AN EXTREMAL PROBLEM FOR HARMONIC FUNCTIONS IN THE BALL

DMITRY KHAVINSON

ABSTRACT. In this note we obtain a sharp estimate for a radial derivative of bounded harmonic functions in the ball.

The celebrated Schwarz-Pick Lemma for analytic functions in the unit disk $\mathbb{D} = \{z : |z| < 1\}$ states that for $f : \mathbb{D} \to \mathbb{D}$, analytic

(1)
$$|f'(z)| \le \frac{1}{1-|z|^2}, \quad z \in \mathbb{D} \text{ fixed}$$

and the equality holds if and only if f is a Möbius transformation which sends z into the origin (cf. [G, Lemma 1.2]).

In this note we indicate an elementary argument that allows one to obtain estimates similar to (1) for magnitudes of derivatives of bounded harmonic functions in the unit ball in \mathbb{R}^n . Since in that case the right-hand side is not nearly as pretty as in (1), we restrict ourselves to the case of a radial derivative for n = 3.

Let $B = \{x \in \mathbb{R}^3 : \sum_{i=1}^3 x_i^2 < 1\}$ be the unit ball, $S^2 = \partial B$.

THEOREM. For u harmonic in B, $||u|| \le 1$ and $x^0 \in B$ -fixed we have

(2)
$$\left| \frac{\partial u}{\partial |x|} \right|_{x^0} \le \frac{(9 - |x^0|^2)^2}{3\sqrt{3}(1 - |x^0|^2) \left[(|x^0|^2 + 3)^{3/2} + 3\sqrt{3}(1 - |x^0|^2) \right]}.$$

(2) is sharp and equality holds if and only if $u = \pm u_0$, where u_0 equals +1 on a "spherical cap" $0 \le \theta \le \theta_0 = \arccos \frac{5|x^0| - |x^0|^3}{|x^0|^2 + 3}$, and -1 on the rest of the sphere. (θ is the latitude with respect to the axis passing through x^0 and the origin.)

NOTE. For $|x^0| \rightarrow 1$ the left-hand side in (2) tends to $8/3\sqrt{3}(1-|x^0|^2)^{-1}$. This provides a sharp asymptotic estimate on the growth of the normal derivative of *u* near S^2 .

PROOF. Choose our coordinate system so that the x_3 -axis passes through x^0 and switch to spherical coordinates $x_1 = r \sin \theta \cos \varphi$, $x_2 = r \sin \theta \sin \varphi$, $x_3 = r \cos \theta$, $0 \le r \le 1, 0 \le \theta \le \pi, 0 \le \varphi \le 2\pi$, so $\frac{\partial u}{\partial |x|} \Big|_{x^0} = \frac{\partial u}{\partial r} \Big|_{(r_0,0,0)}$. Writing down the Poisson integral representation for u (see [K, Ch. VIII, §4]), we have

(3)
$$u(x) = \frac{1}{4\pi} \int_{S^2} \frac{1 - |x|^3}{|x - y|^3} u(y) \, d\sigma(y),$$

The author was supported in part by a grant from the National Science Foundation.

Received by the editors January 31, 1991.

AMS subject classification: 31B10.

[©] Canadian Mathematical Society 1992.

where $d\sigma$ is Lebesgue measure on S^2 . Whence, in spherical coordinates,

(4)
$$u(r,0,0) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} \frac{1-r^2}{(1+r^2-2r\cos\theta)^{3/2}} u(\theta,\varphi) \sin\theta \ d\theta \ d\varphi.$$

Differentiating (4) with respect to r we obtain after some algebraic manipulations

(5)
$$\frac{\partial u(r,0,0)}{\partial r}\Big|_{r=r_0} = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} u(\theta,\varphi) \frac{r_0^3 + r_0^2 \cos\theta - 5r_0 + 3\cos\theta}{(1+r_0^2 - 2r_0\cos\theta)^{5/2}} \sin\theta \ d\theta \ d\varphi \\ = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} u(\theta,\varphi) f(\theta) \sin\theta \ d\theta \ d\varphi.$$

Obviously, the maximum M in (5) is attained if and only if $u(\theta, \varphi) = \operatorname{sign} f(\theta) := \begin{cases} +1, & f(\theta) \ge 0, \\ -1, & f(\theta) \le 0 \end{cases}$. It is easy to see that $f(\theta)$ changes sign on $[0, \pi]$ only once, at θ_0 : $\cos \theta_0 = \frac{5r_0 - r_0^3}{r_0^2 + 3}$ (≤ 1 , as $0 \le r_0 \le 1$). Setting $\cos \theta = t$ we obtain

(6)
$$M = \frac{1}{2} \int_0^{\pi} |f(\cos \theta)| \sin \theta \, d\theta = \frac{1}{2} \int_{-1}^1 |f(t)| \, dt$$
$$= \frac{1}{2} \Big[\int_{-1}^{t_0} f(t) \, dt - \int_{t_0}^1 f(t) \, dt \Big] = F(t_0) - \frac{1}{2} \Big(F(1) + F(-1) \Big),$$

where $F(t) = \int f(t) dt$, $t_0 = \cos \theta_0 = \frac{5r_0 - r_0^3}{r_0^2 + 3}$. After elementary but tedious calculations one finds

(7)

$$F(t) := \int \frac{(5r_0 - r_0^3) - (r_0^2 + 3)t}{(1 + r_0^2 - 2r_0 t)^{5/2}} \\
= \frac{2(r_0^2 + 3)}{3(2r_0)^{5/2}} \left[\frac{1 + r_0^2}{r_0} + t_0 - 3t \right] \left[\frac{1 + r_0^2}{r_0} - t \right]^{-3/2}$$

Substituting (7) into (6) and carefully following all the "nice" cancellations that come along we obtain (2).

COROLLARY. For u as above

(8)
$$\| \operatorname{grad} u |_{x=0} \| \le \frac{3}{2}.$$

The equality holds if and only if u equals +1 on a hemisphere and -1 on the remaining hemisphere.

REMARK. This corresponds very well to the physical intuition: the largest electrostatic force at the origin occurs as we keep the potential equal to +1 on one hemisphere and -1 on the other hemisphere.

Although (8) follows immediately from (2) by letting $x_0 = 0$, we would like to give an independent (short) proof. From (3) it follows that for any j = 1, 2, 3

$$\frac{\partial u}{\partial x_j}\Big|_{x=0} = \frac{1}{4\pi} \int_{S^2} \frac{-2x_j |x-y|^3 + 3\frac{x_i - y_j}{|x-y|^5}}{|x-y|^6} u(y) \, d\sigma(y)\Big|_{x=0}$$
$$= -\frac{3}{4\pi} \int_{S^2} y_j u(y) \, d\sigma(y).$$

Thus, for j = 1, 2, 3

$$\max |\partial_j u(0)| = \frac{3}{4\pi} ||y_j||_{L^1(\sigma)} = \frac{3}{4\pi} \cdot 2\pi = \frac{3}{2}.$$

REMARKS. (i) For n = 2, a similar argument yields the following analogue of (8) for $u : ||u|| \le 1$, harmonic in \mathbb{D}

(9)
$$\| \operatorname{grad} u |_{z=0} \| \le \frac{2}{2\pi} \| \operatorname{Re} z \|_{L^1(\mathbb{T})} = \frac{4}{\pi}$$

 $(\mathbb{T} = \partial \mathbb{D} = \{z : |z| = 1\})$. From this, arguing as above or following Pick's proof of the invariant form of Schwarz' Lemma one easily obtains for such *u*:

(10)
$$\left|\frac{\partial u}{\partial |z|}\right|_{z=z^0} \le \frac{4}{\pi(1-|z^0|^2)}$$

and equality only holds for $\pm u_0$, where

$$u_0: u_0|_{\mathbb{T}} = \begin{cases} +1, & |\theta - \arg z^0| \le \arccos \frac{2|z^0|}{1+|z^0|^2} \\ -1, & \text{elsewhere.} \end{cases}$$

Moreover, since Möbius automorphisms of the disk preserve harmonic functions, we can see at once that (10) holds if one replaces $\|\frac{\partial u}{\partial |z|}\|$ by $\| \operatorname{grad} u \|$ with extremal functions being those of (9) composed with an appropriate Möbius transformation.

Unfortunately, this is no longer true in \mathbb{R}^n , $n \ge 3$, since Möbius automorphisms of the ball preserve harmonicity only up to a non-constant scalar factor. Thus, the problem of finding max{ $\| \operatorname{grad} u|_{X^0 \in B} \| : \Delta u = 0, \|u\|_{\infty} \le 1$ } transfers into a much more complicated extremal problem at the origin as $n \ge 3$.

(ii) It is not hard to see that in \mathbb{R}^n the constant in the right-hand side of (8) behaves as \sqrt{n} , for $n \to \infty$.

(iii) Professor A. Weitsman pointed out that an easy proof of the Corollary can also be obtained by applying the standard symmetrization technique, as e.g. in [B].

ACKNOWLEDGEMENT. The author is indebted to Professor H. S. Shapiro and Professor S. Tabachnikov for valuable conversations concerning this paper.

REFERENCES

[B] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston-London-Melbourne, 1980.

[G] J. Garnett, Bounded Analytic Functions, Academic Press, New York-San Francisco, 1981.

[K] O. Kellogg, Foundations of Potential Thoery, Ungar, 4th printing, New York, 1970.

Department of Mathematical Sciences University of Arkansas Fayetteville, Arkansas U.S.A. 72701

220