AN EXTREMAL PROBLEM FOR HARMONIC FUNCTIONS IN THE BALL

DMITRY KHAVINSON

Abstract

In this note we obtain a sharp estimate for a radial derivative of bounded harmonic functions in the ball.

The celebrated Schwarz-Pick Lemma for analytic functions in the unit disk $\mathbb{D}=\{z$: $|z|<1\}$ states that for $f: \mathbb{D} \rightarrow \mathbb{D}$, analytic

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq \frac{1}{1-|z|^{2}}, \quad z \in \mathbb{D} \text { fixed } \tag{1}
\end{equation*}
$$

and the equality holds if and only if f is a Möbius transformation which sends z into the origin (cf. [G, Lemma 1.2]).

In this note we indicate an elementary argument that allows one to obtain estimates similar to (1) for magnitudes of derivatives of bounded harmonic functions in the unit ball in \mathbb{R}^{n}. Since in that case the right-hand side is not nearly as pretty as in (1), we restrict ourselves to the case of a radial derivative for $n=3$.

Let $B=\left\{x \in \mathbb{R}^{3}: \Sigma_{1}^{3} x_{i}^{2}<1\right\}$ be the unit ball, $S^{2}=\partial B$.
Theorem. For u harmonic in $B,\|u\| \leq 1$ and $x^{0} \in B$-fixed we have

$$
\begin{equation*}
\left|\frac{\partial u}{\partial|x|}\right|_{x^{0}} \left\lvert\, \leq \frac{\left(9-\left|x^{0}\right|^{2}\right)^{2}}{3 \sqrt{3}\left(1-\left|x^{0}\right|^{2}\right)\left[\left(\left|x^{0}\right|^{2}+3\right)^{3 / 2}+3 \sqrt{3}\left(1-\left|x^{0}\right|^{2}\right)\right]} .\right. \tag{2}
\end{equation*}
$$

(2) is sharp and equality holds if and only if $u= \pm u_{0}$, where u_{0} equals +1 on a "spherical cap" $0 \leq \theta \leq \theta_{0}=\arccos \frac{5\left|x^{0}\right|-\left|x^{0}\right|^{3}}{\left|x^{0}\right|^{2}+3}$, and -1 on the rest of the sphere. $(\theta$ is the latitude with respect to the axis passing through x^{0} and the origin.)

NOTE. For $\left|x^{0}\right| \rightarrow 1$ the left-hand side in (2) tends to $8 / 3 \sqrt{3}\left(1-\left|x^{0}\right|^{2}\right)^{-1}$. This provides a sharp asymptotic estimate on the growth of the normal derivative of u near S^{2}.

Proof. Choose our coordinate system so that the x_{3}-axis passes through x^{0} and switch to spherical coordinates $x_{1}=r \sin \theta \cos \varphi, x_{2}=r \sin \theta \sin \varphi, x_{3}=r \cos \theta$, $0 \leq r \leq 1,0 \leq \theta \leq \pi, 0 \leq \varphi \leq 2 \pi$, so $\left.\frac{\partial u}{\partial|x|}\right|_{x^{0}}=\left.\frac{\partial u}{\partial r}\right|_{\left(r_{0}, 0,0\right)}$. Writing down the Poisson integral representation for u (see [K, Ch. VIII, §4]), we have

$$
\begin{equation*}
u(x)=\frac{1}{4 \pi} \int_{S^{2}} \frac{1-|x|^{3}}{|x-y|^{3}} u(y) d \sigma(y), \tag{3}
\end{equation*}
$$

where $d \sigma$ is Lebesgue measure on S^{2}. Whence, in spherical coordinates,

$$
\begin{equation*}
u(r, 0,0)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{1-r^{2}}{\left(1+r^{2}-2 r \cos \theta\right)^{3 / 2}} u(\theta, \varphi) \sin \theta d \theta d \varphi \tag{4}
\end{equation*}
$$

Differentiating (4) with respect to r we obtain after some algebraic manipulations

$$
\begin{align*}
\left.\frac{\partial u(r, 0,0)}{\partial r}\right|_{r=r_{0}} & =\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} u(\theta, \varphi) \frac{r_{0}^{3}+r_{0}^{2} \cos \theta-5 r_{0}+3 \cos \theta}{\left(1+r_{0}^{2}-2 r_{0} \cos \theta\right)^{5 / 2}} \sin \theta d \theta d \varphi \tag{5}\\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} u(\theta, \varphi) f(\theta) \sin \theta d \theta d \varphi
\end{align*}
$$

Obviously, the maximum M in (5) is attained if and only if $u(\theta, \varphi)=\operatorname{sign} f(\theta):=$ $\left\{\begin{array}{ll}+1, & f(\theta) \geq 0, \\ -1, & f(\theta) \leq 0\end{array}\right.$. It is easy to see that $f(\theta)$ changes sign on $[0, \pi]$ only once, at θ_{0} : $\cos \theta_{0}=\frac{5 r_{0}-r_{0}^{3}}{r_{0}^{2}+3}\left(\leq 1\right.$, as $\left.0 \leq r_{0} \leq 1\right)$. Setting $\cos \theta=t$ we obtain

$$
\begin{align*}
M & =\frac{1}{2} \int_{0}^{\pi}|f(\cos \theta)| \sin \theta d \theta=\frac{1}{2} \int_{-1}^{1}|f(t)| d t \\
& =\frac{1}{2}\left[\int_{-1}^{t_{0}} f(t) d t-\int_{t_{0}}^{1} f(t) d t\right]=F\left(t_{0}\right)-\frac{1}{2}(F(1)+F(-1)), \tag{6}
\end{align*}
$$

where $F(t)=\int f(t) d t, t_{0}=\cos \theta_{0}=\frac{5 r_{0}-r_{0}^{3}}{r_{0}^{2}+3}$. After elementary but tedious calculations one finds

$$
\begin{align*}
F(t): & =\int \frac{\left(5 r_{0}-r_{0}^{3}\right)-\left(r_{0}^{2}+3\right) t}{\left(1+r_{0}^{2}-2 r_{0} t\right)^{5 / 2}} \\
& =\frac{2\left(r_{0}^{2}+3\right)}{3\left(2 r_{0}\right)^{5 / 2}}\left[\frac{1+r_{0}^{2}}{r_{0}}+t_{0}-3 t\right]\left[\frac{1+r_{0}^{2}}{r_{0}}-t\right]^{-3 / 2} \tag{7}
\end{align*}
$$

Substituting (7) into (6) and carefully following all the "nice" cancellations that come along we obtain (2).

Corollary. For u as above

$$
\begin{equation*}
\left\|\left.\operatorname{grad} u\right|_{x=0}\right\| \leq \frac{3}{2} \tag{8}
\end{equation*}
$$

The equality holds if and only if u equals +1 on a hemisphere and -1 on the remaining hemisphere.

REMARK. This corresponds very well to the physical intuition: the largest electrostatic force at the origin occurs as we keep the potential equal to +1 on one hemisphere and -1 on the other hemisphere.

Although (8) follows immediately from (2) by letting $x_{0}=0$, we would like to give an independent (short) proof. From (3) it follows that for any $j=1,2,3$

$$
\begin{aligned}
\left.\frac{\partial u}{\partial x_{j}}\right|_{x=0} & =\left.\frac{1}{4 \pi} \int_{S^{2}} \frac{-2 x_{j}|x-y|^{3}+3 \frac{x_{i}-y_{j}}{|x-y|^{5}}}{|x-y|^{6}} u(y) d \sigma(y)\right|_{x=0} \\
& =-\frac{3}{4 \pi} \int_{S^{2}} y_{j} u(y) d \sigma(y) .
\end{aligned}
$$

Thus, for $j=1,2,3$

$$
\max \left|\partial_{j} u(0)\right|=\frac{3}{4 \pi}\left\|y_{j}\right\|_{L^{\prime}(\sigma)}=\frac{3}{4 \pi} \cdot 2 \pi=\frac{3}{2} .
$$

REmARKS. (i) For $n=2$, a similar argument yields the following analogue of (8) for $u:\|u\| \leq 1$, harmonic in \mathbb{D}

$$
\begin{equation*}
\left\|\left.\operatorname{grad} u\right|_{z=0}\right\| \leq \frac{2}{2 \pi}\|\operatorname{Re} z\|_{L^{\prime}(\mathbb{T})}=\frac{4}{\pi} \tag{9}
\end{equation*}
$$

$(\mathbb{T}=\partial \mathbb{D}=\{z:|z|=1\})$. From this, arguing as above or following Pick's proof of the invariant form of Schwarz' Lemma one easily obtains for such u :

$$
\begin{equation*}
\left.\left|\frac{\partial u}{\partial|z|}\right|_{z=z^{0}} \right\rvert\, \leq \frac{4}{\pi\left(1-\left|z^{0}\right|^{2}\right)} \tag{10}
\end{equation*}
$$

and equality only holds for $\pm u_{0}$, where

$$
u_{0}:\left.u_{0}\right|_{\mathbb{}}= \begin{cases}+1, & \left|\theta-\arg z^{0}\right| \leq \arccos \frac{2\left|z^{0}\right|}{1+\left|z^{0}\right|^{2}} \\ -1, & \text { elsewhere. }\end{cases}
$$

Moreover, since Möbius automorphisms of the disk preserve harmonic functions, we can see at once that (10) holds if one replaces $\left\|\frac{\partial u}{\partial|z|}\right\|$ by $\|\operatorname{grad} u\|$ with extremal functions being those of (9) composed with an appropriate Möbius transformation.

Unfortunately, this is no longer true in $\mathbb{R}^{n}, n \geq 3$, since Möbius automorphisms of the ball preserve harmonicity only up to a non-constant scalar factor. Thus, the problem of finding $\max \left\{\left\|\left.\operatorname{grad} u\right|_{X^{0} \in B}\right\|: \Delta u=0,\|u\|_{\infty} \leq 1\right\}$ transfers into a much more complicated extremal problem at the origin as $n \geq 3$.
(ii) It is not hard to see that in \mathbb{R}^{n} the constant in the right-hand side of (8) behaves as \sqrt{n}, for $n \rightarrow \infty$.
(iii) Professor A. Weitsman pointed out that an easy proof of the Corollary can also be obtained by applying the standard symmetrization technique, as e.g. in [B].

Acknowledgement. The author is indebted to Professor H. S. Shapiro and Professor S. Tabachnikov for valuable conversations concerning this paper.

References

[B] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston-London-Melbourne, 1980.
[G] J. Garnett, Bounded Analytic Functions, Academic Press, New York-San Francisco, 1981.
[K] O. Kellogg, Foundations of Potential Thoery, Ungar, 4th printing, New York, 1970.

Department of Mathematical Sciences
University of Arkansas
Fayetteville, Arkansas
U.S.A. 72701

