of proposition 3.36 is that “one infinite may be greater than another.” See
Bradwardine (1979, pp. 99–100). There is also an attribution of the comparison between odd
and natural numbers to Albert of Saxony. As far as I can tell this attribution begins with
Maier (1949, p. 170), who however qualifies the attribution by saying that Albert compares
the two sets in a “roundabout” [umständlicher] way. The attribution is then repeated without
qualification by later authors (including Gericke, 1977, p. 54, and Sebestik, 1992). The source
indicated by Maier is Quaestio X in “Questiones subtilissime in libros Aristotelis de celo
et mundo” (Albertus de Saxonia, 1492). Once one looks at the text one sees that Maier
extrapolated from an example concerning an infinite series of infinitely alternating white and
black patches. The thought experiment consists in replacing every black patch by the white
one following it: “Arguitur de multitudine. Nam sit unum pedale per imaginationem divisum
per partes proportionales. Tunc super primam partem sit aliquod album, super secundam sit
aliquod nigrum, et super tertiam iterum sit aliquod album, et super quartam iterum aliquod
nigrum, et sic alternatim de aliis partibus proportionalibus. Tunc auferatur primum nigrum,
et transferatur secundum album super secundam partem; deinde auferatur tertium nigrum,
transferendo sicut prius. Et consequenter amoveantur omnia nigra. Istum casum concederent
adversarii. Tunc clarum est quod super quamlibet partem erit aliquod album. Ergo per primam
[secundam] suppositionem multitudo alborum non est maior nec minor multitudine partium
proportionalium. Et per idem patet ex principio casus quod tota multitudo alborum et nigroum
non est maior nec minor multitudine partium proportionalium. Ergo sequitur quod alba et
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in French (Biard & Celeyrette, 2005) provides an extensive selection of texts for the
fourteenth century (for a recent useful overview and references to the classic literature
on the infinitely large (Duhem, Meier, Murdoch, and so forth) see also Dewender, 2002;
Bianchi, 1984, chap. 2, is excellent for the paradoxes of infinity and their context in the
thirteenth century).

By and large, one can distinguish four attitudes toward the possibility of unequal actual
infinities:

(1) Use the paradoxical features that such infinities would have (one is a part of another,
i.e., one infinity is smaller than another) to declare this strictly impossible and thus
block the process of generation of such infinities (e.g., Bonaventure [Bianchi, 1984;
Dales, 1984]).

(2) Accept infinite collections but deny that ‘greater than’, ‘less than’, and ‘equality’ can
be applied to infinities (Duns Scotus [Petruzzellis, 1968], Oresme [Sesiano, 1996;
Kirschner, 1997], Albert of Saxony [see Gericke, 1977; Sesiano, 1988; Sarnowsky,
1989, pp. 149–171]).

(3) Accept infinities and analyze how different part–whole relations apply to infinities than
those that apply to finite quantities (Henry of Harclay [Murdoch, 1981a; Dales, 1984],
Gregory of Rimini [Cross, 1998]).

(4) Accept infinities and try to develop an arithmetic of the infinite in analogy to the
arithmetic of the finite.

The first text in the Latin West that propounds Option 4, that is, that defends the possi-
bility of comparing different sizes of numerical infinity, is part of the treatise De Luce by
Robert Grosseteste written about 1220:

It is possible, however, that an infinite collection of number is related to
an infinite collection in every proportion, numerical and non-numerical.
And some infinites are larger than other infinites, and some are smaller.
Thus the collection of all numbers both even and odd is infinite. It is
at the same time greater than the collection of all the even numbers
although this is likewise infinite, for it exceeds it by the collection of
all the odd numbers. The collection, too, of all numbers starting with
one and continuing by doubling each successive number is infinite, and
similarly the collection of all the halves corresponding to the doubles is
infinite. The collection of these halves must be half of the collection of
their doubles. In the same way the collection of all numbers starting with
one and multiplying by three successively is three times the collection
of all the thirds corresponding to these triples. It is likewise clear in
regard to all kinds of numerical proportion that there can be a proportion

nigra simul sumpta non sunt plura nec pauciora quam alba solum” (quoted according to
Sesiano’s transcription in Sesiano, 1988, pp. 46–47, Note 51); compare Sarnowsky, 1989,
p. 169, Note 164. Albert then goes on to generalize to alternations in which a white patch only
occurs in Position 1, Position 1000, Position 2000, and so forth concluding that the white and
black patches taken together are not more nor less than the white ones.
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of finite to infinite according to each of them. (Grosseteste, De Luce,
approximately 1220)3

Grosseteste was followed by Henry of Harclay (see Harclay, 2008, Quaestiones XVIII
and XXIX) who was however sensitive to the fact that comparison of unequal infinites
seemed to contradict the Euclidean axiom that “Omne totum est maius sua parte”. Henry
declares the axiom inapplicable to infinites and only valid for finite quantities although for
Henry the part–whole axioms is “at the same time subordinate to a more general axiom
which does apply to infinites” (Murdoch, 1981b, p. 54). This led the way to Gregory of
Rimini’s analysis of the different senses of “part”, “whole”, “greater than” in the context
of infinity (on Gregory see Cross, 1998).

§3. Galileo and Leibniz. Galileo and Leibniz reject the possibility of a theory of size
of infinite collections, although they do so starting from different assumptions.

As I mentioned at the outset, it was Galileo who, in Two New Sciences (1638), gave
classic expression to the paradox, using the natural numbers and the squares of natural
numbers. Galileo draws the following conclusion from the paradox:

3 For the English text, which I have modified in my translation, see Riedl (1942); on Grosseteste
see Lewis (2007). The Latin text was edited in Grosseteste, De Luce, in Die Philosophischen
Werke des Robert Grosseteste, Bischofs von Lincoln (Münster i. W., Aschendorff, 1912.),
pp. 51–59. It reads as follows: “Est autem possibile, ut aggregatio numeri infinita ad
congregationem infinitam in omni numerali se habeat proportione et etiam in omni non numerali.
Et sunt infinita aliis infinitis plura et alia aliis pauciora. Aggregatio omnium numerorum tam
parium quam imparium est infinita, et ita est maior aggregatione omnium numerorum
parium, quae nihilominus est infinita; Excedit namque eam aggregatione omnium numerorum
imparium. Aggregatio etiam numerorum ab unitate continue duplorum est infinita; et similiter
aggregatio omnium subduplorum illis duplis correspondentium est infinita. Quorum subduplorum
aggregationem necesse est esse subduplam ad aggregationem duplorum suorum. Similiter
aggregatio omnium numerorum ab unitate triplorum tripla est aggregationi omnium subtriplorum
suorum istis triplis respondentium. Et similiter patet de omnibus speciebus numeralis
proportionis, quoniam secundum quamlibet earum proportionari potest finitum ad infinitum.”
(pp. 52–53) Another passage from Grosseteste, this time from his Commentary on the Physics
of Aristotle, is relevant here: “Credo tamen quod, sicut alibi diximus, unus numerus infinitus
ad alium infinitum numerum se potest habere in omni proportione, numerali et non numerali.
Aliquis enim numerus infinitus duplus est ad alium numerum infinitum, et triplus, et sic secundum
ceteras species proportionis. Et etiam aliquis numerus infinitus se habet ad alium sicut diameter
ad costam, et hoc alibi probatum est. Et iterum audacter dico quod omnis numerus infinitus ipsi
Deo (cuius sapientiae non est numerus) finitus est plus quam binarius est mihi finitus. Est illi
finitus numerus infinitus collectus ex omnibus paribus, et similiter numerus infinitus collectus ex
omnibus imparibus, et similiter omnes numeri infiniti qui infinities possunt diuidi. Sicut enim
quae uere in se finita sunt nobis sunt infinita, sic quae uere in se sunt infinita illi sunt finita.”
I report this text following Professor Lewis, who, together with Professor Peter King, is in the
process of editing the Commentaries on the Physics. Concerning the word “collectus”, he wrote
to me the following: “In the edition [of the Commentary on the Physics] King and I have been
working on we have used the variant ‘collectus’ rather than ‘collatus’. There are only three
ms. sources: two mss are closely related and one has collectus, another collectis, and a third,
representing a different tradition, has ‘collatus’. All mss. are of poor quality, so one must go
by sense here. It seemed to us at first sight that ‘collectus’ made a bit more sense, but the
edition is hardly in a final state and one could certainly make a case for collatus. I would read
‘collatus’ literally as meaning something like ‘brought together’ and ‘collectus’ as ‘collected’.”
(E-mail communication dated February 19, 2009)
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Sagredo: What then must one conclude under these circumstances?
Salviati: So far as I see we can only infer that the totality of all numbers
is infinite, that the number of squares is infinite, and that the number
of their roots is infinite; neither is the number of squares less than the
totality of all the numbers, nor the latter greater than the former; and
finally the attributes “equal,” “greater,” and “less,” are not applicable to
infinite, but only to finite, quantities. When therefore Simplicio intro-
duces several lines of different lengths and asks me how it is possible
that the longer ones do not contain more points than the shorter, I answer
him that one line does not contain more or less or just as many points
as another, but that each line contains an infinite number. (Galileo, 1939,
pp. 32–33; 1958, p. 45)

Thus, Galileo’s final word corresponded to the positions defended by Duns Scotus,
Oresme, and others concerning the nonapplicability to the relations of equality, less than
and greater than, to infinite collections.

Leibniz’s position is more radical than that of Galileo in that while admitting that an
actual infinite can exist, this is only in the distributive mode and never collectively or
as a whole:

There is an actual infinite in the mode of a distributive whole, not of
a collective whole. Thus something can be enunciated concerning all
numbers, but not collectively. So it can be said that to every even number
correspond its odd number, and vice versa; but it cannot be accurately
said that the multiplicities of odd and even numbers are equal. (Leibniz,
1875–1890, Vol. II, p. 315)

So, Leibniz refuses the existence of an infinite collection taken as a whole to which a
size could be attributed. (For more on Leibniz on the infinite see Burbage & Chouchan,
1993; Leibniz, 2001; Arthur, 1999; Brown, 2000; Arthur, 2001; Van Atten, 2009; Breger,
2008.)

§4. Emmanuel Maignan. A very original position on the nature of the infinite is
found in Emmanuel Maignan (1601–1676). He is not a well-known figure although he was
quite influential on the Spanish enlightenment and left a mark in the history of optics and
perspective.4 Maignan belonged to the order of Minims and taught mathematics, optics,
and philosophy in Toulouse. In 1648 he wrote a successful Perspectiva horaria sive de
horographia gnomonica tum theoretica tum pratica that was highly praised and this led
to contacts with Mersenne and Fermat. He was decidedly anti-Aristotelian, especially in
natural philosophy, and his position on the infinite in fact contradicts Aristotle’s denial of
the actual infinite.

Maignan (1673 [second edition]) treats the infinite in his Cursus Philosophicus and
devotes to it a very lengthy dissertation of 30 pages (pp. 283–313 of the second edition;
all page numbers below are from the second edition).5 He is probably the most articulate

4 For his influence on Spanish enlightenment see Israel (2002, pp. 528–531). On Maignan’s
anamorphosis in the Trinità dei Monti in Rome see Terski (2006) and Pascal (2005).

5 In the secondary literature, Maignan’s treatment of the infinite is only cursorily addressed in
Gardies (1984).
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defender of the existence of actual infinity in the seventeenth century and Cantor took
notice of his work (Cantor, 1962, p. 405, Note 1; see also the index to Cantor’s correspon-
dence with theologians, under ‘Maignan’, in Tapp, 2005). Since he is not very well known,
I will devote a little more space to him than to the other authors. Moreover, as his position
contains a number of innovative theses that have confused interpreters, I shall begin with
the less problematic statements.

Maignan, as I said, defends the existence of infinite collections and the existence of
different sizes among infinities. One example of a collection infinite categorematice (or in
actu) given by Maignan is the collection of all possible human beings. The collection of
all possible lions can be joined to it showing that an infinite collection can be greater than
another. The (possible) eyes of all the possible human beings will be twice as infinite as
the collection of all possible human beings. (Maignan, 1673, p. 293)

One of his favorite examples of categorematic infinity is the collection of natural num-
bers. His claim for the existence in actu of such a collection consists in pointing out that
there is no last finite number and that a multitude that has no last finite number is infinite.
(Maignan, 1673, p. 285) As pointed out above, he also believes that the relations of greater
than, less than, and equality hold not only among finite quantities but can also be applied
to infinite quantities:

The same thing is confirmed through the previous proposition since,
for example, an infinite collection from which units can be subtracted
(not only ten but infinitely many) while the collection remains infinite
is, obviously, infinitely greater before the subtraction takes place than
after; thus, since the collection does not cease being infinite after the
subtraction, the infinite will be, as such, infinitely smaller than it was
earlier. You could say that this is in conflict with the generally accepted
thesis that holds that the terms “greater” and “smaller” can only apply
to finite quantities but not to infinite quantities; or, at least, that they
can be applied to infinite quantities only in a very improper way. I reply
that this idea has the following feature, namely that it is widespread.
This fact notwithstanding, I would say, with permission, that it also has
this other feature, namely that its ground is nothing else but a false
notion of infinity. Moreover, the advantage it offers, which consists in
apparently solving some difficulties that are usually put forth by denying
that “greater” and “smaller” are properties that can be predicated of
infinity, does not subsist for it ends up not resolving the difficulties.
(Maignan, 1673, pp. 293–294)

The true notion of infinity for multiplicities, according to Maignan is “illud in quo sunt
unitates nullo numero finito comprehensibiles” (that in which there are units that cannot be
comprehended by any finite number). (Maignan, 1673, p. 287)

A further argument propounded by Maignan consists in appealing to Euclid’s common
Notion 9 to the effect that the whole is greater than its part. Taking two collections A and
B the collection of the two together is greater than each one taken separately:

In addition, I argue for this thesis in an absolute fashion, for there is a
common notion (In Euclid it is the 9th of the first book) which states:
the whole is greater than the part; that is, taking as example A and B,
the union of the two together is greater than each one of them taken
separately and something else that does not belong to it. In effect, with
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the term ‘greater’ we understand that which contains everything included
in one collection (or the equivalent) with the addition of something else
that is not in that collection. With the term less we understand the op-
posite. Thus, it is evident that in the whole is included all that is in the
part (since that is contained in the whole) and, moreover, something else
that is not contained in that part, that is, the other part; otherwise, sub-
tracting a single part one would thereby subtract the whole itself, which
is evidently false. On the other hand, one can infer from proposition 1,
observation 2, that there are infinite parts. And from the words of the
previous proposition it results that not only a part of the infinite can
be infinite but that two or three and so on until the collection of those
infinities become infinite itself, since in every infinite the infinities are
infinite. (Maignan, 1673, p. 294)

From the above, it is obvious then that for Maignan the collection of even numbers
is smaller than the collection of whole numbers, for they stand as part to whole. So far,
Maignan presents us with the idea that infinite collections exist and that they can contain
infinite parts as subcollections so that if A is an infinite subcollection of C , C is greater than
A. He obviously thinks that the part–whole principle holds both for finite and for infinite
collections. This is not a problem, unless we couple the principle with a form of what is
now sometimes called Hume’s principle, according to which two collections have the same
size if there is a one-to-one association, between all the elements of the two collections.
Trouble then seems to be looming large when, in a corollary, Maignan goes on to give the
following account of equality:

From this it follows that two infinites can be equal, just as in an infinite
series of pairs there necessarily exist two series of unities completely
identical, provided that a unity corresponds always to another unity, so
that there is no excess or defect in one or the other series, which corre-
sponds, in turn, to the definition of equality. From here you also grasp
that one can properly speak of “quantity” in the sense we have explained
but not in that ordinary way in which by “quantity” is usually understood
a certain determinate number in its kind corresponding to another in the
number of units. (Maignan, 1673, p. 294)

On the face of it this risks collapsing all sizes of infinite sets of natural numbers to the
same size thus destroying what has been just claimed as a consequence of the part–whole
principle.6 Unless a charitable interpretation of this criterion is found, Maignan’s criterion

6 Gardies (1984) has in fact read this passage as decreeing that one-to-one correspondence gives
the criterion of equality for infinite sets and has thus concluded to the inner inconsistency of
Maignan’s thought on this issue. Gardies’ (1984, p. 126) reading finds some support in an example
coming on p. 293 where Maignan plays with a thought experiment of the following sort. Consider
all possible human beings. Order them so that they form an infinite sequence. Now consider the
same collection of possible human beings but organize them in two distinct rows. Maignan claims
that such rows must be infinite. Now, this does not follow but Maignan is probably saying that
the rule for forming the two sequences is that we start from the original sequence and we put
every second human being in the second sequence. Then Maignan claims that the sequence of
pairs of human beings so obtained is infinite but of an infinity smaller than the infinity of possible
human beings. I should point out that Gardies seems to misunderstand the text here and claims
that Maignan asserts that the pairs are more numerous than the units constituting the pairs.
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of equality applied to natural numbers spells disaster for Maignan’s intuition concerning
different sizes of infinity. Indeed, consider the following two sequences:

1, 2, 3, 4, 5, . . .

2, 4, 6, 8, 10, . . .
Then, Galileo’s paradox is immediately at hand. By the part–whole principle the first

collection is larger than the second. By the equality criterion (or Hume’s principle) the
two collections are equal in size. We will soon see how Maignan tries to dispel Galileo’s
paradox and this will show that when pressed he would have given a qualified reading of
the equality criterion.

Maignan’s discussion of Galileo is introduced abruptly in a section which aims at reply-
ing to an objection against the actual infinite. Maignan’s description of Galileo’s paradox is
quite straightforward. However, he interprets the paradox as an argument against his claim
that there are infinite collections in actu, namely that the collection of natural numbers
is a categorematic infinite (or infinite in actu; Maignan seems to use the two expressions
interchangeably). Obviously, this was not Galileo’s take on the matter and Maignan is clear
about this. Indeed, Galileo accepts the existence of different infinite collections (numbers,
squares, nonsquares) but claims that the relations ‘greater than’ ‘smaller than’, and ‘equal’
cannot be applied to infinite collections.

Maignan begins his discussion by first rehearsing Galileo’s considerations on the fre-
quency of squares and nonsquares leading to the claim that there are more nonsquares than
squares (let us call this ‘Claim 1’).7 But the heart of the paradox begins in what follows
and for simplicity I will label the claims in the argument.

It is evident that the collection of all numbers (containing both squares and
nonsquares) is greater than the collection of squares since the whole is greater than its
part (Claim *).8

Furthermore, “it is also evident that the collection of all squares is equal to the collection
of all roots, since each root is the root of a square and each square has only one root”.
(Claim 2).9 Note that there is a certain ambiguity in Maignan’s text that is not in Galileo.
While Galileo says “loro [i quadrati] esser tanti quanto le loro radici”, Maignan speaks of
equality [aequalem esse] but this is ambiguous between having the same size and being
identical as collections.10

With those premises in place a contradiction is now at hand:

But these two things [Claims * and 2] are contradictory since the
collection of all the roots is equal to the collection of all the numbers
[Claim 3],11 for both the squares and the non-squares are roots, as
they can be multiplied by themselves. Consequently, the collection of

7 Compare Galileo, 1939, p. 32.
8 Compare Galileo, 1939, p. 32.
9 Compare Galileo, 1939, p. 32.

10 Galileo says: “If I should ask further how many squares there are one might reply truly that there
are as many as the corresponding number of roots, since every square has its own root and every
root its own square, while no square has more than one root and no root more than one square.”
(Galileo, 1939, p. 32)

11 Once again Galileo is clearer in speaking not of equality but more clearly says “non si puo’
negare che elle [le radici] siano quante tutti i numeri.”(Galileo, 1958, p. 44; cf. Galileo, 1939,
p. 32)
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the squares is equal to the collection that includes at the same time the
non-squares and the squares, which is contrary to what has been formerly
established [Claim %].”12(Maignan, 1673, p. 304)

More formally, letting A be the collection of all roots, B the collection of all numbers,
and C the collection of squares, Maignan sees the argument as proceeding through the
following steps:
C = A [Claim 2]
B = A [Claim 3].
Thus,
C = B [Claim %; according to the principle that those which are equal to a third are also
equal to one another using Claim 2 and Claim 3; obviously the equality sign here is used
as a short hand for whatever Maignan means by equality].

But this means that Part C is equal to the Whole B contrary to what has been established
in Claim *. Contradiction.

Notice that in Maignan’s reconstruction of the paradox Claim 1 is not playing any role,
just as it does not in Galileo’s account where it is used only to strengthen the sense of
amazement occasioned by the main paradox. Nonetheless, it will be useful to look at
Maignan’s reply to Claim 1.

Maignan tries to dismantle the Galilean arguments by rejecting (1) that the nonsquares
are more than the squares; and (2) that the roots are equal to the numbers (namely,
Claim 3).
Ad 1) Maignan provides an alternative way of counting the squares. He first orders the
nonsquares into a sequence:
3, 5, 6, 7, 8, and so forth.13 Then he creates the following grid obtained by squaring
successively all the numbers in each column:

3 5 6 7 8. . .

9 25 36 49 64. . .

81 625 1296. . .

. . . . . . . . .
He then notices that under every nonsquare there are infinitely many squares and con-

cludes that there are more squares than nonsquares:

Therefore, the nonsquares numbers are far from being more numerous
than the squares; on the contrary, for each nonsquare there are infinitely
many squares. (Maignan, 1673, p. 305)

Ad 2) Maignan proceeds by distinguishing two meanings to the claim that “the collection
of roots is equal to that of all numbers”. In the first sense one can consider all the numbers
taken collective (i.e., as a whole) and in the other distributive. Maignan argues, confusingly,
that in the first case there is an evident contradiction, for reading (2) with the collective

12 Galileo says “converrà dire che i numeri quadrati siano quanti tutti i numeri”, (Galileo, 1958,
p. 44; cf. Galileo, 1939, p. 32)

13 For some reason I cannot figure out, Maignan thinks of 2 as a square and does so on two different
occasions; however, when computing the number of squares between 1 and 10 or between 1 and
100 he gives the right answer.
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reading would lead to the conclusion that there are numbers beyond the numbers.14 More
interesting is the objection to the second reading, namely the distributive reading:

In the second meaning, one does not prove that the collection of squares
(although to each root corresponds a square and vice versa) is equal to
the collection of all the numbers. One does not prove it, I say, unless in
addition to supposing in this comparison that every square is a root, one
also assumes, conversely, that every root is a square. But this would be
admitted without justification, since it is evidently false; in effect, there
are many numbers that are both non-squares and roots. Thus, for this
reason, although one could claim, according to the other point of view
(i.e. according with the first meaning that I already proved false), of all
the roots but only of them that they are all the numbers, nonetheless one
cannot claim that the roots are all the square numbers. Now, since even so
the roots are numbers one cannot state that the numbers that are strictly
squares are as many as all numbers. (Maignan, 1673, p. 305)

It seems to me that Maignan’s argument here shows that one cannot read the criterion of
identity we encountered earlier unqualifiedly. His notion of equality for infinite collections
is stronger than mere one-to-one correspondence since in the argument we have just given
he denies that squares and roots are equal in size (let alone extensionally equal) despite
the one-to-one correspondence between the two collections. Indeed, judging from this
objection he seems to be forced to accept a criterion of equality between collections that
might simply turn out to be extensional equality.

It should be obvious by now that Maignan’s position is quite unstable and that Maignan
did risk to “wander without end” and to shipwreck in “an immense and dangerous sea”, to
use two beautiful expressions from his preface. In his reply to (1), he exploits the reordering
of the sequence of natural numbers to argue that for every nonsquare there are infinitely
many squares but fails to penetrate the logic of such reorderings with infinite sets which
allows one to give apparently conclusive arguments for two contradictory claims (there are

14 I must admit that the argument puzzles me. Here is the text: “Deinde ad 2 obiectionis
partem distinguo id quod ibi simpliciter astruitur, multitudinem scilicet radicum aequalem esse
multitudini numerorum omnium; cum enim haec multitudinum aequalitas fundetur in hoc quod
quilibet numerus sit in seipsum multiplicabilis, adeoque sit radix; ea propositio potest habere hunc
duplicem sensum. Primus est, omnes numeri collective sumpti sunt radices, ita ut omnes ac solae
radices sint omnes numeri collective sumendo omnes, nulloque praetermisso numero. Secundo
est,; omnes numeri distributive sumpti sunt radices; ita ut nullus in particulari sit numerus,
qui non sit radix alicuius alterius: primus sensus manifestam habet contradictionem; quia sic
praeter omnes numeros essent aliqui numeri; cum enim numeri non possint sibi invicem esse
radices velut circulari regressu; sed alii aliorum semper ulteriorum sint radices; necesse est ut
dum sumuntur omnes sed solae radices, supponantur omnes earum omnium producti: at quia
nulla est, ut dixi, suus productus; necessario praeter solas radices est aliquis productus: Ergo
si nihilominus omnes ac solae radices sunt omnes numeri, hoc est dicendo eas, dicis omnes
numeros; praeter omnes numeros dicis unum numerum: quia ille unus ulterior, non solum erit
numerus praeter omnes numeros; sed etiam erit radix alterius numeri ulterioris. Ergo hoc primo
sensus dici nullatenus potest multitudinem radicum omnium aequalem esse multitudini omnium
numerorum.” (Maignan 1653, vol. III, pp. 1042–43; 1673, vol. III, p. 305) The same solution to
the paradox is found in Maignan’s disciple Jean Saguens who also concluded that from the fact
that two different progressions make the numbers of squares greater, respectively smaller, than the
nonsquares only follows that “we do not understand an infinite multitude but it does not follow
that it is impossible.” (Saguens, 1703, vol. III, disp. X, art. VI, p. 122)
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more squares than nonsquares and vice versa). Indeed, his answer to (1) left him hostage to
the possible retort that he had not really explained why on the Galilean counting there are
more nonsquares than squares and how this fact can be reconciled with his calculations.
He addresses the topic by claiming that his calculation is no less precise than the Galilean
one and concludes:

Now, how this can be the case is known only to Him who knows perfectly
the nature of infinity. We will be satisfied knowing that this is in fact the
case. (Maignan, 1673, p. 306)

In his answer to (2) he is obviously relying on the notion of part–whole as the appropriate
one for defining a measure of size on infinite collections. According to that logic ‘equality’
between squares and numbers could only hold if every number is a square; one-to-one
correspondence is not enough. But, if so, then his approach is severely limited and fails
when one needs to compare collections that do not stand in an inclusion relations such as
the collection of even numbers and the collection of odd numbers.

Notwithstanding all the problems in Maignan’s conception of the infinite there is no
doubt as to his commitments to infinite collections and to the idea that infinite collections
of natural numbers can be measured and come in different sizes.

§5. Bolzano and Cantor. If Galileo and Leibniz seem to agree, pace Maignan, that
one should not attempt to develop a theory of sizes of infinity, with Bolzano and Cantor this
possibility is admitted. However, Bolzano and Cantor differ on the criteria that determine
sizes of infinite collections.

We find an interesting take on different sizes of infinity in Bolzano’s Wissenschaftslehre.
Bolzano offers an example constructed by a nested sequence of infinite countable sets and
states that each one of the sets in the sequence is infinitely smaller than the preceding one.
The example is provided in the context of an argument aimed at showing that infinite sizes
are needed to measure the extension of ideas. In order to show that there are ideas with
infinitely many objects falling under them Bolzano gives his nested sequence:

It is evident that there are an infinite number of ideas so constituted that
one of them will be surpassed in breath by another an infinite number
of times. From this fact it follows that the measure which serves for
measuring one of them could not be applied in measuring the other, and
consequently that no finite set of measures is sufficient to measure the
breaths of all ideas. The truth of this claim is demonstrated, it seems
to me, by the following example, to which many others could easily be
added. If we designate any whole number whatever by the letter n as an
abbreviation, then the numbers n, n2, n4, n8, n16, n32, express concepts,
each of which undoubtedly encompasses infinitely many objects (namely
infinitely many numbers.) It is equally obvious, furthermore, that every
object which falls under one of the concepts following n, e.g. n16, also
falls under the immediately preceding concept n8, but that going the
other way there are very many objects which fall under the preceding
concept n8 but are not included in its successor n16. Of the concepts n,
n2, n4, n8, n16, n32, each successive one is subordinate to its predecessor,
consequently. But furthermore it is equally undeniable that the breadth
of every one of these concepts surpasses the breadth of its successors
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an infinite number of times. For let us say the largest number we want to
extend our calculations to = N. Then the largest number the concept n16

can represent is N and consequently the number of objects the concept
n16 represents, = or < N1/16. And likewise the number of objects the
concept n8 represents, = or <N1/8. The relationship of the domain of the
concept n8 to that of the concept n16 would be therefore = N 1/8:N1/16 =
N 1/16:1. But since N1/16can become any given quantity, if we may take
N to be large enough, and since we may take N as large as we please–
indeed we will approximate the true relationship that obtains between
the breadths of the concepts n8 and n16 and more closely, the larger we
take N to be – it follows that the breadth of the concept n8 surpasses that
of the concept n16 and infinite number of times. Now since the series
n, n2, n4, n8, n16, n32can be extended as far as we please, we have in it
an example of an infinite series of concepts, each of which is an infinite
number of times broader that its successor. (Bolzano, 1973, section 102,
pp. 154–155)

In Paradoxes of the Infinite (1851; see 1975b), Bolzano recognizes that infinite sets have
the characteristic property of standing in one-to-one correspondence with proper subsets
of themselves. However, he refuses to deploy this property for capturing the idea of size of
infinite sets:

The mere fact, therefore, that two sets A and B are so related that every
member a of A corresponds by a fixed rule to some member b of B in
such wise that the set of these couples (a+b) contains every member of A
or B once and only once, never justifies us, we now see, in inferring the
equality of the two sets, in the event of their being infinite, with respect
to the multiplicity of their members –that is, when we abstract from all
individual differences. (Bolzano 1975b, section 21)15

That even the great Bolzano could have been so far from Cantor led Jan Berg in the
introductory notes to Bolzano (1973, pp. 26–28) to rescue the good reputation of Bolzano
by pointing out that “in a letter to his pupil Robert Zimmermann on March 9, 1848, that
is a few months before his own death” Bolzano gave up his former position. Let me quote
the relevant passage from the letter to Zimmermann in full:

Wissenschaftslehre, vol. I, p. 473. The thing has not only become unclear
but, as I have just come to realize, completely false. If one designates
by n the concept of an arbitrary whole number, or better said, should
one represent by means of the sign n any arbitrary whole number, then
it is therewith already decided which (infinite) sets of objects the sign
represents. This fact is not at all affected by our request that through the
addition of an exponent as n2, n4, n8, n16, . . . each numbers should now
be raised to the second power, now the fourth power, and so on. The set
of objects represented by n is always exactly the same as before although
the objects themselves represented by n2 are not quite the same as those

15 See also Bunn, 1977; Spalt, 1990; and Parker, 2008 (section III). A full analysis of Bolzano’s
position should also take into consideration the Grössenlehre (see Bolzano 1975a). See Sebestik
(2002) for the best encompassing treatment of Bolzano’s philosophy of logic and mathematics.
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represented by n. The false result was due to the unjustified inference
from a finite set of numbers, namely those not exceeding the number
N, to all of them. (Bolzano, 1975a, pp. 187–188; my translation; also
partially quoted by Berg in Bolzano, 1973, p. 27)

Berg goes on to conclude:

Hence, it seems that in the end Bolzano confined the doctrine that the
whole is greater than its parts to the finite case and accepted isomor-
phism as a sufficient condition for the identity of powers of infinite sets.
This is a second achievement of major importance in Bolzano’s (1973,
pp. 27–28; cf. 1978, p. 188, Note 451) investigation of the infinite.

Thus, Bolzano saved his mathematical soul in extremis and joined the rank of the blessed
Cantorians by repudiating his previous sins. While this could be argued for sets of natural
numbers (cf. Bolzano, 1975b, section 33, where he seems to contemplate using one-to-
one associations as determining the size of certain sequences, such as the a sequence of
numbers and its squares), the claim strikes me as implausible, if not downright false, when
it comes to Bolzano’s handling of infinite sets in geometrical contexts.

Without wanting to pick on Berg, I must observe that the literature on infinity is replete
with such ‘Whig’ history.16 Praise and blame are passed depending on whether or not an
author might have anticipated Cantor and naturally this leads to a completely anachronis-
tic reading of many of the medieval and later contributions (this was certainly the case
with Duhem’s interpretation of Gregory of Rimini and Maier’s interpretation of Albert of
Saxony; recent scholarship has been more cautious (Murdoch, Dewender, etc.)).

As we know, it was Dedekind who exploited the property of reflexity of infinite sets,
namely that they can be put in one-to-one correspondence with a proper subset of them-
selves, and turned into a definition of infinity. But it was left to Cantor to use the criterion
of one-to-one correspondence to analyze the notion of size for infinite sets.17 When faced
with the traditional paradoxes of infinity, Cantor drops the intuition that if A is properly
included in B then the size of A must be strictly less than the size of B. In the Mittheilungen
(Cantor, 1962, p. 417) this problem comes up in a revealing form. Cantor says:

Let M be the totality (n) of all finite numbers n, M’ the totality (2n) of all
even numbers 2n. Here it is definitely correct to say that according to its
entities M is richer than M’; indeed, M contains in addition to the even
numbers, which make up M, also all the uneven numbers M”. On the
other hand, it is also definitely correct that both sets M and M’, according
to sections 2 and 3, have the same cardinal number. Both (propositions)
are certain and they do not conflict with each other if one carefully ob-
serves the distinction between reality and number. One should therefore
say: the set M has more reality than M’, because it contains as parts
M’ and M” in addition; the cardinal numbers corresponding to them
are however equal. When will these easy and enlightening truths be
finally acknowledged by all thinkers? (Cantor, Mitteilungen zur Lehre

16 In the case of Bolzano this has been rightly emphasized by Spalt (1990, pp. 199–200).
17 I will assume familiarity with Cantor’s theory. For scholarly accounts see Hallett (1984), Dauben

(1990), Ferreiros (1999), and Purkert (1987). In connection to the topic of this paper see also the
careful historical analysis in Parker (2009, section IV).
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vom Transfiniten, 1887–1888, p. 417, of the 1962 edition; cf. Tapp,
2005)

Unwittingly, Cantor shows in this passage how his solution to the Galilean paradox
leaves one of our intuitions about infinite sets without proper explication. According to
Cantor’s theory, all infinite subsets of the natural numbers have the same cardinality, we
would say ‘size’. But when he tells us that there is a sense in which the set of natural
numbers has ‘more reality’ (or ‘is richer’) than the set of even numbers, we feel the pull
of our original intuition again: can we put a measure, a ‘size’, on how much ‘more reality’
the natural numbers have in comparison to the even numbers? Or the even numbers in
comparison with the multiples of 4? While Cantor is clear that there are two notions at
play here, he does not indicate that one of the two notions (the one related to ‘more reality’)
can be developed further to allow for a quantitative measurement of the notion of ‘more
reality’.

Notice that Cantor quite correctly claims that there is no conflict between the two notions
of ‘having more reality’ and ‘having the same cardinal number’. My sense is that on ac-
count of the fruitfulness of the Cantorian approach in set theory and the lack of interesting
alternatives, the general conviction is simply that an interesting theory that generalizes the
notion of ‘having more reality’ to a full-blown arithmetic of infinite sets satisfying the
part–whole principle cannot be had. I now want to show that recent mathematical work
gives us theories that can (cum grano salis) be seen as formally capturing (parts of) the
intuitive concept of infinity found in Thabit ibn Qurra, Grosseteste, Maignan, Bolzano,
and all those who believed that the size of the natural numbers is larger than the size of the
even numbers.

§6. Contemporary mathematical approaches to measuring the size of countably
infinite sets. Before explaining the recent developments I have in mind, I would like to
address and dispose of some reasonable questions that might have been occasioned by the
previous discussion. If all one is calling for is an account of the fact that numbers divisible
by 2 are more numerous than numbers divisible by 3, and similar examples, then two
options seem readily available.

The first option concerns the possibility of using the notion of asymptotic density, as
used in number theory,18 as a mathematical tool for discriminating sizes of infinite sets
of natural numbers. If A is any set of natural numbers, let cA(n) denote the number of
objects in A restricted to [1. . . n]. Thus cA(n) / n represents the fraction of the first n natural
numbers that are in A. If cA(n) / n approaches a limit, d, as n approaches infinity, then d
is said to be the asymptotic density of A. According to this notion the set of even numbers
has density 1/2, the set of odd numbers has density 1/2, and that of numbers divisible
by 3 has density 1/3. While such an approach helps account for some of the intuitions we
encountered in our historical survey, one of its limitations is that it does not give us a notion
that generalizes relations of size among finite sets. Indeed, all finite sets in this approach
have the same asymptotic density, namely 0. Some infinite sets have no asymptotic density
(as their lim sup and lim inf do not coincide), and many infinite sets (such as the primes)
have density 0. Moreover the part–whole principle is not respected as the set of even
numbers and the set containing 1 and the even numbers have the same density. While the
latter is per se not a criticism of asymptotic density, our aim is in fact to see whether the

18 Among the many texts in this area see Fine & Rosenberger (2007).

https://doi.org/10.1017/S1755020309990128 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020309990128


628 PAOLO MANCOSU

part–whole principle can be implemented. Even with this goal in mind, asymptotic density
can help in providing intuitive constraints on models of theories satisfying the part–whole
principle for arbitrary sets. This is what happens in one of the mathematical accounts to be
discussed next (see Section 6.1).

The second suggestion could be to appeal to standard theorems about binary relations
and claim that since ⊂ is a partial order on the power set of the natural numbers we can
extend it to a total order, perhaps satisfying additional properties (see Szpilrajn, 1930, and,
among the many extensions, Duschnik & Miller, 1941; Duggan, 1999; Andrikopoulos,
2009). This would provide us with a theory that has a < relation (a linear ordering)
extending ⊂ for which trichotomy holds. This is true but completely uninteresting for
we have no guarantee as to what relations of size between sets of natural numbers (both
finite and infinite) the relation < will induce. It will preserve intuition for sets that stand
in the inclusion relation but it will be completely arbitrary on sets that are disjoint or that
only partially intersect. Parker (2009), which came to my attention after most of this paper
was already written, mentions this option but he is also aware of its great limitations as a
plausible account of size for infinite sets.

Obviously, from an ‘arithmetic’ theory of sizes of arbitrary sets of natural numbers we
would at least expect the theory not to induce results about the size of finite sets that are in
conflict with previously established results on the cardinality of finite sets. Moreover, we
would also like the preservation of certain basic intuitions concerning the relative size of
finite and infinite collections, although how much one ought to expect is of course open for
debate.

The approaches to be discussed next are motivated by the aim of preserving the part–
whole intuition in ways that also preserve other algebraic properties of finite cardinalities.
I claim no originality in my exposition of these theories, indeed in some cases I follow the
definitions and the original exposition verbatim. All I hope to do is to convey clearly to the
reader the main ideas of such approaches.

6.1. Katz’s (1981) “Sets and Sizes”. An interesting mathematical approach to our
problem has been explored in a dissertation written in 1981 at M.I.T. by Fred M. Katz,
“Sets and their Sizes”. Let me quote from its abstract:

Cantor’s theory of cardinality violates common sense. It says, for ex-
ample, that all infinite sets of integers are the same size. This thesis
criticizes the arguments for Cantor’s theory and presents an alternative.
The alternative is based on a general theory, CS (for Class Size). CS
consists of all sentences in the first order language with a subset predicate
and a less-than predicate which are true in all interpretations of that
language whose domain is a finite power set. Thus, CS says that less
than is a linear ordering with highest and lowest members and that every
set is larger than any of its proper subsets. Because the language of CS
is so restricted, CS will have infinite interpretations. In particular, the
notion of one-one correspondence cannot be expressed in this language,
so Cantor’s definition of similarity will not be in CS, even though it
is true for all finite sets. We show that CS is decidable but not finitely
axiomatizable by characterizing the complete extensions of CS. CS has
finite completions, which are true only in finite models and infinite com-
pletions, which are true only in infinite models. An infinite completion is
determined by a set of remainder principles, which say, for each natural
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number, n, how many atoms remain when the universe is partitioned into
n disjoint subsets of the same size. We show that any infinite completion
of CS has a model over the power set of the natural numbers which
satisfies an additional axiom: OUTPACING. If initial segments of A
eventually become smaller than the corresponding initial segments of
B, then A is smaller than B. Models which satisfy OUTPACING seem
to accord with common intuitions about set size. In particular, they agree
with the ordering suggested by the notion of asymptotic density.

Katz’s starting point is the conflict between two principles of size. The first is ONE–
ONE and the second is SUBSET.

ONE–ONE: Two sets are the same size just in case there is a one–one correspondence
between them (Katz, 1981, p. 1).

SUBSET: If one set properly includes another, then the first is larger than the second
(Katz, 1981, p. 2).

Conflict occurs when both are used to capture the same notion of size. Since ONE–ONE
has won against SUBSET on account of Cantor’s successful theory of infinite sets, Katz
sets out to develop an approach that will vindicate SUBSET even for infinite collections
and in particular for the collection of subsets of natural numbers. His dissertation is com-
plex and full of interesting things but here I have to restrict myself to giving a bare outline.

The starting idea is to define a theory CS (class size) that will contain SUBSET (but in
which ONE–ONE is not expressible) and in which the ordering relation between sets is
defined in ways that mirror plausible principles of size. The theory’s language is a first-
order language LCS = {Ø, I , Atom(x), Unit (x), ⊂, —, ∪, ∩,<}.

The theory CS contains all the axioms for an atomic Boolean algebra and other principles
for size, such as the formal version of subset: if A ⊂ B then A<B. Indeed, CS contains
much more and it is first characterized model theoretically as the set of sentences true in
all standard finite interpretations of LCS. The latter is defined as follows.

A is a standard interpretation of LCS iff

(i) dom(A) = P(x) for some x (x is said to be the basis of the interpretation A; P(x)
is the power set of x)

(ii) A(I ) = x ; A(Ø) = Ø; A(a ⊂ b) = true iff a⊂b.

A is a standard finite interpretation of LCS iff in addition to being a standard interpretation,
it also satisfies that A has a finite basis and the following three conditions:
A(a < b) = true iff card(a)<card(b)
A(a ∼ b) = true iff card(a) = card(b) (where ∼ is a defined notion)
A(Unit(a)) = true iff card(a) = 1.
The theory CS is defined model theoretically as the class of sentences of that are true
in all standard finite interpretations of LCS. A great part of Katz’s work is devoted to
effectively axiomatize CS and he succeeds by adding certain division principles to an
intuitive theory that includes all the axioms for an atomic Boolean algebra and various
size principles. The proof is far from trivial. Sentences that are in CS include, in addition
to the already cited SUBSET, other principles such as trichotomy (x<y or x∼y or x>y).
Moreover the predicate Sum allows one to state basic principles of size addition for disjoint
sets.
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The question as to whether there are infinite models of such theory receives a positive
answer as the theory has models of arbitrarily large finite cardinality and any such first-
order theory must have an infinite model. Moreover, Katz shows that there are completions
of CS (which is a decidable but incomplete theory) with infinite models over the natural
numbers that satisfy a principle he calls OUTPACING. Intuitively the principle says, for
two sets x and y, that if there exists an n such that for all m>n, the restriction of x to m
(x[m]) is greater in cardinality than the restriction of y to m (y[m]) then x>y. Talking about
cardinality of such restrictions is unproblematic as all restrictions involved are finite. The
models satisfying OUTPACING are more satisfactory than other infinite standard models
for they avoid pathologies such as decreeing that there are fewer even numbers than prime
numbers and in addition match other appealing intuitive facts related to asymptotic density.
Thus, in such models of CS we have pleasing results such as the fact that the size of the even
numbers is greater than the size of the numbers divisible by 3, and that the set of squares
is smaller than the set multiples of k, for any k > 0. Moreover, every two infinite sets
of numbers are such that they are comparable in size on account of trichotomy. However,
certain determinations of sizes, such as whether the odd numbers and the even numbers
have exactly the same size, depends on the choice of ultrafilter used for coming up with
the models of CS+OUTPACING.

In CS we have a defined notion sum (x ,y,z) that obeys the obvious principles for disjoint
sets. But notice that the arithmetical laws valid in Katz’s models are different from the
standard ones. For instance, we have a maximum element I (a “largest infinite”) and thus
the arithmetical operations in such models do not preserve all the standard arithmetical
rules. By contrast, the theory to be investigated next offers a generalization of all the
ordinary arithmetical rules also to infinite sets of numbers.

Katz’s thesis has remained little known but it certainly has relations, unbeknownst to the
respective authors, with the approach to be discussed next. These relations deserve to be
investigated but this is not something I can do in this paper.

6.2. A theory of numerosities. Let us again articulate the principles of size that holds
for finite sets. We could call the first the PW principle (part–whole principle):

PW: If A is a subcollection of B then s(A) < s(B)
(This corresponds to Katz’s SUBSET).

We then have Cantor’s principle:

CP: s(A) = s(B) if and only if there is a one-to-one correspondence between A and B (This
corresponds to Katz’s ONE–ONE).

Notice that everyone accepts these principles for finite sets. The problem only emerges
when we try to extend these principles to infinite sets. The paradox that has haunted the
history of the infinite can be captured immediately as follows. Assume the princi-
ples PW and CP hold for infinite sets. Let B be the set of natural numbers. Let A
be the set of even numbers. Since A ⊂ B by PW we have s(A)<s(B). But A and
B can be put in one-to-one correspondence. So, by CP, s(A) = s(B). Hence s(A) < s(A).
Contradiction.

As is well known, Cantor gives up PW for infinite sets and holds on to CP. What happens
to PW principle in Cantor’s theory? It is weakened to:
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WPW: A ⊆ B implies s(A)≤s(B).

The theory to be described now, which extends PW to all countable sets, originated with
Benci (1995), who then joined ranks with Di Nasso and Forti in extending the scope of
the approach also beyond the countable sets. The three key papers are Benci & Di Nasso,
2003; Benci et al., 2006; and Benci et al., 2007 (see also Di Nasso & Forti, 2009). A useful
informal exposition is also found in Gilbert & Rouche, 1996.

The progression of the three articles corresponds to an extension from countable sets,
to arbitrary sets of ordinals, and finally to “universes”, that is, superstructures V (X) =
∪n∈N V n(X ) over a base X of size less than ℵω. I will only emphasize the approach for
countable sets. Informally the approach consists in finding a measure of size for count-
able sets (including thus all subsets of the natural numbers) that satisfies PW. The new
‘numbers’ will be called ‘numerosities’ and will satisfy some intuitive principles such as
the following: the numerosity of the union of two disjoint sets is equal to the sum of the
numerosities.

Let us begin by stating what goes on when we assign a size function to a collection of
sets. Basically we can think of such assignment as being a triple < S, (N , ≤), ν > where:
S is the family of sets whose ‘numerosity’ we want to count;
(N , ≤) is a linearly ordered set of numbers (on which addition and multiplication are
defined);
ν is a function from S onto N .

Here are some properties one would like the system to have:

(1) if there is a ‘bijection’ between A and B then ν (A) = ν (B)

(2) if A ⊂ B then ν (A) < ν (B)

(3) If ν (A) = ν (A′) and ν (B) = ν (B ′) then the corresponding disjoint unions (∇) and
Cartesian products (×) satisfy:

ν(A∇ B) = ν(A′∇ B ′); ν(A × B) = ν(A′ × B ′).

While <Fin, (N , ≤), #>—with ‘Fin’ denoting the finite sets, ‘N ’ denoting (also in the rest
of this article) the natural numbers, and “#’ denoting the ordinary cardinality on finite
sets—satisfies all three properties, this is not the case for the following two examples
concerning the class of all sets and the class of all well-ordered sets:

(a) <Sets, (Card, ≤), || || > [||A|| is the unique cardinal equipotent to A]

(b) <WO, (Ord, ≤), | | > [|A| is the order type of A].

The problem is: can we find a system of counting countable sets that satisfies (1), (2),
and (3)? The answer is yes but first we need to explain the informal idea behind it.

Counting.
Suppose you play ‘tombola’, which is the Italian name for what in the USA is called
‘bingo’. Tombola is played with 90 wooden pegs numbered 1–90 that are extracted from a
bag (one at the time) and placed on a master counter. Suppose I want to check that in the
excitement of the game I have not lost one or more of the pegs.

Here are three possible ways of counting:

(a) Place the pegs in the master counter in any order. If there is a one–one correspondence
between the pegs and the places in the master counter (which are also numbered), I
have shown equinumerosity. This corresponds to Cantor’s notion of cardinality.
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(b) List the pegs in the master counter in their ‘natural ordering’. Here the peg with the
number 17 will be placed in the place numbered 17 in the master counter, and so forth.
This reproduces the ordering and it is basically Cantor’s ordinal approach.

(c) List the pegs as follows: on the place numbered 10 in the master counter put all pegs
(one on top of each other) from 1 to 10; in the place numbered 20 all pegs from 11 to
20; and so on until on the place numbered 90 on the master counter you put all pegs
from 81 to 90. You can then count the nine piles, each one containing 10 pegs, and the
sum yields 90.

It is the intuition behind this third way of counting that is at the source of the new
strategy for counting infinite sets. First of all notice that the strategy in (c) is independent
of the fact that it is the numbers from 1 to 10 that are put in square 10. Had I placed 10
randomly picked pegs on 10, 10 more randomly picked pegs on 20, and so forth, the result
would have been the same. This leads to three sequences:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, . . ., 30, . . ..., 80, . . ., 90

0, 0, 0, 0, . . .. . .. . .....,10, 0, . . .. . .. . .. . .. . .. . .. . .. . .. . .. . ., 10, . . .., 10, . . ..., 10, . . ., 10

0, 0, 0, 0, .... . .. . .. . .., 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 20, . . .., 30, . . ..., 80, . . ., 90.
The second sequence indicates that in ‘box’ number 10 we have added 10 units; 10 more

in ‘box’ 20, and so forth. The third sequence gives you a finite approximation of the partial
sums; you hold on to the previous sum until you reach a box n in which new pegs are
added and you sum them to the previous partial sum. Thus, the basic idea is to split a set of
objects into boxes each one containing only finitely many objects. The metaphor of putting
things in box number 10, 20, and so forth will be captured by the idea of a labeled set.
From now on we deal only with countable sets.

DEFINITION 6.1. A labeled set is a pair <A, lA > where the domain A is a (countable)
set and the labeling function lA: A → N is finite to one. What that means is that there is a
labeling of the elements of A such that only finitely many elements of A can be mapped to
the same natural number n.

Thus A can be reobtained as the union of the following chain:

A0, A1, A2, . . .An, An+1, . . .

where An = {a : lA(a) ≤ n}.
Considering the finite cardinality of each An , that is, # An , we can think of #An as the

n-th approximation to the “numerosity” of A. The sequence γA: n → #An is called the
approximating sequence to the numerosity of A.

Obviously this way of counting depends on how a set is labeled although in the finite
case the labeling makes no real difference. It is when we move to infinity that change of
labeling becomes problematic. For this reason, and not to get confused from the outset,
we will now move to counting sets of natural numbers using the ‘canonical labeling’
l(n)=n.

Example: consider the set of even numbers with the labeling function being the identity
function: <Even, lEven(x)>.

Then:
Even0 = {a : lEven(a) ≤ 0} = {0}
Even1 = {a : lEven(a) ≤ 1} = {0}
Even2 = {a : lEven(a) ≤ 2} = {0, 2}
. . . .
and
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# Even0, # Even1, # Even2, . . . that is, 1, 1, 2, 2, and so forth gives the approximating
sequence to the numerosity of <Even, lEven(x) >.

We can now define various relations between labeled sets.
A =<A, lA > is a labeled subset of B =<B, lB >, written A⊆ B, iff A ⊆ B and lA (a)=

lB(a) for all a in A. Similarly for strict inclusion A ⊂ B.

DEFINITION 6.2. Isomorphism of two labeled sets:
Two labeled sets A =<A, lA > and B=<B, lB > are isomorphic iff there exists a bijection
�: A→ B that preserves the labeling, that is, such that lB◦� = lA.

Notice that there are lots of nonisomorphic finite labeled sets of the same cardinality.
<{a}, lA > and <{b}, lB > are isomorphic just in case lA(x) = lB(x).

We can now define the sum and product of two labeled sets. Let A∇ B stand for the
disjoint union of A and B and A × B for the Cartesian product.

DEFINITION 6.3.1. The sum of two labeled sets A, B is A⊕B =<A∇ B, lA⊕ lB >
where lA⊕ lB (x) = lA (x) if x is in A and lB (x) if x is in B.

[Caveat: actually, the definition of lA⊕ lB (x) is slightly more complicated due to the
fact that we need to take the disjoint union of A and B.]

DEFINITION 6.3.2. The product of two labeled sets A, B is A⊗B =<A×B, lA⊗ lB >
where: lA⊗ lB (x,y)= max{ lA(x) ; lB (y)}.

For instance, consider E = <Even, lEven(x)> and O =<Odd, lOdd (x)>

E ⊕ O =< N, idN(x) >

E ⊗ O =< {< x, y >: x even and y odd}, max{idN (x); idN (y)} >.

DEFINITION 6.4. Definition of numerosity. A numerosity function for the Class L of
all countable labeled sets is a map num: L → N onto a linearly ordered set < N , ≤>
such that the following properties are satisfied:

(1) If #An ≤ # Bn for all n, then num(A) ≤ num(B)

(2) x<num(A) iff x = num(B), for some B ⊂ A

(3) If num(A) = num(A′) and num(B) = num(B ′) then num(A⊕B)=num(A′⊕B ′)
and similarly for ⊗.

Intuitively:

(1) If all finite approximations indicate that the numerosity of A is not greater than the
numerosity of B, then num(A) is indeed smaller than or equal to num(B)

(2) Proper subsets have strictly smaller numerosity

(3) Numerosities are consistent with sum and product operations on labeled sets.

Notice that <Fin, (N ,≤), #> satisfies (1), (2) and (3); <Sets, Card, || || >, and <WO,
Ord, | | > do not satisfy all three properties.

PROPOSITION 6.5. Consequences of the axioms. Let us assume that there is indeed
such a numerosity function. It can then be shown that:

(i) N has a least element 0, that is, num(0) (the numerosity of the empty labeled set)

(ii) All labeled singletons have the same numerosity, denoted 1 (the numerosity of the
canonically labeled set {0})
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(iii) Every numerosity x(= num(A)) has a successor x + 1(= num(A ⊕ {a}) where {a}
is any labeled singleton; moreover, for any labeled set A different from 0 such that
num(A)=x there is a predecessor numerosity x − 1

(iv) If <A, lA > is finite then num(A) = #A, that is, the cardinality of A.

So N contains a copy of the natural numbers. Moreover, on account of property (iii)
one can define addition and multiplication on numerosities as follows:

num(A) + num(B) = num(A ⊕ B); num(A) · num(B) = num(A ⊗ B).

Further, one can show that < N , +, · , 0, 1, ≤ > is a positive semi-ring with neutral
elements. (theorem 2.3. in Benci & Di Nasso, 2003; neutrality means that a + 0 = a
and a · 1 = a). Finally, N , the set of numerosities, can be shown to be embeddable in a
set of hypernatural numbers and to give rise to a nonstandard model of analysis. In other
words numerosities behave exactly like the finite numbers.

But is there a model of such a set of axioms? Yes, there is. The construction consists in
taking numerosities to be equivalence classes of nondecreasing functions from the natural
numbers into the natural numbers that are equivalent modulo a ‘selective’ (or ‘Ramsey’)
ultrafilter. Indeed, the existence of a numerosity function on countable sets is equivalent to
the existence of a selective ultrafilter (Benci & Di Nasso, 2003). It is also well known that
the existence of a selective ultrafilter is independent of ZFC.

Definition of ultrafilter. A nonempty family U of subsets of I is called an ultrafilter
over I if it is closed under supersets and under finite intersections, and if for every A⊆I ,
either A∈U or I−A ∈U .

If no finite subset belongs to U then U is called nonprincipal.
Let U be a nonprincipal ultrafilter over N . Such an ultrafilter is said to be selective if for

every function φ : N→N there exists a D∈U such that φ restricted to D is nondecreasing.
The importance of looking at nondecreasing functions is related to the fact that the

counting of sets gives rise to nondecreasing functions.
There are several equivalent definitions of such ultrafilters which justify their being

called ‘selective’ or ‘Ramsey’ but that is not essential for us at the moment (see proposition
4.1 in Benci & Di Nasso, 2003).

Assume U is a selective ultrafilter. Consider the U ultrapower of N,

N = (N N )U = {[φ]U : φ : N → N }
where [φ]U is the equivalence class of φ modulo the equivalence relation

φ ≈U ψ iff {n : φ(n) = ψ(n)} ∈ U.

We can easily see that ≤ can be defined in a similar way and thus (N , ≤) is a linearly
ordered set. This allows one to prove all the properties of Definition 1.3. and thus to define
plus and times accordingly.

Theorem (as in theorem 2.3.): (N , +, ., 0, 1, ≤) is a positive semi-ring with neutral
elements.

We now need to tie the work on N to the labeled sets.
Let us focus on

F = {φ : φ : N → N such that φ is nondecreasing}.
This is not a positive semi-ring for there is no guarantee that given x<y there is a unique

z such that x + z = y. It is only a partially ordered semi-ring. However, it has the following
important property.
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For every labeled set A, the approximating sequence γA: n → #An is in F . Moreover,
every function in F is the numerosity function of some labeled set.

Definition: For every labeled set A define num(A) = [γA]U .
One then checks (which is by no means trivial; see theorem 4.3), using the selectivity

properties of the ultrafilter, that num satisfies the desired axioms. For instance one proves
that num is onto N , by remarking that any φ: N→N is U equivalent to some nondecreas-
ing sequence, hence to the approximating sequence of some labeled (countable) set.

Some computations.
Given that the existence of a selective ultrafilter is a highly nonconstructive assumption,
we do not have a very good handle on what truths about numerosities will be induced by
simply postulating that we are working with an arbitrary selective ultrafilter. However, we
can construct selective ultrafilters in such a way as to make sure that certain sets are in it.
For instance one can show that the following conditions can be satisfied.

(a) For each k>0, num(N ) is a multiple of k

(b) For each k>0, num(N ) is a k-th power

This amounts to making true the following two statements:

num(k N ) = num(N )/k

num(N 2) = √
num(N ).

While Cantor’s theory of cardinality collapses the size of all countable sets, the new the-
ory discriminates between sizes of countable sets and thus seems to vindicate some of our
intuitions about sizes of infinite sets. However, one can claim that the theory discriminates
too much. The reason for such criticism will emerge by reflecting on two facts. First of
all, everything depends on the choice of ultrafilter. Depending on whether the ultrafilter
one chooses contains the even numbers or the odd numbers, it will turn out that this will
affect such properties as whether the numerosity of the natural numbers is even or odd.19

Moreover, even the equality between the size of the odd numbers and that of the even
numbers will depend on whether the even numbers are defined as containing 0 or not. Both
problems can be illustrated by the following example. Suppose the set of even numbers is
in the ultrafilter you have chosen. Now define

Even = {2n: n∈N } and Odd = {2n − 1: n∈N+}.
In this case, letting N={0, 1, 2, 3, 4, 5,. . . }, the approximating functions for the two sets

are: Even : 1, 1, 2, 2, 3, 3, . . ..
Odd : 0, 1, 1, 2, 2, 3, . . .

First notice the summing up the approximating sequences of even and odd we get
1, 2, 3, 4, . . .
which is the approximating sequence for N. Thus num(Even) + num(Odd) = num(N).
We see that the approximating functions of the sets Even and Odd agree on the set

of odd numbers (which is not in the ultrafilter) and that the approximating function
for Even majorizes that for Odd on the set of even numbers. Indeed, in this case

19 I cannot refrain from recalling what Descartes said about this type of question: “We will not
bother to reply to those who ask if the infinite number is even or odd or similar things since it
is only those who deem that their mind is infinite who seem to have to tackle such difficulties.”
(Descartes, Principes de la Philosophie, I.26)
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num(Even) = num(Odd) + 1. As a consequence num(N) = [2 · num(Odd)] + 1, that is,
the numerosity of the set of natural numbers is an odd number. Of course had we chosen
an ultrafilter containing the odd numbers instead of the even ones then num(N) would
have turned out even.

We thus see that whether the even numbers have the same numerosity as the odd numbers
will depend on the choice of ultrafilter. And even having fixed the choice to an ultrafilter
containing all the even numbers we now observe the following. Consider Even = {2n:
n∈N }, Odd = {2n−1: n∈N+}, and Even+={2n: n∈N+}. We get the following:

num(Even+) = num(Odd) < num(Even). And this shows how sensitive these com-
putations are to where the counting begins. One wonders whether it might be possible to
modify the theory as to make it less sensitive to such decisions.

§7. Philosophical remarks.

7.1. An historiographical lesson. As should be clear from the above, I believe that the
recent mathematical developments should help us abandon a ‘Whig’ history of the concept
of infinity and to make us more receptive to the complexities of the contrasting intuitions
that have shaped the attempts to cope with such a recalcitrant object. I am sure every reader
can adduce his favorite examples of such misreadings; I will only adduce two cases. The
first shows an unwarranted negative judgment toward an author’s accomplishment only on
account of his not having taken the Cantorian route. The second shows the tendency to
assimilate previous authors to the later Cantorian accomplishments.

The first example comes from Gardies:

Maignan montre ainsi que deux infini peuvent être égaux (ce qui ce
voit, dirions-nous, à ce que leurs élements peuvent être mis en bijection)
ou inégaux et que, par consequent, les relations plus grand que et plus
petit que gardent leur sens entre infinis. La malheur est seulement que
Maignan lancé prophétiquement sur cette voie cantorienne, choisit des
exemples d’infinis dénombrables (Gardies, 1984, p. 126)

But why think that Maignan was in teleological fashion aiming toward the Cantorian
solution as opposed to consider him according to his own ambitions and intuitions? It
is obvious that for Maignan the comparability of infinite sets of integers was a major
desideratum (and even a ‘data’ of intuition) that he tried, unsuccessfully, to coherently
develop in his Cursus. But he was not unsuccessful on account of not having reached the
Cantorian conclusions. Rather, his theory was unsuccessful because, as I pointed out, it was
unstable. I should also remark that the kind of evaluative tendency displayed by Gardies
is not without consequence when interpreting the author being studied, as witnessed by
Gardies’ unqualified reading of Maignan’s criterion of identity. We have seen that a more
charitable interpretation is needed in order to account for Maignan’s discussion of Galileo’s
paradox.

The second case is taken from P. Duhem. In his discussion of Gregory of Rimini he says:

Grégoire de Rimini avait certainement entrevu la possibilité du système
logique que M. Cantor est parvenu à construire. . . (Duhem 1955 [1909],
p. 392)

Needless to say, bringing in Cantor is absolutely of no use for understanding Gregory
nor does Gregory’s importance lose or gain by being associated to Cantor. This list could be
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easily added to (see Rabinovitch, 1970; Maier, 1949; Bunn, 1977; and other cases discussed
earlier).

Naturally, I am also trying to avoid the opposite mistake. That is, I am not suggesting
that we now should reread the history of infinity to show that, on account of the recent
mathematical work, Ibn Qurra, Grosseteste, Maignan, Bolzano, and so forth were ‘right’
all along. This would do nothing but rehearse the debate that followed on the heels of
Robinson’s discovery of nonstandard analysis and his claim that the work of the early
infinitesimalists had thus been vindicated. Such line of argument was effectively rebutted
by Bos (1974) who showed that the laws of non-standard analysis do not match those
displayed by Leibniz’s treatment of second-order differentials. However, in both cases the
new mathematical theories are of use exactly in showing that some aspects of the previous
intuitions, however vague and imprecise, could be made systematic. And I believe this
should not take the form of another ‘Whig’ history but simply of opening up the conceptual
spectrum for taking seriously the multitude of intuitions that shaped the history of infinity.

While there is a sense of ‘inevitability’ implicit in the kind of ‘Whig’ history I have
referred to, namely the sense that there was only one ‘right’ way to go when developing
a theory of infinite number, no theoretical claim to such effect is explicitly given in the
sources mentioned above. By contrast, in the next section we will encounter a philosophical
argument due to Gödel to the effect that if one wants to extend the notion of number
from the finite to the infinite there is no alternative but accepting the Cantorian notion of
cardinality. We now turn to that claim.

7.2. Gödel’s claim that Cantor’s theory of size for infinite sets is inevitable. An
argument that points to the inevitability of the Cantorian choice of defining number in the
infinite realm has been given by Gödel (1990, pp. 254–270) in his paper “What is Cantor’s
Continuum Problem?” The passage is long but it is important to quote it at length:

Cantor’s continuum problem is simply the question: How many points
are there on a straight line in Euclidean space? An equivalent question
is: How many different sets of integers do there exist?

This question, of course, could arise only after the concept of “num-
ber” had been extended to infinite sets; hence it might be doubted if
this extension can be effected in a uniquely determined manner and if,
therefore, the statement of the problem in the simple terms used above
is justified. Closer examination, however, shows that Cantor’s definition
of infinite numbers really has this character of uniqueness. For whatever
“number” as applied to infinite sets might mean, we certainly want it
to have the property that the number of objects belonging to some class
does not change if, leaving the objects the same, one changes in any
way whatsoever their properties or mutual relations (e.g. their colors or
their distribution in space). From this, however, it follows at once that
two sets (at least two sets of changeable objects of the space-time world)
will have the same cardinal number if their elements can be brought into
a one-to-one correspondence, which is Cantor’s definition of equality
between numbers. (p. 254)

The two claims are connected by the following explanation:

For if there exists such a correspondence for two sets A and B it is
possible (at least theoretically) to change the properties and relations of
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each element of A into those of the corresponding element of B, whereby
A is transformed into a set completely indistinguishable from B, hence
of the same cardinal number. (p. 254)

After explaining this notion of one-to-one correspondence for sets of physical things,
and observing that it must also apply to numbers, Gödel went on to conclude:

So there is hardly any choice left but to accept Cantor’s definition of
equality between numbers, which can easily be extended to a definition
of “greater” and “less” for infinite numbers by stipulating that the cardi-
nal number M of a set A is to be called less than the cardinal number N
of a set B if M is different from N but equal to the cardinal number of
some subset of B. (p. 255)

Gödel’s reflection aims at showing that in generalizing the notion of number from the
finite to the infinite one inevitable ends up with the Cantorian notion of cardinal number.
The key step in the argument is the premise and the theory of numerosities can help us
see that the premise already contains in itself the Cantorian solution. In fact, the premise
takes as evident the request that “the number of objects belonging to some class does not
change if, leaving the objects the same, one changes in any way whatsoever their properties
or mutual relations (e.g., their colors or their distribution in space).” While the premise
constitutes no problem when dealing with finite sets, one might question its acceptability in
the realm of the infinite. Indeed, in the theory of numerosities we cannot grant the premise
when it comes to infinite sets. For, while it is possible to abstract from the nature of the
objects themselves there is one type of relation that affects the counting, namely the way in
which the elements are grouped. Such grouping makes no difference in the realm of finite
sets of integers. But when we move to infinite sets a rearrangement of the grouping will
in general affect the approximating functions and thus the numerosity of the set. Someone
committed to the counting embodied in the theory of numerosities might thus reasonably
resist accepting the premise on which Gödel bases his argument and thus also resist the
claim that the generalization of number from the finite to the infinite must perforce end up
with the notion of cardinal number. In short, having a different way of counting infinite
sets shows that while Gödel gives voice to one plausible intuition about how to generalize
“number” to infinite sets there are coherent alternatives.20

To the possible objection that numerosities on countable sets are not enough to pro-
vide size comparisons on larger sets (in the Cantorian sense), I would reply by point-
ing to the extension of the theories of numerosities to uncountable sets (see the various
contributions by Benci, Di Nasso, and Forti). The above reflections dovetail quite well
with some comments on Gödel’s passage found in Buzaglo (2002, p. 127) and Parker
(2009). However, in this case I have the advantage to pointing not only to mere possibilities
but rather to actually worked out mathematical systems of counting and numbering that

20 I find it telling that in the long introduction to Gödel’s (1990) paper “What is Cantor’s Continuum
Problem?”, Gregory Moore does not critically evaluate this central claim with which Gödel opens
the essay; such is the widespread acquiescence to the idea that Cantor’s theory is inevitable. It
should also be added that Moore summarizes Gödel’s position as consisting of “the minimal
requirement that if two sets have the same cardinal number then there exists a one-to-one
correspondence between them” (Gödel, 1990, p. 160). It is actually the other way around. Gödel’s
claim is the following: “two sets [. . . ] will have the same cardinal number if their elements can
be brought into a one-to-one correspondence”.
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apply to infinite sets and do not coincide with the Cantorian notion of “cardinal number”.
Buzaglo for instance asserts that “Gödel was right in claiming that certain constraints force
a unique expansion of the concept of number, but it is possible to choose other constraints
that are no less natural and obtain a different definition of number”. Let me also point
out that the the recent works by Benci, Di Nasso, and Forti might also provide the tools
for answering the question raised by Buzaglo: “Is it possible to create a forced extension
of finite cardinality which distinguishes between different infinite magnitudes and yet is
incommensurate with Cantor’s concept of infinite cardinality? The answer might have
implications for the philosophy of mathematics.” (Buzaglo, 2002, p. 49)

Parker (2009) also criticizes this passage by Gödel pointing out that although the prin-
ciple of one-to-one correspondence is very intuitive also the part–whole principle is very
intuitive (Parker calls the two principles “Hume’s principle” and “Euclid’s principle”):

Admittedly, Gödel gives a very compelling argument for Hume’s Prin-
ciple: If two sets can be put in one-to-one correspondence, then we
could conceivably alter the individual elements of one set until they were
indistinguishable from their counterparts in the other, and then surely the
two sets must have the same numerosity. I say this is very compelling,
but nonetheless it is only an intuition pump. Gödel disregards the fact
that Euclid’s Principle is also intuitively compelling! If set A contains
everything that is in set B and also some further things, then it contains
more. Both Euclid’s and Hume’s Principles seem forced on us. To have
a consistent theory of transfinite numerosity, we must break free of these
forces, much as Gauss and Lobachevsky broke free of the parallel postu-
late. We have learned from them that intuitions do not limit our freedom
to form counterintuitive conceptions. Even if Hume’s Principle seems
stronger than Euclid’s, no adequate reason has been given to believe that
it is unrevisable or a brute fact. It is up to us to choose our preferred
principles, or to articulate an arsenal of different concepts incorporating
different principles. (Parker, 2009, pp. 106–07)

Indeed, the theory of numerosities gives a concrete example of an alternative theory
of counting with infinite sets of integers that is much more compelling than the weak
alternative obtained by applying Duggan’s theorem mentioned by Parker. But this is grist
to Parker’s mill.

It would be interesting here to study how the options provided by the theory of numerosi-
ties (and Katz’s theory) impact, presumably favorably, both Buzaglo’s work on forced (but
not strongly forced) expansions and Parker’s method of conceptual articulation. This would
have interesting reverberations on issues of philosophy of language. But I will leave that
for others to carry out.

7.3. Generalization, explanation, fruitfulness. So far the point has been conceptual:
both CS (Katz’s theory) and the theory of numerosities show the coherence of the idea of
attributing different sizes to infinite sets of natural numbers. The reader should not infer
from what has been said that any claim is being made as to the relative mathematical
fruitfulness of the theory of cardinals (or ordinals) versus the theory of numerosities. For
one thing, the two are not in conflict. Conflict emerges only if both notions are taken to
explicate the same intuitive notion of size. Moreover, no claim is being made here as to the
mathematical fruitfulness of the theory of numerosities, notwithstanding its interest as an
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alternative foundation for nonstandard analysis (which was the acknowledged goal of the
theory according to Benci and his co-authors).

However, this once again raises the issue of when a generalization is fruitful. In this
context, I would like to revisit the discussion of Bolzano and Cantor contained in Kitcher’s
(1984) The Nature of Mathematical Knowledge. Kitcher was aiming at classifying patterns
of mathematical change and investigating why such patterns were rational. One such pat-
tern is generalization and, in this light, Kitcher sets himself the goal of explaining why
Cantor’s extension of finite arithmetic to infinite sets was fruitful and rational. According
to Kitcher, generalizations come cheap.21 But the significant generalizations, the ones that
truly make for outstanding mathematical achievements, are explanatory. Kitcher describes
as follows the nature of explanatory generalizations:

They explain by showing us exactly how, by modifying certain rules
which are constitutive of the use of some expressions of the language,
we would obtain a language and a theory within which results analogous
to those we have already accepted would be forthcoming. From the per-
spective of the new generalization, we see our old theory as a special
case, one member of a family of related theories.[. . . ] Those “general-
izing” stipulations which fail to illuminate those areas of mathematics
which have already been developed [. . . ] are not rationally acceptable.
(Kitcher, 1984, pp. 208–209)

In order to illustrate the difference between explanatory generalizations and those that
are not explanatory, Kitcher went on to compare Bolzano’s and Cantor’s approach to
generalizing arithmetic to infinite sets. Bolzano’s attempt is judged sympathetically by
Kitcher. Indeed, he even claims that Bolzano tried to stick, in the choice between Hume’s
principle and Euclid’s principle, to the more intuitive of the two requirements:

“Intuitively, it appears that the second condition [part-whole condition]
is more important, so that Bolzano declares that two sets do not have
the same number if one is a proper part of the other. Quite consistently,
he goes on to claim that the existence of one-to-one correspondence be-
tween two sets is only a sufficient condition for the sets’ having the same
number of members when the sets are finite. Unfortunately, Bolzano’s
choice makes him unable to develop a theory of infinite numbers which
will have analogs of standard theorems about numbers. His attempt to
generalize casts no light on ordinary arithmetic, and, no surprisingly, no
accepted theory of the transfinite results from his writings. Bolzano’s
stipulation of “sameness of size” for infinite sets fails to serve any ex-
planatory ends, and so it is not rational to extend mathematical language
by adding it.” (Kitcher, 1984, p. 210)

While there is no doubt that Bolzano did not develop a theory of infinite sets of numbers,
Kitcher seems to imply that the failure was due to a hopeless attempt, namely preserving
the part–whole principle for infinite sets. By contrast, Cantor by abandoning “the intuitive
criterion for inclusion” was able to generalize the ordinary arithmetical laws. The fruitful-
ness of Cantor’s notion of “having the same power” was displayed by his theorem that real

21 I have discussed the tangle between generalization and explanation, also in connection to Kitcher,
in Mancosu (2008a).
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numbers do not have the same power as the natural numbers. This was then exploited in the
development of a theory that provided analogues for the ordinary arithmetical operations.
Thus, Kitcher says:

Unlike Bolzano’s attempt, Cantor’s stipulation is rationally acceptable
because it provides an explanatory generalization of finite arithmetic.
Note first that the ordinary notions of order among numbers, addition
of numbers, multiplication of numbers, and exponentiation of numbers
are extended in ways which generate theorems, analogous to those of
finite arithmetic. (for example, if a, b are infinite cardinals, we have the
result: (Ex) x>a, a + b = b + a, a + b≥a, a·b≥a, 2a>a, and so forth). By
contrast, because he cleaves to the intuitive idea that a set must be bigger
than any of its proper subsets, Bolzano is unable to define even an order
relation on infinite sets. The root of the problem is that, since he is forced
to give up the thesis that the existence of one-to-one correspondence
suffices for identity of cardinality, Bolzano has no way to compare sets
with different members. (Kitcher, 1984, p. 211)

But in light of the mathematical theories we have discussed this explanation of Cantor’s
superiority over Bolzano should leave us puzzled. The theory of numerosities, or even
Katz’s theory, is able to distinguish between sizes of different sets of integers. Moreover,
the theory of numerosities generalizes finite arithmetic much more thoroughly than
Cantor’s theory of ordinals or cardinal numbers. Indeed, all the standard algebraic laws for
addition and multiplication hold for numerosities. Hence, the advantage of Cantor’s theory
cannot reside here. Kitcher does adduce a second consideration:

“Second, Cantor’s work yields a new perspective on an old subject: we
have recognized the importance of one-to-one correspondence to cardi-
nality; we have appreciated the difference between cardinal and ordinal
number; we have recognized the special features of the ordering of nat-
ural numbers.” (Kitcher, 1984, p. 211)

Even here one could counter that by generalizing the process of counting to counting
infinite sets, the theory of numerosities has allowed us to appreciate the importance of one
aspect of counting that does not coincide with either cardinality or ordinality (once we
move to the infinite). The real advantage, even for Kitcher, is not at this level. He makes
the following claim on behalf of Cantor’s theory:

But we do not even need to go so far into transfinite arithmetic to receive
explanatory dividends. Cantor’s initial results on the denumerability of
the rationals and algebraic numbers, and the non-denumerability of the
reals, provide us with new understanding of the differences between the
real numbers and the algebraic numbers. Instead of viewing transcenden-
tal real numbers (numbers which are not the roots of polynomial equa-
tions in rational coefficients) as odd curiosities, our comprehension of
them is increased when we see why algebraic numbers are the exception
rather than the rule. (Kitcher, 1984, p. 211)

This last kind of motivation is different from the one based on the fact that the theory
generalizes the laws holding for finite arithmetic in that it brings into play the exploitation
of the theory for understanding parts of mathematics that do not relate only to its ability
to explain aspects of the notions (finite arithmetic) generalized by the new notion. In other
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words, it is the fruitfulness of Cantor’s theory to mathematical practice that seems to decree
its explanatory superiority with respect to a theory like the theory of numerosities. And
while it might be unfair, and perhaps too early, to judge the recent theory of numerosities
against Cantor’s theory of cardinality, comparing the two might help us focus on the
problem of mathematical fruitfulness.22 What accounts for it? And if the account is given
in terms of explanatory generalization, understanding, and similar notions how can we
account for the latter? This is a problem that an interesting epistemology of mathematics
should try to address.23

§8. Conclusions. In this paper my goal was to establish the simple point that
comparing sizes of infinite sets of natural numbers is a legitimate conceptual possibility.
I have addressed the problem of counting infinite sets from three different perspectives.
I used the historical part to motivate the naturalness of the intuition that there are different
sizes between infinite sets of natural numbers. The mathematical part showed that this
intuition was capable of being made rigorous (without entering into claims as to whether
the original intuitions were ‘fully’ captured). Finally, in the third part, I have hoped to
show that the possibility of comparing Cantor’s theory against the alternative theories of
class sizes (CS) and numerosities allows us to analyze more finely, and in some cases
debunk, the arguments that claim either the inevitability of the Cantorian choice (Gödel)
or that account for the (alleged) explanatory nature of the Cantorian generalization by
appealing to the (alleged) nonrational nature of preserving the part–whole principle. By
doing so, we were able to connect the topic of this paper to questions that are now
at the forefront of recent work in the philosophy of mathematics concerning issues of
fruitfulness, explanation, generalization, and so forth.
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Sébastien Maronne, Jan Sebestik, and Hourya Sinaceur for help in tracking down some
of the primary and secondary literature. I am grateful to Massimo Mugnai for having
drawn my attention to the theory of numerosities and to Vieri Benci and André Pétry
for having kindly provided me with copies of articles related to the theory itself. Special
thanks to Bernardo Mota for his help with the translation of Maignan’s texts and to Neil
Lewis for enlightening exchanges on Robert Grosseteste. I am also very grateful to Jeremy
Avigad, Andy Arana, Luca Bellotti, Vieri Benci, Marco Forti, and Vincenzo De Risi for

22 Modulo my claim, that the work on numerosities is important on conceptual grounds and within
the scope of its original aim (an alternative foundation for nonstandard analysis), I fully agree with
the sentiments expressed in an E-mail sent to me by Jeremy Avigad (March 12, 2009): “For me,
what would decide whether Katz’s and Benci-Nasso’s theories are genuinely interesting would be
the depth of the ideas and how they interact with other parts of mathematics. I take mathematics
to be a way of organizing and explaining our scientific experiences. At the base, it comes close to
empirical activities like counting, measuring, and making predictions; but we build up theoretical
edifices to make sense of these, and so the story becomes more elaborate. As you know, I think
it is very important to try to understand what underlies our judgments as to whether a theory is
good or not. Determining whether Cantor or Katz or Benci-Nasso have contributed something
important requires a more elaborate story that goes well beyond the two starting intuitions.”
I should perhaps add that these reflections by Avigad were not intended as objections to the
claims of my paper nor do I take them to be so, as I fully agree with the thoughts expressed
therein.

23 See the various contributions in Mancosu (2008b).

https://doi.org/10.1017/S1755020309990128 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020309990128


MEASURING THE SIZE OF INFINITE COLLECTIONS OF NATURAL NUMBERS 643

comments on a previous draft. Finally, I would like to thank the Institute for Advanced
Study (Princeton) and the Guggenheim Foundation for their generous support.

BIBLIOGRAPHY

Albertus de Saxonia, (1492). Questiones Subtilissime in Libros Aristotelis de Celo et
Mundo. Venetiis. Reprint Georg Olms, Hildesheim, 1986.

Andrikopoulos, A. (2009). General Extension Theorems for Binary Relations.
Forthcoming. Available from: http://scholar.google.com/scholar?hl=fr&lr=&cites=
13315085436213194747&start=20&sa=N.

Arthur, R. (1999). Infinite number and the world soul; in defense of Carlin and Leibniz.
The Leibniz Review, 9, 105–116.

Arthur, R. (2001). Leibniz on infinite number, infinite wholes, and the whole world: A
reply to Gregory Brown. The Leibniz Review, 11, 103–116.

Benci, V. (1995). I numeri e gli insiemi etichettati. Conferenze del seminario di matematica
dell’Universita’ di Bari, Vol. 261. Bari, Italy: Laterza, pp. 29.

Benci, V., & Di Nasso, M. (2003). Numerosities of labeled sets: A new way of counting.
Advances in Mathematics, 173, 50–67.

Benci, V., Di Nasso, M., & Forti, M. (2006). An Aristotelean notion of size. Annals of Pure
and Applied Logic, 143, 43–53.

Benci, V., Di Nasso, M., & Forti, M. (2007). An Euclidean measure of size for
mathematical universes. Logique et Analyse, 50, 43–62.

Bianchi, L. (1984). L’Errore di Aristotele. La Polemica Contro l’Eternità del Mondo nel
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Bolzano, B. (1975a). Einleitung zur Grössenlehre. Erste Begriffe der allgemeinen
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pp. 160–166.

Proclus, (1992). A Commentary on the First book of Euclid’s Elements. In Morrow, G.,
editor. Princeton: Princeton University Press.

Purkert, W. (1987). Georg Cantor, 1845–1918. Basel, Switzerland: Birkhäuser.
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