## THE LAPLACE TRANSFORM OF THE MODIFIED <br> BESSEL FUNCTION $K\left(t^{ \pm m} x\right)$ WHERE $m=1,2,3, \ldots, n$

by F. M. RAGAB<br>(Received in revised form 13th August 1963)

## 1. Introduction

In the present paper we determine the Laplace transforms of the modified Bessel function of the second kind $K_{n}\left(t^{ \pm m} x\right)$, where $m$ is any positive integer. The Laplace transforms are given in (2) and (4) below, $p$ being the transform parameter and having positive real part.

The formulæ to be established are as follows (1)-(4):

$$
\begin{array}{r}
\int_{0}^{\infty} e^{-t} t^{k-1} K_{n}\left(t^{m} x\right) d t=2^{m-\frac{t}{t}} \pi^{m-\frac{1}{2}} \\
\sum_{v=0}^{2 m-1}\left\{\begin{array}{l}
(-1)^{v}(2 m)^{-\frac{3}{2}-v}\left(\frac{x^{2}}{4}\right)^{-\frac{k+v}{2 m}} \frac{\Gamma\left(\frac{n}{2}+\frac{k+v}{2 m}\right) \Gamma\left(-\frac{n}{2}+\frac{k+v}{2 m}\right)}{\Gamma\left(\frac{v+1}{2 m}\right) \Gamma\left(\frac{v+2}{2 m}\right) \ldots \Gamma\left(\frac{v+2 m}{2 m}\right)} \\
\left.{ }_{2} F_{2 m-1}\left[\begin{array}{l}
\frac{n}{2}+\frac{k+v}{2 m},-\frac{n}{2}+\frac{k+v}{2 m} ; \frac{1}{(2 m)^{2 m} x^{2}} \\
\frac{v+1}{2 m}, \frac{v+2}{2 m}, \ldots * \cdots, \frac{v+2 m}{2 m}
\end{array}\right]\right\}, \cdots
\end{array}\right.
\end{array}
$$

where $R(k \pm n m)>0$ and $x$ is taken for simplicity to be real and positiveWhen $m=1, x$ may be taken to be complex with real part greater than 1. The asterisk in the generalised hypergeometric function denotes that the factor $\frac{2 m}{2 m}$ in the parameters $\frac{v+1}{2 m}, \frac{v+2}{2 m}, \ldots, \frac{v+2 m}{2 m}$ is omitted; $m$ is a positive integer.

$$
\begin{align*}
& \int_{0}^{\infty} e^{-p t} K_{n}\left(t^{m} x\right) d t=2^{m-\frac{3}{2} \pi^{m-\frac{1}{2}} p^{-1}} \\
& \sum_{v=0}^{2 m-1}\left\{(-1)^{v}(2 m)^{-\frac{3}{2}-v}\left(\frac{x^{2}}{4 p^{2 m}}\right)^{-\frac{v+1}{2 m}} \frac{\Gamma\left(\frac{n}{2}+\frac{v+1}{2 m}\right) \Gamma\left(-\frac{n}{2}+\frac{v+1}{2 m}\right)}{\Gamma\left(\frac{v+1}{2 m}\right) \Gamma\left(\frac{v+2}{2 m}\right) \ldots \Gamma\left(\frac{v+2 m}{2 m}\right)}\right. \\
&\left.{ }_{2} F_{2 m+1}\left[\begin{array}{l}
\frac{n}{2}+\frac{v+1}{2 m},-\frac{n}{2}+\frac{v+1}{2 m} ; \frac{4 p^{2 m}}{(2 m)^{2 m} x^{2}} \\
\frac{v+1}{2 m}, \frac{v+2}{2 m}, \cdots * \cdots, \frac{v+2 m}{2 m}
\end{array}\right]\right\}, \ldots \ldots \ldots . . \tag{2}
\end{align*}
$$

E.M.S.-Y
where $m$ is a positive integer, $R( \pm m n+1)>0$ and $R(p)>0 ; x$ is taken to be rea and positive and the asterisk has the same meaning as before.

$$
\begin{align*}
& \int_{0}^{\infty} e^{-\lambda} \lambda^{k-1} K_{n}\left(\frac{x}{\lambda^{m}}\right) d \lambda \\
&=2^{-k-m-2} m^{k-\frac{1}{2}} \pi^{-m-\frac{1}{2}}  \tag{3}\\
& \sum_{i,-i} \frac{1}{i} E\left(1, \frac{n}{2},-\frac{n}{2}, \frac{k}{2 m}, \frac{k+1}{2 m}, \ldots, \frac{k+2 m-1}{2 m}:: \frac{e^{i n} x^{2}}{4(2 m)^{2 m}}\right),
\end{align*}
$$

where $R(x)>0, R(k)>0$ and $m$ is any positive integer.

$$
\begin{align*}
& \int_{0}^{\infty} e^{-p t} K_{n}\left(\frac{x}{t^{m}}\right) d t=2^{-m-1} m^{\frac{1}{2}} \pi^{-m-\frac{1}{2}} p^{-1} \\
& \quad \sum_{i,-i} \frac{1}{i} E\left(1,1, \frac{n}{2},-\frac{n}{2}, \frac{1}{2 m}, \frac{2}{2 m}, \ldots, \frac{2 m-1}{2 m}:: \frac{e^{i \pi} x^{2} p^{2 m}}{4(2 m)^{2 m}}\right), \tag{4}
\end{align*}
$$

where $R(p)>0 m$ is any positive integer and $x$ is real and positive. In (3) and (4) $\sum$ means that in the expression following it $i$ is to be replaced by $-i$ and the two expressions added.

The function appearing on the right of (3) and (4) is MacRobert's $E$-function whose definitions and properties are to be found in ((1), pp. 348-358).

These formulæ will be proved in section 3 by means of a subsidiary formula which will be proved in section 2. The following formule are required in the proofs ((2), p. 77):

$$
\begin{align*}
& \int_{0}^{\infty} e^{-\lambda} \lambda^{k-1} E\left(p ; \alpha_{r}: q ; \rho_{s}: \lambda^{2 m} z\right) d \lambda=\pi \operatorname{cosec}(k \pi)(2 \pi)^{m-\frac{1}{2}}(2 m)^{k-\frac{1}{2}} \\
& \\
& E\left[\begin{array}{l}
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p} ; e^{ \pm 2 i m \pi}(2 m)^{2 m} z \\
1-\frac{k}{2 m}, 1-\frac{k+1}{2 m}, \ldots, 1-\frac{k+2 m-1}{2 m}, \rho_{1}, \rho_{2}, \ldots, \rho_{q}
\end{array}\right] \\
& +2^{\frac{1}{2}-m} \pi^{\frac{1}{2}+m} \sum_{v=0}^{2 m-1}\left\{(-1)^{v+1}(2 m)^{-\frac{1}{2}-v} \operatorname{cosec}\left(\frac{k+v}{2 m}\right) \pi\right.  \tag{5}\\
& \\
& \left.E\left[\begin{array}{l}
\alpha_{1}+\frac{k+v}{2 m}, \ldots, \alpha_{p}+\frac{k+v}{2 m}: e^{ \pm 2 i m \pi}(2 m)^{2 m} z \\
\frac{v+1}{2 m}, \ldots *, \frac{v+2 m}{2 m}, 1+\frac{k+v}{2 m}, \rho_{1}+\frac{k+v}{2 m}, \ldots, \rho_{q}+\frac{k+v}{2 m}
\end{array}\right]\right\}
\end{align*}
$$

where $p \geqq q+1, m$ is a positive integer, $R\left(m \alpha_{r}+k\right)>0, r=1,2,3, \ldots, p$, $|\operatorname{amp} z|<\pi$ and the asterisk denotes that the factor $\frac{2 m}{2 m}$ in the parameters $\frac{v+1}{2 m}, \frac{v+2}{2 m}, \ldots, \frac{v+2 m}{2 m}$ is omitted. For other values of $p$ and $q$ the formula
holds if the integral is convergent. ((1), p. 406):

$$
\begin{align*}
& \int_{0}^{\infty} e^{-\lambda} \lambda^{k-1} E\left(p ; \alpha_{r}: q ; \rho_{s}: z / \lambda^{2 m}\right) d \lambda \\
&(2 \pi)^{\frac{1}{2}-m}(2 m)^{k-\frac{1}{2}} E\left(p+2 m ; \alpha_{r}: q ; \rho_{s}: \frac{z}{(2 m)^{2 m}}\right) . \tag{6}
\end{align*}
$$

where $m$ is any positive integer, $R(k)>0, \alpha_{p+v}=\frac{k+v-1}{2 m}, v=1,2,3, \ldots, 2 m$. ((1), p. 352):

$$
\begin{array}{r}
E\left(p ; \alpha_{r}: q ; \rho_{s}: z\right)=\sum_{r=1}^{p} \prod_{s=1}^{p} \Gamma\left(\alpha_{s}-\alpha_{r}\right)\left\{\prod \Gamma\left(p_{t}-\alpha_{r}\right)\right\}^{-1} \Gamma\left(\alpha_{r}\right) \\
z^{\alpha_{r}}{ }_{q+1} F_{p-1}\left[\begin{array}{l}
\alpha_{r}, \alpha_{r}-\rho_{1}+1, \ldots, \alpha_{r}-\alpha_{p}+1:(-1)^{p-q} z \\
\alpha_{r}-\alpha_{1}+1, \alpha_{r}-\alpha_{2}+1, \ldots * \ldots, \alpha_{r}-\alpha_{p}+1
\end{array}\right] \tag{7}
\end{array}
$$

where $p \geqq q+1$ and $r=1,2, \ldots, p$. The prime in the product sign signifies that the factor for which $s$ is equal to $r$ is omitted.

$$
\begin{equation*}
E\left(p ; \alpha_{r}: q ; p_{s}: z\right)=\frac{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{p}\right)}{\Gamma\left(\rho_{1}\right) \ldots \Gamma\left(\rho_{q}\right)}{ }_{p} F_{q}\binom{\alpha_{1}, \ldots, \alpha p ;-\frac{1}{z}}{\rho_{1}, \ldots, \rho_{q}}, \tag{8}
\end{equation*}
$$

where $p \leqq q$.

$$
\begin{equation*}
\Gamma(z) \Gamma(1-z)=\pi \operatorname{cosec} \pi z \tag{9}
\end{equation*}
$$

## 2. The subsidiary formula

The formula to be proved is

$$
\begin{equation*}
K_{n}(x)=\frac{1}{4 \pi} \sum_{i,-i} \frac{1}{i} E\left(1, \frac{n}{2},-\frac{n}{2}:: \frac{d^{i \pi} x^{2}}{4}\right) \tag{10}
\end{equation*}
$$

where $K_{n}(x)$ is the modified Bessel function of the second kind and $\sum_{i,-i}$ has the same meaning as in (4).

To prove (10) expand each $E$ function by means of (7) and combine the two resulting expressions by omitting common terms; then applying (9) the right side of (10) becomes

$$
\begin{aligned}
& \frac{\pi}{2 \sin n \pi}\left[\{\Gamma(1-n)\}^{-1}\left(\frac{x}{2}\right)^{-n}{ }_{0} F_{1}\left(; 1-n ; \frac{x^{2}}{4}\right)\right. \\
&\left.-\{\Gamma(1+n)\}^{-1}\left(\frac{x}{2}\right)^{n}{ }_{0} F_{1}\left(; 1+n ; \frac{x^{2}}{4}\right)\right]=K_{n}(x),
\end{aligned}
$$

and the formula is proved.

## 3. Proofs

In (5) take $q=0, p=3$ with $\alpha_{1}=1, \alpha_{2}=\frac{1}{2} n, \alpha_{3}=-\frac{1}{2} n$, write $\frac{e^{i \pi} x^{2}}{4}$
for $z$, then $\frac{e^{-i \pi} x^{2}}{4}$ for $z$, apply (5) twice making use of (10) and get

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-t} t^{k-1} \sum_{i,-i} \frac{1}{i} E\left(1, \frac{n}{2},-\frac{n}{2}:: \frac{e^{i \pi} t^{2 m} x^{2}}{4}\right) d t=\pi \operatorname{cosec} k \pi(2 \pi)^{m-\frac{1}{2}}(2 m)^{k-\frac{1}{2}} \\
& \sum_{i,-i} \frac{1}{i} E\left[\begin{array}{l}
1, \frac{n}{2},-\frac{n}{2}: e^{ \pm(2 i m \pi)}(2 m)^{2 m} \frac{e^{i \pi} x^{2}}{4} \\
1-\frac{k}{2 m}, 1-\frac{k+1}{2 m}, \ldots, 1-\frac{k+2 m-1}{2 m}
\end{array}\right] \\
&+2^{\frac{1}{2}-m} \pi^{\frac{1}{2}+m} \sum_{v=0}^{2 m-1} \sum_{i,-i}\left\{\frac{1}{i}(-1)^{v+1} \frac{(2 m)^{-\frac{3}{2}-v} 2^{2 m-1}}{\sin \left(\frac{k+v}{2 m}\right) \pi}\left(\frac{e^{i \pi} x^{2}}{4}\right)^{-\frac{k+v}{2 m}}\right. \\
& E\left.E\left[\begin{array}{l}
1+\frac{k+v}{2 m}, \frac{n}{2}+\frac{k+v}{2 m},-\frac{n}{2}+\frac{k+v}{2 m}: e^{2 i m \pi}(2 m)^{2 m} \frac{e^{i \pi} x^{2}}{4} \\
\frac{v+1}{2 m}, \ldots * \cdots, \frac{v+2 m}{2 m}, 1+\frac{k+v}{2 m}
\end{array}\right]\right\}
\end{aligned}
$$

where $m=1,2,3, \ldots$. Now change each $E$-function to a generalised hypergeometric function by means of (8), noting that the first two series cancel, apply (9) and (10) and so obtain (1).
(2) can be deduced from (1) by writing $p t$ for $t$ and taking $k=1$, then writing $\frac{x}{p m}$ for $x$.

Proofs of (3) and (4): To prove (3), apply formula (6) with $\frac{e^{ \pm i \pi} x^{2}}{4}$ for $z$, taking $p=3, q=0$ with $\alpha_{1}=1, \alpha_{2}=\frac{1}{2} n, \alpha_{2}=-\frac{1}{2} n$. Combine the two results using (10) and so obtain (3).

Formula (4) can easily be deduced from (3) by taking $k=1$ and writing $x p^{m}$ for $x$. It may be noted that the first two series which are obtained by expanding any of the two $E$ functions appearing on the right of (4) by means of (7) cease to exist because $\alpha_{1}=\alpha_{2}=1$. These two series are replaced (see (3), p. 30) by

$$
z \sum_{\lambda=0}^{\infty} \frac{\Gamma\left(\frac{n}{2}-\lambda-1\right) \Gamma\left(-\frac{n}{2}-\lambda-1\right) \prod_{v=1}^{2 m-1} \Gamma\left(\frac{v}{2 m}-\hat{\lambda}-1\right)}{\lambda!} \Delta_{\lambda} z^{\lambda}
$$

where

$$
\Delta_{i}=\psi(\lambda)-\log z+\sum_{\nu=1}^{2 m-1} \psi\left(\frac{\nu}{2 m}-\lambda-2\right)+\psi\left(\frac{n}{2}-\lambda-2\right)+\psi\left(-\frac{n}{2}-\lambda-2\right)
$$

$$
\text { THE MODIFIED BESSEL FUNCTION } K\left(t^{ \pm m} x\right)
$$

Here
and

$$
\begin{aligned}
\psi(z) & =\frac{d}{d z} \log \Gamma(z+1) \\
z & =\frac{e^{ \pm i \pi} x^{2}}{4(2 m)^{2 m}}
\end{aligned}
$$

## REFERENCES

(1) T. M. MacRobert, Functions of a complex variable (London, 4th ed., 1954).
(2) F. M. Ragab, Integrals involving E-functions, Proc. Glasg. Math. Assoc., 2 (1953), 77.
(3) T. M. MacRobert, Evaluation of the $E$-function when two of the upper parameters differ by an integer, Proc. Glasg. Math. Assoc., 5 (1961), 30-34.

Mathematisches Institut der
Universitãt Bonn, Germany
AND
Faculty of Science
Cairo University
Cairo, U.A.R.

