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Although robust associations between dietary intake and population health are evident from
conventional observational epidemiology, the outcomes of large-scale intervention studies
testing the causality of those links have often proved inconclusive or have failed to demonstrate
causality. This apparent conflict may be due to the well-recognised difficulty in measuring
habitual food intake which may lead to confounding in observational epidemiology. Urine
biomarkers indicative of exposure to specific foods offer information supplementary to the
reliance on dietary intake self-assessment tools, such as FFQ, which are subject to individual
bias. Biomarker discovery strategies using non-targeted metabolomics have been used recently
to analyse urine from either short-term food intervention studies or from cohort studies in
which participants consumed a freely-chosen diet. In the latter, the analysis of diet diary or
FFQ information allowed classification of individuals in terms of the frequency of consumption
of specific diet constituents. We review these approaches for biomarker discovery and illustrate
both with particular reference to two studies carried out by the authors using approaches
combining metabolite fingerprinting by MS with supervised multivariate data analysis. In both
approaches, urine signals responsible for distinguishing between specific foods were identified
and could be related to the chemical composition of the original foods. When using dietary
data, both food distinctiveness and consumption frequency influenced whether differential
dietary exposure could be discriminated adequately. We conclude that metabolomics methods
for fingerprinting or profiling of overnight void urine, in particular, provide a robust strategy for
dietary exposure biomarker-lead discovery.

Dietary exposure: Metabolite fingerprinting: FFQ: Multivariate data analysis: Urine
biomarkers

The accurate measurement of dietary exposure, which is an
essential component of much health-related research,
offers a challenging prospect. Specifically, dietary data can
be subject to participant bias and can depend heavily upon
food composition tables for the estimation of intakes of
energy, nutrients and other food constituents(1–6). The
chemical content of body fluids is a potentially rich source

of information about dietary exposure as many foods con-
tain distinctive metabolites which give rise to further che-
mical diversity following food ingestion, absorption and
metabolism(7–10). However, to date, putative biochemical
markers are available for only a relatively small number
of specific foods and food components(1). The compre-
hensive analysis of metabolites in biological fluids using
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Table 1. Recent publications in which non-targeted metabolite fingerprinting or metabolite profiling has been used to discover potential dietary biomarkers in food intervention and

cohort studies

Dietary exposure

Metabolomic

technique Potential biomarker-leads Reference

Acute food exposure studies (up to 24 h)

Chicken and orange juice FIE-MS Chicken: anserine; orange juice: proline betaine and 4-hydroxy-proline betaine 20

Apple juice HPLC–ESI–

MS/MS

Phloretin O-glucuronides and eight (methyl) quercetin O-glucuronides, 5-caffeoylquinic acid,

4-p-coumaroylquinic acid, caffeic acid, epicatechin, phloretin and quercetin

22

Cocoa powder with milk or water HPLC-Q-ToF Caffeine and theobromine (epicatechin, methylepicatechin, vanillic acid, vanilloylglycine, phenylvaleric

acid, phenylvalerolactone derivatives, 3,5-diethyl-2-methylpyrazine and hydroxyacetophenone)

and processing-derived products (diketopiperazines), as well as trigonelline, hydroxynicotinic

acid, nicotinic acid and tyrosine

23

Cocoa powder and milk HPLC-Q-ToF Methylguanine, vanilloylglycine, dihydroxyphenyl valerolactone glucuronide, furoylglycine, 3- and

7-methylxanthine, theobromine and xanthurenic acid

24

Oily fish (salmon); a cruciferous vegetable

(steamed broccoli); berry fruit (raspberries)

FIE-MS Salmon: trimethylamine-N-oxide, methylhistidine, anserine. Raspberry: caffeoyl sulphate, methyl

epicatechin sulphate, ascorbate, 3 hydroxylhipperic acid, naringenin glucuronide. Broccoli:

ascorbate and breakdown products (xylonate/lyxonate, threitol/erythritol) naringenin and hesperitin

glucuronide

25

Coffee HPLC-PDA-

MS

Caffeic acid sulphate, caffeoylquinic acid lactone sulphate, caffeoylquinic acid sulphate,

dihydro(iso)ferulic acid glucuronide, dihydrocaffeic acid and glucuronide/sulphate, dihydroferulic

acid and glucuronide/sulphate, feruloylglycine, feruloylquinic acid, iso/ferulic acid glucuronide/

sulphate

32

Short-term food interventions (up to 2 weeks)

Increased milk diet or an increased meat diet 1H NMR Milk diet: increased hippurate; Meat diet: increased creatine, histidine and urea 17

High cruciferous vegetable (broccoli and

Brussels sprouts)

1H NMR S-methyl-L-cysteine sulphoxide (SMCSO) and three structurally related compounds 19

Mixed-fruit meal (apple, orange, grapes and

grapefruit)

1H NMR Citrus fruits: hippuric acid, proline betaine and tartaric acid 21

Dark chocolate 1H NMR and

LC-MS

Increased levels of 4-hydroxyphenylacetate and several unassigned metabolites 28

‘Vegetarian’, ‘low meat’ and ‘high meat’ diets 1H NMR High-meat diet: creatine, carnitine, acetylcarnitine and trimethylamine-N-oxide. Low-meat diet

and vegetarian diet signatures: p-hydroxyphenylacetate

33

Low-phytochemical diet followed by a standard

phytochemical diet

1H NMR Hippurate increased in high phytochemical diet 35

Long-term food interventions (> 1 month)

Wheat bread v. rye bread HPLC-Q-ToF 3-(3,5-dihydroxyphenyl)-1-propanoic acid sulphate, enterolactone glucuronide, azelaic acid,

2-aminophenol sulphate and 2,4-dihydroxy-1,4-benzoxazin-3-one

18

High protein (HP) or low protein (LP) diet 1H NMR Increased nitrogen, creatinine, TMAO, creatine after the HP diet 31

High mixed nuts consumption HPLC-Q-

TOF-MS

10-hydroxy-decene-4,6-diynoic acid sulphate, tridecadienoic/tridecynoic acid glucuronide,

dodecanedioic acid, pyrogallol sulphate, p-coumaryl alcohol glucuronide, urolithin A

glucuronide/sulphate/sulphoglucuronide, N-acetylserotonin sulphate and hydroxyindoleacetic acid
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metabolomics technology provides an objective approach
for the discovery of dietary exposure biomarkers(11–35).
Non-targeted metabolite fingerprinting, using either
NMR(17,19,21,28,29,31,33,35) or MS(20,25–27), and metabolite
profiling using liquid chromatography MS(18,22–24,28,30,

32,34) have been used successfully for biomarker-lead dis-
covery using urine samples from various study designs
(Table 1). In acute food intervention studies(20,22–25,32),
participants were exposed to specific foods in known
amounts and either postprandial urines sampled before the
next meal or overnight or 24 h urines were collected. In
other studies, participants were established on a specific
diet for several days/weeks(17,19,21,28,33,35) or longer term
(>1 month)(18,31,34) before urine sampling. More recently
there have been reports of the use of cohort studies
in which participants consumed a freely-chosen
diet(26,27,29,30). In these studies, the analysis of diet diary or
FFQ information allowed classification of individuals in
terms of their frequency of consumption of specific diet
constituents. In the present paper, we illustrate these
approaches for biomarker discovery with particular refer-
ence to two studies carried out by the authors(20,25–27).

The presence of substantial inter- and intra-individual
variability in human metabolite profiles(36) provides a
challenge for both biofluid sampling and subsequent data
normalisation in metabolomics studies seeking information
on habitual diet. To address this problem, standardised
methods have been validated recently both for the manage-
ment of participants and for urine sampling in large-scale
food interventions involving free-living individuals(37) and
also for acute postprandial studies in a controlled envir-
onment(20,25). Key features of these study protocols include
behavioural restrictions, e.g. no alcohol and the consump-
tion of a standardised evening meal in the evening before a
clinic visit to provide a fasting urine sample. It was
anticipated that the latter would provide a ‘normalised’
background against which differences in urine chemistry
resulting from either previous habitual dietary intake prior
to clinic visit or acute food intake during the test day
would be detectable(12,14,20,25).

With effective protocols in place for volunteer manage-
ment and urine sampling there was now an opportunity to
determine whether changes in urine chemistry could reflect
dietary exposure(11). In an acute feeding ‘proof of principle’
study, urine samples were analysed from individuals par-
ticipating in the MEtabolomics to characterise Dietary
Exposure (MEDE) research programme(20). As part of the
MEDE project(11), twenty-four healthy participants con-
sumed a ‘test’ breakfast, in which the cereal component
of a standardised breakfast was replaced by one of four
foods of high public health importance, followed by the
collection of postprandial urine samples for metabolome
analysis(20,25). Once candidate food biomarkers had been
identified(25,26) there was then the opportunity to validate
their potential usefulness to monitor habitual diet in the
independent GrainMark study (http://www.ncl.ac.uk/afrd/
research/project/2287)(27). This large-scale dietary interven-
tion study, involving free-living individuals, aimed to dis-
cover potential biomarkers of dietary wholegrain exposure.
After a washout period of 4 weeks the participants (sixty-
eight in total) were asked to consume three servings ofT
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either wholegrain rye foods or wholegrain wheat foods per d
for 4 weeks and subsequently doubled their intake of the
same foods for a further 4 weeks. At baseline, and at the
middle of each 4-week intervention period (washout, three
servings and six servings of wholegrain rye/wheat foods
per d), volunteers completed a validated FFQ (four in total)
based on the European Prospective Investigation into
Cancer and Nutrition FFQ(7), which recorded consumption
of foods for a 7 d period, within 7–14 d of sampling(37).
Using data from both the MEDE and GrainMark studies
it has been shown that analysis of overnight void urine
samples can provide a rich source of potential biomarkers of
habitual diet as reported in FFQ(26,27).

Postprandial urine composition reflects recent
dietary exposure

Table 1 lists several recent studies in which non-targeted
metabolite fingerprinting or metabolite profiling has been

used to discover dietary biomarkers in both acute and
short-term food intervention studies(17,19–25,28,32,33,35). The
basic design principles are illustrated in Fig. 1 with refer-
ence to the MEDE study in which fasted participants con-
sumed specific foods (Fig. 1(a)) as part of a standardised
breakfast. Metabolome fingerprints representing post-
prandial urines(25) were then generated using non-targeted,
nominal mass flow injection electrospray–ionisation
MS(15,20,25). Figure 1(b) illustrates a typical flow injection
electrospray-ionisation MS urine fingerprint of a mass
range from m/z 100 to 800, which shows that urine fin-
gerprints are both complex and information-rich. The
question of whether a postprandial urine sample contains
chemicals distinctive of exposure to specific foods can
be evaluated by subjecting the urine fingerprint data to
powerful supervised multivariate analysis including prin-
cipal component-linear discriminant analysis. Figure 1(c)
shows a scores plot from a typical principal component-
linear discriminant analysis(16) of flow injection

(d)  Annotation of ions by targeted 
ultra-high accurate mass analysis 
by FT-ICR-MS and MS/MS 

(c)  Data mining (PCA, PC-
LDA, RF) to determine if foods 
can be discriminated and 
discover explanatory m/z signals

(a)  Acute exposure 
to different foods and 
3h postprandial
urine collected

(b)  Non-targeted 
metabolite fingerprinting 
of urine by FIE-MS

(a) FT-ICR-MS
241·12958

Citrus fruits:
Proline
betaine

Oily fish:
Anserine

(e) Potential biomarkers from MEDE study
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Fig. 1. (colour online) Typical analytical strategy for food biomarker discovery based on an acute food intervention.

All elements of this example workflow are derived from data from experiments previously reported(25). (a) The

standardised breakfast consisted of orange juice, a cup of tea with milk and sugar, a butter croissant and cornflakes

with milk, while in the test breakfasts the cornflakes and milk were replaced with smoked salmon, steamed broccoli

or raspberries. Postprandial urine was collected. (b) Typical flow infusion electrospray-ionisation MS (FIE-MS)

fingerprints of postprandial urine. (c) Scores plot from a typical principal component-linear discriminant analysis

(PC-LDA) of the metabolite fingerprinting data (m/z 100–800) derived from analysis postprandial urine. (d) Fourier

transform-ion cyclotron resonance ultra-mass-spectrometry (FT-ICR-MS) plot of the nominal mass ‘bin’ m/z 241.

(e) Potential biomarkers from the MEtabolomics to characterise Dietary Exposure (MEDE) study. PCA, principal

component analysis; RF, random forest; MS/MS, flow infusion electrospray-ionisation tandem MS.
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electrospray–ionisation MS fingerprints representing urine
samples from volunteers exposed to a standard breakfast or
to a breakfast in which the cereal component of the stan-
dard breakfast was replaced by smoked salmon, broccoli or
raspberries(25). With an eigenvalue (Tw) of 2.55 in the
dimension of maximal discrimination (Fig. 1(c)), it is evi-
dent that the ‘test’ foods (particularly smoked salmon) are
adequately discriminated from the standard breakfast. A
range of feature selection methods(16) can then be
employed to determine the flow injection electrospray–
ionisation MS signals responsible for the discrimination of
each food and, under most circumstances, it has been
found that agglomerative decision trees such as random
forest perform consistently well(20,25,26,38). The detailed
analysis of highlighted nominal masses can be undertaken
by targeting them for further investigation on MS instru-
ments capable of ultra-high mass resolution(25–26). The
Fourier transform-ion cyclotron resonance ultra–MS plot
shown in Fig. 1(d) represents the analysis of the nominal
mass ‘bin’ m/z 241, a signal linked with the consumption
of oily fish, indicating that a signal with a mass of
241.12958 is a likely biomarker candidate for oily fish
exposure(25). The accurate mass information can be used to
generate an elemental formula and to predict candidate
metabolites that could yield the measured ion using anno-
tation tools such as MZedDB(39), which take into account
anticipated ionisation behaviour. Further experiments in
which the selected ion is fragmented and the resulting
spectrum compared with that of a chemical standard are
required to assign a putative structure. For example, in the
MEDE study these subsequent targeted analyses suggested
that anserine (nominal mass m/z 241) is a candidate bio-
marker for oily fish consumption and proline betaine for
citrus foods (Fig. 1(e))(25,26).

Exposure to citrus foods has provided a paradigm
for discovery of dietary biomarkers by analysis

of dietary data

Citrus fruits and citrus fruit juices are a distinctive and
frequently consumed (i.e. often once per d) component
of the UK diet and thus represent a paradigm for validation
of biomarkers of habitual dietary exposure. Studies using
either NMR(21) or ESI–MS fingerprinting(20) of post-
prandial urines demonstrated initially that proline betaine
was a potential biomarker of acute exposure to citrus
foods. There was thus an opportunity to determine whether
the urinary concentration of this metabolite reflected habi-
tual exposure to the same foods. Recent publications de-
scribed a multivariate modelling strategy for habitual
dietary biomarker discovery dependent on the comparison
of urine metabolome fingerprints from groups of indivi-
duals reporting differential exposure to specific dietary
components(26,27,29,30). An initial analysis(26) of habitual
citrus exposure data in the MEDE study (n 24) indicated
that there were sufficient individuals reporting citrus con-
sumption to allow the assignment of volunteers into three
broad exposure levels (High (two–three citrus portions per
d), Medium (about one citrus portion per d) and Low (less
than two citrus portions per week)). With the larger

number of participants in the GrainMark study it was possi-
ble to assign individuals to a more quantitative scale of
habitual dietary exposure (i.e. never, 1 per week, 2–4 per
week, 5–6 per week, 1 per d, 2–3 per d)(27). Overnight
void urine samples available from both studies were
subjected to metabolite fingerprinting and the m/z signals
responsible for discriminating higher v. lower habitual
consumption levels were identified using random forest
feature selection(16). In both studies the majority of the top
twenty highest ranked signals responsible for the classifi-
cation of High v. Low habitual citrus consumption were
identified as ionisation products of proline betaine(26,27).
Although not strictly quantitative, the relative intensity of
one of the major ions (m/z 144; [M+H] + ) reflected the
level of habitual citrus exposure reported by individual
participants in both MEDE and GrainMark studies. A
similar result has been reported for NMR signals asso-
ciated with recent exposure to citrus foods that were found
to be derived from the presence of proline betaine in 24 h
urine samples associated with recent exposure to citrus
foods(21).

Habitual consumption frequency for individual foods
impacts on the ability to detect differential dietary

exposure using overnight urine samples

Following the success with citrus foods there have been
several recent reports in which dietary data have been
analysed from studies where, in most cases, participants
have eaten freely-chosen diets (Table 1)(26,27,29,30). These
meta-data allowed the assignment of individuals into dif-
ferent food consumption frequency classes and could be
used to study habitual exposure for a range of other foods.
In the GrainMark study, as expected, habitual consumption
frequency differed greatly between individual foods, and
these food-specific consumption patterns were generally
consistent with the MEDE study(27). Overall, the patterns
of intake of individual foods could be summarised in four
general exposure categories (Fig. 2) ranging from foods
consumed very infrequently (e.g. liver or kidneys) to those
consumed, on average, more than once per d (e.g. coffee).
Although habitual citrus exposure could be modelled ade-
quately using data from the MEDE study(26), with only
twenty-four participants the present strategy was not sui-
table for biomarker discovery for foods which are con-
sumed very infrequently by most people. Assignment to
habitual consumption frequency ranges for the remaining
foods (grouped into High skewed, Normal distribution or
Low skewed consumption patterns) identified sufficient
numbers of individuals within the GrainMark study to
develop higher v. lower frequency exposure groups for
multivariate classification(27). The likelihood of discover-
ing potential biomarkers for each food was assessed by
determining the ‘goodness’ of class discrimination using
random forest margin values and area under the receiver
operating characteristic curve values as robust classifica-
tion statistics(16). Figure 2 illustrates a clear trend that clas-
sification efficiency (as assessed by random forest margins
and area under the receiver operating characteristic curve
values) is generally higher in foods that are consumed
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more frequently. We suggest that such foods will form
likely candidates for monitoring using a biomarker strategy
if it can be proven that the presence of potential biomarker
signals in urine can be linked to the ingestion and chemical
composition of specific dietary components. An example
‘data-driven’ strategy for the discovery of potential dietary
biomarkers based on the analysis of GrainMark FFQ
structure and data is summarised in Fig. 3.

Structural analysis of potential biomarkers
representing three selected foods shows that their

presence in overnight void urine reflects original food
chemical composition

Metabolome models (based on overnight void urine sam-
ples) of three distinctive foods representing examples of
Low skewed, Normal distribution and High skewed habi-
tual dietary exposure groups have been investigated in
more detail to determine whether the selected metabolites
could be correlated with known food chemistry(10,26,

32,33,40–51). Groups of participants were identified for each
dietary component to represent High, Medium and Low
exposure classes within the consumption ranges described
for each food in the GrainMark study. Thus for oily fish
(Low skewed) the Low consumption category represents
less than one portion per week, Medium is approximately
one per week and High is greater than or equal to two to
four portions week. For tomato (Normal distribution), the
Low consumers ate less than or equal to one portion per
week, Medium consumers ate greater than two to four

portions per week, while High consumers ate up to five to
six portions per week. High consumers of coffee (High
skewed) drank more than one cup per d while Medium
consumers had greater than or equal to two to four cups per
week and Low consumers more than or equal to one per
week. Despite the wide range of consumption frequencies
each of these distinctive foods generated adequate classi-
fication models (Fig. 4(a)).

In the GrainMark study, dihydrocaffeic acid-3-O-glu-
curonide was highly ranked as a potential biomarker of
habitual coffee exposure (Fig. 4(b)). Previous studies on
acute exposure to coffee reported the presence in urine
and/or plasma of at least ten phenolic compounds which
represented metabolic endpoints of the biotransformation
of chlorogenic acid and caffeic acid which is present at
high levels in this beverage(10,32,43,49). Although chloro-
genic acid and caffeic acid are found in many fruits and
vegetables and it is unlikely that dihydrocaffeic acids will
prove to be unique biomarkers of coffee consumption, it is
interesting that other phenolic metabolites identified in
acute exposure studies were not highlighted by this analy-
sis. Investigation of top ranked signals for oily fish expo-
sure showed that methyl-histidine (probably derived from
anserine, which was also highly ranked, by the action of
carnosinase)(40–42), was an excellent biomarker candidate
(Fig. 4(c)). Thus, the identity of both of these potential
biomarkers could be linked directly to the previous che-
mical analysis of each food. Although hippuric acids
(presumably derived from colonic fermentation of the
hydroxycinnamic acid content of tomato fruits(48)) were
indicative of tomato exposure, many highly ranked signals

Very low consump�on

Low skewed consump�on

Normal distribu�on

High skewed consump�on

Never 1/week 2–4/week 5–6/week 1/d 2–3/d

Habitual consumption patterns 
of distinctive foods in both 

MEDE and GrainMark studies

Consumption frequency 

N
um

be
r o

f p
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tic
ip

an
ts

Optimum classification statistic ranges using 
overnight urines in GrainMark study 

RF 
margin     

AUC  
values Examples

0·20–0·30 0·90–0·92 Citrus fruits, coffee and tea

0·16–0·33 0·79–0·93 Tomato, apples and alliums

0·10–0·20 0·63–0·83 Oily fish, red meat, sweet 
peppers, broccoli and peas

Modelling  not possible Liver, kidneys, bean sprouts and 
avocado

Fig. 2. Habitual food consumption patterns and overnight urine fingerprint modelling outcomes.

Consumption patterns in both the MEtabolomics to characterise Dietary Exposure (MEDE) and

GrainMark studies(26–27). Statistic ranges from the GrainMark study in positive ionisation mode. RF

margin, random forest margin values; AUC, area under the receiver operating characteristic curve.

Figures are derived from the data from experiments reported previously(26,27).
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proved to be dihydroxyphenylvalerolactone conjugates
that commonly result from the colonic fermentation of
flavonoids, such as flavanols(52) (Fig. 4(d)). As tomato
contains insignificant amounts of such polyphenols it is
most likely that these compounds are associated with foods
strongly co-consumed in meals containing tomatoes. This
observation highlights the requirement for careful valida-
tion of any potential food biomarkers in the context of the
whole diet and emphasises the utility of the test meal
approach (as used in the MEDE study) for the identifica-
tion of putative biomarkers which are causally linked with
food exposure. In addition, such data-driven strategies for
putative biomarker discovery are constrained by the robust-
ness of the original dietary intake data which may contain
inherent biases. Further, both conceptual and practical
challenges are likely in cases where there are strong cor-
relations between intakes of foods with related chemistries.

Conclusion

The advent of non-targeted metabolomics technology for
global chemical fingerprinting/profiling of human biofluids
has offered an opportunity to accelerate research on food
biomarker discovery. Recent data support the concept that
metabolomics analysis of 24 h or overnight void urine

samples, in particular, will provide a productive strategy
for the identification of candidate dietary exposure bio-
markers. The demonstration that biomarker discovery
using high throughput metabolomics is feasible using urine
samples derived from populations of free-living indivi-
duals(26,27,29,30) supports the ultimate objective of using
such biomarkers in epidemiological studies. Evidence is
now accumulating that a range of relatively frequently
consumed (i.e. one to two portions per week) and more
distinctive foods can be considered good candidates for
biomarker discovery using biofluid samples from cohort
studies(26,27,29,30). Many other foods forming major com-
ponents of composite meals, or less frequently consumed
food items, may be targets for biomarker discovery but
would probably require well designed, controlled food
intervention studies to identify candidate metabolites. In
future studies we propose testing this hypothesis by the
analysis of overnight urine samples collected at home by
individuals consuming carefully constructed weekly menus
designed both to provide adequate exposure to specific
dietary components and to offer foods in specific combi-
nations in order to expose any biomarker redundancy that
could confound dietary exposure measurement.

Ensuring the generation of accurate dietary information
in epidemiological studies requires considerable effort
from both researchers and study participants. Despite the

*Potential biomarkers 
in the literature?

Dietary component 
relatively distinct?

Consumption f requency range
of  dietary component adequate to 

create high and low exposure groups?

Classification test
• RF Margin values >0·2 between high 

and low consumers

• Create  more distinctive food group? 
• Amalgamate ‘similar’ dietary components?

Feature Selection

• Top 15–20 features with FDR-adjusted P-
values <0·01 & RF Importance Scores  >0.002

• If  identif ied, signals make biological sense*

• Food group not  distinctive enough?
• UK consumption f requency too low?

Validate potential biomarkers in independent structured 
dietary intervention and epidemiological studies

Analysis of  FFQ 
structure

Analysis of  FFQ data
for a specif ic dietary 

component 

Yes

Yes

Fail Pass

Fail Pass

Fig. 3. Example strategy for ‘data-driven’ biomarker discovery based on the GrainMark study using

overnight urine samples. RF, random forest; FDR, false discovery rate; dark grey arrows denote fail;

light grey arrows denote pass. Figure adapted from that presented previously(27).
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Fig. 4. (colour online) Habitual consumption of distinctive foods eaten in a range of consumption frequencies

is detectable in overnight urine samples by flow infusion electrospray–ionisation MS (FIE-MS) fingerprinting.

The data illustrated in this figure are derived from experiments previously reported(27). (a) Principal

component-linear discriminant analysis (PC-LDA) of the metabolite fingerprinting data (m/z 100–550; oily fish,

positive ionisation mode; tomato and coffee, negative mode) derived from the analysis of overnight ‘PRE’ urine

from participants classified as representative of low/medium/high exposure ranges (ten to twelve per exposure

group) based on the average FFQ score for exposure to these different foods. Oily fish: low, less than one per

week; medium, one per week; high, greater than or equal to two to four per week; tomato: low, less than or

equal to one per week; medium, greater than two to four per week to less than five to six per week; high,

greater than or equal to five to six per week; coffee: low, less than or equal to one per week; medium, greater

than or equal to two to four per week to less than five to six per week; high, greater than one per d;

eigenvalues (Tw values) are given in parentheses. Markers confirmed using Fourier transform-ion cyclotron

resonance ultra-mass-spectrometry (FT-ICR-MS), flow infusion electrospray-ionisation tandem MS and

MZedDB. (b) Signals highly ranked in habitual coffee exposure models. (c) Signals highly ranked in habitual

oily fish exposure models. (d) Signals highly ranked in habitual tomato exposure models.
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advent of increasingly sophisticated digital tools(1), diet
recording remains an inherent source of major uncertainty,
even in studies where individuals recording food exposures
are well trained and carefully monitored. Following vali-
dation in epidemiological and/or controlled dietary inter-
vention studies, it is expected that putative food intake
biomarkers can be translated into practical measurements
that can complement, or in some cases replace, more tra-
ditional methods of assessing dietary exposure. We con-
clude that in the not too distant future, urine biomarker
technology may allow objective monitoring of the levels of
intake of several key foods and strengthen the evidence for
causal links between dietary exposure and health out-
comes.
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