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Introduction

This paper, the second of a sequence beginning with [14], deals with the
relationship between a distributive lattice L = (L; v, A,0) with zero, and
certain spaces of minimal prime ideals of L. Similar studies of minimal prime
ideals in commutative semigroups [8] and in commutative rings [6] inspired
this work, and many of our results are similar to ones in these two articles. However
the nature of our situation enables many of these results to be pushed deeper and
thus to arrive at a more satisfactory state; indeed with the insight obtained from
the simpler lattice situation, one can return to some topics considered in [6], [ 8]
and give complete accounts. We do not do this in the present paper, but leave
the details to the reader, see e.g. [15]. Also a study of minimal prime ideals il-
luminates some topics in the theory of distributive lattices, particularly Stone
lattices.

After some preliminaries we present the basic properties of the spaces
Minp L, including a characterisation. Next some homeomorphism and isomorphism
theorems are given, followed by a brief discussion of functorial aspects. Our
main material comprises detailed discussions of the various forms of compactness
and connectedness which the spaces may exhibit, and we close the paper with
some examples which illustrate the theory and show the necessity of most of
our hypotheses.

1. Preliminaries

All lattices in this paper are distributive and possess a zero.

1.1. For the basic facts concerning minimal prime ideals belonging to an ideal
J of L we refer to [5]. The set of all minimal prime ideals belonging to the ideal
J of L is denoted .#7% ; in the case J = (0) we call the ideals minimal prime, and
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write the set of all minimal prime ideals of L as .#;. All hulls h( - ) and kernels
k(-) (see [5]) refer to 4.

1.2. The principal ideal of L generated by ae L is written (a),. For two
subsets A, B of L we put (4: B)] = {teL:t naeB for all ae 4}. If B = {0}
we write Af instead of (4: {0})/ and when A = {a} and B = {0} we write (a)}
instead of ({a}, {0})]. Also we put A}* = (A7)}. The dual ideal of dense elements
of L is Dy = {deL:(d)* = (0)}; we also have occasion to use Dj

= {deL: (d:J)f = J}, where J is an ideal of L.

1.3. Basic to what follows is the characterisation of minimal prime ideals:
a prime ideal M > J containing the ideal J of L is a minimal prime ideal belonging
to J iff for any x € M there is y ¢ M such that x A yeJ. In the case J = (0) we
obtain: a prime ideal M is minimal iff for any xe M, (x)*\M is non-empty.
If M is a minimal prime of L then: xe M iff (x)** < M; x¢ M iff (x)* < M.
We also need the result: k({Me #: M D A}) = Af for any A < L. All of these
results can be found in [8]. Finally it is shown in [14] that there is an order
isomorphism between the prime ideals not containing an ideal J of L and the
prime ideals of J as a lattice. The correspondence is P — P nJ with inverse P,
- (J: Py)f.

1.4. For basic facts concerning distributive lattices we refer to [1]; there
the least congruence ®’ having a given ideal J as congruence class is defined.
We will write L/J instead of L/©”. The empty set is denoted ¢, the set difference
of A and B by A\ B, and the cardinality of a set 4 by ]A]

1.5. Subscripts in the expressions such as .#,, (x), are only included when
the L in question needs to be emphasised; otherwise we write .#, (x).

2. Basic properties of Minp L

Equip # = #, with the topology induced by the closure operator
o — o~ = h(k(of)). The resulting space is denoted MinpL and called the
minimal spectrum of L. (Other writers have called this space the space of minimal
prime ideals, but since we propose to discuss the dual topology, it seems pref-
erable to avoid this usage.) The following have their easy proofs omitted.

ProrosiTiON 2.1. For any ideal J of L the set #M(J) = {Me#: M D J}
is open in Minp L. Further, the family u; = {#(x): x€ L} where #(x) = #((x)),
Sorms a (join) basis for the open sets of Minp L.

COROLLARY 2.2. For any ideal J of L the set h(J) = {Me#: M > J} is
closed in Minp L. Further, the family {h(x): x € L} forms a (meet) basis for the
closed sets of MinpL.
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ProrosiTioN 2.3. MinpL is a Hausdorff space.

Proor. For distinct minimal prime ideals M and N choose xe M\N; by
1.3, there exists y e N\M such that x A y = 0. Thus M € #(y) and Ne .#(x) and

M (x) (" A(y) = H#(0) = ¢.

The family p; in 2.1 forms a lattice which we call the dual lattice, and study
more in §3.

An alternative topology can be defined on .# which we call the dual spectral
topology; it may be defined as that topology induced by the closure operator

>l = {Me#: Mc U}

although we do not prove this fact. Instead we define it as the topology generated
by the family {h(x):x € L}; immediately dual results to 2.1, 2.2 can be written
down. We denote this space by MTﬁpL and remark that it is canonically homeo-
morphic with the space of maximal ideals of the dual lattice L equipped with the
spectral topology.

By a quasi-compact topological space we mean (following [2], Part 1 pp.
83-84) a (not-necessarily-Hausdorff) space whose topology satisfies the usual
covering axiom: every open cover possesses a finite subcover.

PROPOSITION 2.4. The space MinpL has an open basis such that

(i) each basis set is open-closed, and

(ii) the topology generated by the complements of these basic open sets is
quasi-compact.

PrROOF. The basis is of course p; = {#(x):xeL}. For by 1.3 #(x)=h((x)*),
and so each of the sets #(x) is open-closed by 2.1, 2.2. Also .# \.#(x) = h(x) and
so the second assertion is just the statement that MiHi)L is quasi-compact. Let
F = {¥,: iel} be afamily of sets closed in Minp L and having the f.i.p. Then as
each %; is of the form (N {#(x): xe 4;} for A; < L it suffices to consider a
family &' = {#(x): xe A} with the fi.p., requiring (& ' # ¢. But the
method of [8] Lemma 7.2 gives an M with M e () {#(x: xe A} and the proof
is complete.

PROPOSITION 2.5. The identity map 1: M — M#, defines a continuous
bijection from Minp L onto Minp L i.e. the spectral topology is finer than the
dual spectral topology.

Proor. The basis sets h(x) of Minp L are open in Minvp L and so the result
follows.

A Hausdorff space with an open basis consisting of open-closed sets is called
zero-dimensional ([2], Part 2., p. 200): thus we have from 2.3, 2.4 (i).
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COROLLARY 2.6. MinpL is zero dimensional.

Motivated by the preceding results we define a HausdorfT topological space
(X,7) to be a {-space if T possesses a basis & (which we call a {-basis) satisfying
(i) and (ii) of 2.4. Exactly as in 2.5 we note that every {-space is zero-dimensional,
hence the designation.

Our main result on {-spaces is a converse to 2.4 which was obtained jointly
with Mr. J. H. Rubinstein.

ProrosiTiON 2.7. Let (X,7) be a {-space with {-basis 6. Then if & is the
lattice generated by &', Minp& = (X, 7).

ProoF. It is clear that we may without loss of generality assume & = &',
Define a map ©: #,— X by Mt = [ {a: a¢ M}; we will see that 7 is well
defined. Firstly, each a € & is closed in the topology 7 generated by {X\a: aeé},
and as the latter is quasi-compact (by zssumption) and {a: a ¢ M} has the f.ip.,
we deduce that ") {a: a¢ M} # ¢. We next show that this intersection is a one-
point set. If £ # & are distinct points of the intersection, there is b, b’ in & such
that b nb" = ¢ and £e b, &' € b’. Thus (by the prime property) one of b, b’ is in
M, say b; by 1.3 there is c¢ M with b n ¢ = ¢. Clearly £ e ¢, and this contradicts
our assumption. Hence () {a: ae M} is a unique point and the map 7 is well-
defined.

We now observe that for any e X, M(£) = {aeé: {¢a} is a minimal
prime. It is easy to see that M(£) is prime; or the minimality take a € M(£), then
E¢aandthereish < X\awithféeband bed. Forthisb,b¢g M(()and a b = ¢
and so 1.3 applies.

It is now clear that

M@E) ={aed: N {b: b¢ M(§)} ¢a}
{& =N{arag MO}

and

proving that t is bijective.

Finally the fact that T and 7~ ! are continuous is readily seen since the basic
open sets ae & and {M e.#,: a¢ M} correspond bijectively.

Thus the proof is complete.

Some further results on {-spaces (including answers or counterexamples
to some obvious conjectures) appear in [9]. We close this section with one more
general result on {-spaces. Recall ([2], Part 2, p. 192) that a topological space X
is called a Baire space if every countable intersection of dense open sets in X is
dense in X.

PROPOSITION 2.8. Every {-space is a Baire space.

ProOOF. Let (X,7) be a {-space with {-basis & < .7 assumed to be a
lattice, and suppose {%,} is a sequence of dense open sets in (X,.7). Then
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=U/{a:aeéd,} for &, < & and the denseness of %, implies that for any
¢ # bed& there is a ae¥, with a nb # ¢. We will now show (1,9, dense.
Take x e X and a neighbourhood b of x, and we define recursively a sequence
{a,;n=0,1,---} =& Put a, =b and suppose a,_, is defined such that
bnayn- na,_; # ¢; then take a,€%, such that b na; n--- na, # ¢.
The sequence {a,: n = 0,1,---} clearly has the f.i.p. and consists of sets closed in
the topology generated by {X \a: a € £} and thus

@ @
¢ #Na,<bnN 9,
n=0 n=1
as required.

At present we have no more significant results concerning {-spaces, although
some are presented in [9]. However in [7] M. Hochster shows that the class of
spectral spaces of commutative rings coincides with the class of spectral spaces
of distributive lattices; it follows that this correspondence carries over to minimal
spectral spaces. In a paper ‘“The minimal prime spectrum of a commutative ring”’
Hochster gives many deep results concerning the spaces of the title and by the
above remark these all apply to the case of distributive lattices.

3. Some basic homeomorphisms and isomorphisms

The results in this section, apart from any intrinsic interest they may have,
will serve to simplify certain proofs in later sections. Our first result is a direct
analogue of one in | 8] and has its proof omitted.

ProposiTION 3.1. MinpL =~ Minpu,.

The map which effects the above homeomorphism is M— Mt={#(x): xe M}.
A similar result is the fact that the map M — Mg = M nJ where J is an ideal of
L is well-defined from 4, (J) into .#,;, and

ProposiTiON 3.2. A, (J) = Minpl.

ProoF. The fact that n is well-defined and bijective follows exactly as in
Proposition 1.2 of [14]. A routine argument will prove that corresponding basic
open set map onto one another, giving the result that 5 is continuous and open.
For a similar situation see §3 of [14].

The set #7 of all prime ideals which are minimal belonging to an ideal J
of L can be given a spectral topology exactly as .#; was (or, equivalently, the
relative topology derived from Spec L [14]). We call the resulting space Minp’ L.
The canonical homomorphism 6 = ' from L onto L/J induces an order iso-
morphism between .#7 and 4 177 and so we have, again omitting details,
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ProPoSITION 3.3. Minp’ L >~ MinpL/J.
The special case J = (x)* for an element x e L is interesting, since we can
show that an ideal M € .#™" is actually in .#. Thus

PROPOSITION 3.4. #(x) = Minp L/(x)*.

ProoF. Let ¢ be the map M —» M8’ with J = (x)*. Firstly ¢ maps #(x)
into ;) ; if M € # and x ¢ M then by 1.3 (x)* < M and so M € # " whence
MOe M .. To prove that £ is bijective we will show that .#(x) is exactly the
set of all minimal prime ideals belonging to (x)*; the latter it must be remem-
bered are not, a priori, minimal prime ideals of L.

Clearly #(x) = A#™" . To prove the reverse inclusion take Pe.# ™, and
for any te P there is t' ¢ P such that t At e(x)*ie. t At' A x = 0. Now x¢ P,
for if xeP it would contradict P > (x)*. Thus for te€P we have t'A x¢ P and
t A (" A X) = 0 whence P is minimal prime belonging to zero.

Finally we omit a detailed proof of the homeomorphism.

Corresponding to the preceding topological equivalents we have some
results relating the appropriate dual lattices; first however, we restate a result
from [8]; recall that a lattice L with zero is disjunctive if to any pair 0 # a < b in
L thereis O # ceLsuchthat0 =aAc# b Ac.

PrROPOSITION 3.5. The map x — .#(x) is a lattice epimorphism of L onto ji;.
It is an isomorphism iff L is disjunctive.

For yeL write #, = .#, for the set of minimal prime ideals of (y),.
For any element x e(y), we can associate .#,(x) with .# (x), and we find:

PROPOSITION 3.6. p;,) = (A(¥)),.
The right-hand term is the principal ideal of p, generated by .# .

Proor. The map is easily checked to be an epimorphism so that we need
only prove that it is injective. Suppose that for x, x’ in #(y) we have . (x)
= M (x). Then, recalling that any M, € .# (x) is of the form M n (y) for some
Me A (y), we see that M, e.# (x) means M; = M n(y) where x¢ M and
y¢ M, whence x" ¢ M and so M, e .#(x"). The reverse inclusion follows similarly
proving that #,(x) = .#,(x") and so completing the proof.

We close this section with some specialisations to annihilators. If for ye L
we write 0 or the canonical epimorphism of L onto L/(y)*, and keep the notation
of the previous proposition, we have

PROPOSITION 3.7. W,y = Bpjp)e

Proor. The map which effects the isomorphism is denoted by £ and given
by A, (x) > M 1,y (x8). We will only show that B is injective; the fact that it is
an epimorphism has its easy proof omitted.
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If
M 1y (X0) = My (x'6)
for x, x" in #(y), we deduce that (x: (»)*)* = (x', (y)*)* and so, as in 3.4 that
M (x) = M (x') whence A (x) = A (x) by 4.6. Thus the proof is completed.

COROLLARY 3.8. ',l(y) = u(y)" = !'I'L/(y)"

Proor. This follows from 3.7 and the fact that #(y) = #((y)**) 1.3 which
implies that Minp (y) = Minp (y)** = Z(y).

4. Functorial properties

In general the inverse image of a minimal prime ideal under a lattice morphism
is prime but not necessarily minimal prime. (Consider the map «: 3 — 2 where
3 ={0,1,2} and 2 = {0,1} are the 3- and 2-element chains, given by 0—0,
1 -0, 2 > 1). Thus morphisms between lattices do not induce continuous functions
between the corresponding Minp ( - ) spaces except in certain special cases. The
lattices which are of interest to us in this respect are Stone lattices: distributive
pseudocomplemented lattices which satisfy a* v a** = 1 identically. For some
properties of Stone lattices we refer to [13] and to [18]; in particular, in such
lattices each prime ideal P contains a unique minimal prime ideal which we
write (P)™. Under a (necessary) additional hypothesis this property characterises
Stone lattices and so they appear to be the natural class of lattices to which the
following proposition applies.

ProPOSITION 4.1. Let ¢: L, — L, be a lattice epimorphism between two
Stone lattices. Then ]
b,
b M, > My,

given by M"q& = (M¢p~ )" defines a continuous function between MinpL,
and MinpL, .
PrOOF. Firstly °¢ is well defined since M¢-1 is prime and so we use
the remark above. Also °¢ is continuous since for an ideal J of L, we have
M )OO = My (JP)

and so the inverse image of an arbitrary open set is open. This completes the proof.

It is not hard to prove that the correspondence L — Minp L is functorial
between the category of Stone lattices (as abstract algebras) and Boolean spaces.
Indeed this contravariant functor sends arbitrary products (coproducts) into
coproducts (products).

5. Compactness

As noted in [6] compactness in spaces of ideals is traditionally associated
with the presence of an identity, but not in the case of minimal prime ideals.
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What is more important in this situation is a certain property of annihilators.
However in the lattice (resp. commutative /-group, commutative ring) context
the existence of dense elements (resp. weak order units, non-divisors of zero) is
necessary but not sufficient for compactness; these are ‘‘almost’” identities and
so some harmony with the traditional situation is preserved.

In our works [12] and [15] we have presented some results on this topic
which we now repeat before extending them. See 1.2 for the definiticn of D = Dy.

ProrosITION 5.1. Let L be a distributive lattice with zero. Then the following
are equivalent:

(i) For any xe L there exists x’ € L: (x)** = (x)*.

(i) MinpL = MinpL.

(iiiy MinpL is compact.

(iv) py is a Boolean lattice.

(v) For any xeL thereexists X’ eL: x Ax" =0,xv x eD.

(vi) For any ideal J with J nD = ¢, there is Me #,:J < M.

(vii) {h(x): xe L} is a basis for the open sets of Minp L.

(viii) {#(x): x € L} is a basis for the open sets of M\i;zp L.

Proor. (i), (ii), (ii), (iv)), (v), (vi) are proved equivalent in [12] while (vii)
and (viii) appear (in the case of a commutative semigroup) with (iii) in [15].

We now ask when the basic open sets .#(y) are compact, leading up to some
conditions saying when Minp L is locally compact; we begin with a purely al-
gebraic result.

PROPOSITION 5.2. For y €L the following are equivalent:
(i) For any xe L there is x’eL:

(= MH*: H* = " (H*
(i) For any xe L there is x e L:
xAX e()*, xvx eDV,
(iii) For any te (y)** there is t’ € (y)**:
tat =0,tv 1t eDg..

ProoF. (i) implies (ii). We show that the x’ of (i) satisfies the condition
of (ii).

Firstly, x A x"e(¥)* since xe((x: (p)*)*: (»)*)* and so xe(x': (p)*)*.
Further, if t A (x v X"} e (y)* we must have te (x": (y)*)*, and te (x: (3)*)*. But
this means that te((x: ()*)*)*: (»)*)* and so t A te(y)*. This proves that
xvx eD?".

(ii) implies (iii). Take t e (y)** and consider it is an element of L. There is ¢’
by (i) such that t A t' € (y)* and t v '€ D?". Now since te(y)** we have

https://doi.org/10.1017/5144678870001911X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001911X

62 T. P. Speed 91

tAatat =0ie t At =0. Further, if s A (tv t) =0 for se(y)** we have
s€ (y)* and so se (y)** n(y)*.

Thus ¢t v t' is dense in (y)** and so £ v t’ € D,

(iif) impies (i). Take xe L and let x" = (x A y)’ where x A ye(y)** and
s0 (x A y) is defined and has the appropriate properties by (iii).

Then x AyAax =AY AxAy =0 and so x A x"e(y)*, giving
x€(x": (»)*)*. The reverse inclusion follows by using the fact that (x Ay) v (x A y)’
is dense in (y)**.

We omit the details.

The next result is part algebraic, part topological. The conditions in it will
shortly be seen to be equivalent to those in 5.2.

ProPoOSITION 5.3. For any y € L the following are equivalent:
(i) #(y)is compact as a subset of Minp L.

(i) For any xeL thereis x'e L: A(y) nh(x) = #(y A X").
(iii) (A(y)), is a Boolean sublattice of py.

ProoF. (i) implies (ii). Assume #(y) is compact. Then for any xelL,
M (Y) A h(x) 0 () {h(): te(x: (¥)*)*} = ¢. This readily is checked. Compactness
implies () nh(x) n N {h(t): tex: (H* i = 1,2,--,n} = ¢, or
A(Y) nh(x) nh(x') = ¢ where x’ = V;t,e(x: ()™

We will prove #(y) nh(x) = Ay A x') = h((y A X')*).

Suppose M e #(y) nh(x) and te L is such that t A y A x’ = 0. Then since
x" ¢ M by the above equation (*), y A x'¢ M and so te M. Thus (y Ax')*< M
and so M e #(y A x').

Conversely, if Me#(y A x") then y¢ M and x'¢M and so x¢ M since
x Ax" Ay =0. Thus M e #(y) nh(x). The implication is proved.

(ii) implies (iii). For any #(t)e(A#(y)), we have ()< .#(y) and so
M) = M(t A y). By (ii), there is t' € L such that #(y) nh(t A y) = H(y A t).
Now we have Ay At)n My At)=¢ and LAy At) UMy Alt) = H(y)
and so (#(y)), is a Boolean as a sublattice of p .

(iii) implies (i). Suppose we have a family of closed sets in .#(y) which have
the finite intersection property. Then by (iii) they are of the form {#(f)} with
M(t) € (H(y)) and " {A(t): teu} # ¢ for all finite u = T. Exactly as in 2.4 we
prove that there is a minimal prime ideal M with M e () {#(t): te T} and so
#(y) is compact.

PROPOSITION 5.4. For y e L the following are equivalent:
(i) For any x e L there exists x' € L such that

x AX ek, xvx eD,
(ii) For any x € L there exists x’ € L such that
H(y) Nh(x) = H(y A X).

https://doi.org/10.1017/5144678870001911X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001911X

[10] Spaces of ideals of distributive lattices II 63

Proor. (i) implies (ii). Choose the x’ in (ii) to be the one given by (i).

Now if M e #(y) nh(x), y¢ M and so (y)* < M and x € M. We must prove
that x" ¢ M. If x" € M then x v x" € M would follow proving that (x v x') As = 0
fors¢ M. Buts A (x v x") = 0e(y)* implies s € (y)* which contradicts (y)* = M.

Thus
M(y) nh(x) = Ay A X').

For the reverse inclusion, if y A x" ¢ M then y¢ M and, since yAx’ Ax=0eM,
we must have xe M. This proves the reverse inclusion and so #(y) nh(x)
= My AX).

(i) implies (i). Again we show that the x” defined by (ii) satisfies the con-
ditions of (i). Firstly, x A x" € (y)* since for any M e .#(y) either xe M or X' e M
(by A (y) " h(x) = M (y A x")) and so x A x" € (p)* = k(A(y)).

Also,if sA(x v x)e()*sAxAy=0andsAax" Ay=0.

Then se M for any M e #(y A xX") = M(y) ~h(x).

Also se M for any M e #(y)\ M (y) N h(x).

Thus se (»)* = k(#(y)) and so x A x' e D",

PROPOSITION 5.5. For any ye L the following are equivalent:
(i) For any xeL thereis x'eL:

(Gxz (MH*: (H* = (x": (N**.
(ii) For any xeL thereisx'eL:
x AX e(y)*, xvx eD.
(iii) For any te (y)** there is t’ € (y)**:
tat =0,tv it €Dy

(iv) A(y) is a compact subset of Minp L.
(v) For any xe L there is x' e L:

H(y) mh(x) =My v x).
(vi) (A(y)), is Boolean as a sublattice of p; .

ProoF. (i), (ii) and (iii) are equivalent by 5.2;
(iv), (v) and (vi) are equivalent by 5.3;
(ii) and (v) are equivalent by 5.4.

A brief condition concerning the non-compactness of .#(y) is the following:

PROPOSITION 5.6. For ye€L, if the subset .#(y) of Minp L is not compact,
there is an ideal J of L with J* < (y)* but (jY*d& (y)* for any jeJ.

Proor. If #(y) is not compact, there is a set {A#(t): te T} with
U {#1); te T} > #(y) but U {#(1): teu} D #(p) for any finite u < T. Take
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J =(T), and we have #(J)> .#(y) or J*<(y)*, but ()P HA(y) or
(j)* & (y)* for any je J. These last results follow on taking k() of both sides of
the appropriate relation.

Before proving our main result concerning local compactness of MinpL
a preliminary proposition is needed.

PROPOSITION 5.7. Define K< L by K = {xeL: #(x) is compact in Minp L}.
Then K is an ideal of L and {#(x): xe K} is relatively complemented as a
sublattice of py .

Proor. If x,ye K then #(x) u.#(y) is compact and so x v ye K. Also
if xe K and t £ x then t e K since () © .#(x) and a closed subset of a compact
set is compact. Thus K is an ideal. Regarding the last asertion, 5.5 tells us that
(#(x)), is complemeneted for x € K and the result follows.

PROPOSITION 5.8. The following are equivalent:

(iy MinpL is locally compact.

(i) For any M e # there is xe M: #(x) is compact in MinpL.
(iii) MH(K) = A.

(iv) {AM(x): xe K} join-generates py .

ProOF. (i) implies (i1). Suppose MinpL is locally compact. Then for
every M € ./ there is a compact neighbourhood € say with M € 4. Now for any
neighbourhood ‘¢ of M there is a basis set #(x) < # with M e #(x). Such an
#(x) must be compact and the implication is proved.

(ii) implies (iii). Assuming (ii)) we have: for any M e .# there is x ¢ M with
x € K. This implies #(K) = .4 as required.

(iii) implies (iv). We must prove that for any y € L there is a subset K, = K
with #(y) = U {#(x): xe K,}.

Assume #(K) = # and we see that

M(y) = M(y) nM(K) = H((y) " K)
= U {#(x): xe(y) nK}.

This proves the assertion.

(iv) implies (i). Since every set in the open basis is a union of compact sets
(by (iv)) every point M e .# has a compact neighbourhood and so MinpL is
locally compact.

COROLLARY 5.9. If p, is a generalised Boolean lattice, then Minp L is locally
compact.

ProoF. In this situation, every (.#(y)), would be Boolean and so, by 5.5,
each .#(y) would be compact.
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- Now it might be hoped that the following extension of 5.1 could be proved:
Minp L is locally compact iff u; is a generalised Boolean lattice. But this is not so
as is shown by J. H. Rubinstein in [9]. One final result before mentioning a
compactification of Minp L is:

PrOPOSITION 5.10. Suppose that L is closed under countable joins and
satiskes

xAV{yiiel} =V {xay:iel}
for I a countable set. Then Minp L is countably compact.

PROOF. Suppose {M,:ne H} is a sequence of minimal prime ideals of L. Take
% a free ultrafilter on N and define M(%) = {xeL:{neN:xeM,}e%}. 1t is
a prime ideal and we show that it is minimal. Take x e M(%) and {n: xe M, } e %.
From xe M, we deduce that there is y,¢ M, with x A y, = 0. For
y =V {y.: xe M,} we find that y ¢ M(%) and using the distributivity condition,
xAy=0.

The fact that M(%) is a cluster point of the sequence follows exactly as in [14].

And now, a compactification of MinpL. Form the Boolean lattice B,
= (B.; v, n ', ¢) generated by {#(x): xe L} = p, and then let X be the set
of prime ( = maximal) ideals of B,. Then the map t: # — X given by Mz
={DefB,: M¢ D} is readily checked to define a homeomorphism of Minp L
onto a dense subspace of the space of prime ideals of B, which is compact.

6. Connectedness

The space Minp L can exhibit many extreme forms of disconnectedness.
We begin with:

ProPOSITION 6.1. MinpL is totally disconnected.
Proor. This is immediate from 2.6, see [2, Part 2] p. 200.

A subset of a topological space is called a G; if it is the intersection of a
sequence of open sets. The complement of a G; is called an F,.

LEMMA 6.2. Every compact Gs in MinpL is expressible as a countable
intersection of the sets #(x) (xeL).

PrROOF. Let Y be a compact G; i.e. 'Y = [, A4, where each A4, is open in
Mmnp L. Then 4, = U {#(a): ae B,} for some B,= L and so Y =(,4,< 4
= U {#(a): ae B,} whence, by compactness of Y, we deduce that Y = .#(b,) < 4,
for some b,e L. Thus Y = (,#(b,) and the proof is complete.

Although the next result will soon be generalised it is stated separately
because of its special interest. First we need some definitions: a subset Z of
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topological space X is called a zero-set ([5] p. 14) if there exists a continuous
real-valued function f defined on X such that Z = {x e X: f(x) = 0}. It is shown
in [5] p. 15 that every zero-set is a G;. A subset W of a topological space X is
called a cozero-set if X \W is a zero-set, and X is called basically disconnected if
every cozero-set in X has open closure. We refer to {5] where many properties
of this class of topological spaces are given. We use ¢ to denote N, in order to
be consistent with normal usage in Boolean algebras.

ProrosITION 6.3. The following are equivalent:

(i) Condition a(*): For any A = L with !A[ £ o thereisa’ e L: A*¥* = (a')*.
(ii) ng is a o-complete Boolean lattice.

(iii) MinpL is compact and basically disconnected.

ProoF. (i) and (ii) are proved equivalent in Theorem 2 of [11].

(ii) implies (iii). Firstly p; is Boolean and so by 5.1 Minp L is compact.
Take a zero-set Z; by a preceding remark and the compactness of MinpL Z is a
compact G; and so by 6.2 above, expressible in the form Z = (,.#(b,). Again by
the compactness of Minp L, each .#(b,) is equal to h(b,) for some b, and so
MN\Z = U, #(b,). Also 4.1 implies that Minp L is the Boolean representation
space of the g-complete Boolean lattice p,, and so known results imply that
U, #(b’) has open closure: see [ 10] § 22.4. This proves that complements of zero-
sets have open closure, i.e. Minp L is basically disconnected.

(iii) implies (ii). Let 4 < L be a countable set. Then % = U {#(a): a e 4}
is an open F, in a normal space and so a co-zero set. Thus

U~ = (U{H(a): ae A}~
h( () {k(#(a)): a€ A}) = h(4¥)

is open-closed. By the assumed compactness of Minp L and by 5.1 there is a’ e L
such that ~ = h(4*) = h(a’). But then A** = (a’)* and our proof is complete.

il

We now present the generalisation of 6.3 referred to above. In the following
m denotes a cardinal larger than 1.

ProrosSITION 6.4. The following are equivalent:

(i) Condition m(*): For any A< L with ]Al < mthereisa € L: A** = (a’)*.

(ii) MinpL is compact and the union of not more than m open-closed subsets
of Minp L has open closure.

(iii) py is an m-complete Boolean lattice.

Proor. (i) and (ii) are equivalent by Theorem 2 of [11] Since MinpL is also
(canonically) the Boolean representation space of p, when (ii) or (iii) are assumed,
(ii) and (iii) are equivalently by known results concerning Boolean lattices [10]
§22.4.

https://doi.org/10.1017/5144678870001911X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001911X

[141 Spaces of ideals of distributive lattices II 67

COROLLARY 6.5. If L is closed under m-ary joins and is pseudocomple-
mented, then the properties of 6.4 follow.

PROOF. For A< L with | 4| £ m write a = \/ A. Then (a)* = (a*) where
a* is the pseudocomplement of a, and so A** = (a)** = (a*)*. Thus 6.4 (i) holds
and so the rest follow.

A topological space X is called extremally disconnected if the closure of
every open set is open — see [5] for some results on this class of spaces.

COROLLARY 6.6. The following are equivalent:

(i) For any A< L there is a’ e L: A** = (a')*.

(ii) MinpL is compact and extremally disconnected.
(iii) pg is a complete Boolean lattice.

Proor. This is just 6.4 for all cardinals m however large.

We next push the main idea a little further making use of the homeomorphism
Minp (y)** = #,(y) (3.2 with J = (y)**) and the isomorphism p,).s = (A(y)),
(3.8).

PROPOSITION 6.7. The following are equivalent:

(i) For all ye L, (y)** satsifies condition o(*) of 6.3.

(ii) pyg is a conditionally o-complete generalised Boolean lattice.

(iii) For all ye L #(y) is compact in Minp L, and Minp L is basically dis-
connected.

PROOF. (i) implies (ii). Assuming (i) we deduce using 3.8 and 6.3 (ii) that
e is 2 o-complete Boolean lattice or all ye L, i.e. (ii) above.

(ii) implies (ii ). By the implication (ii) implies (iii) of 6.3 and 3.2, we deduce
that each set (y) is compact and basically disconnected. Our conclusion now
follows from the (topological) lemma 4.6 of [6], i.e. if all the basic sets #(y) are
basically disconnected, then Minp L is basically disconnected.

(iii) implies (i). Assuming that all the .#(y) are compact and basically
disconnected (which is immediate from (iii)) we use 3.2, 3.8 and the implication
(iii) implies (i) of 6.3 to complete the proof.

The final two results follow from 6.4 and 6.6 using 3.2 and 3.8 exactly as
6.7 followed from 6.3

ProPOSITION 6.8. The following are equivalent:

(i) For all ye L, (y)** satisfies condition m(*) of 6.4.

(ii) p. is a conditionally m-complete generalised Boolean lattice.

(iii) For all ye L #(y) is compact in MinpL, and the union of not more
than m open-closed subsets of MinpL has open closure.
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PROPOSITION 6.9. The following are equivalent:

(i) For any yeL, (y)** satisfies: for any A < (y)** there exists a’ € (p)**:
A** = (a')*.

(ii) ny is a conditionally complete generalised Boolean lattice.

(iii) For all ye L #(y) is compact in MinpL, and MinpL is extremally
disconnected.

7. Examples and counterexamples

In general t does not seem easy to explicitly describe Minp L for a given L,
at least not for many lattices which arise naturally. Exceptions, of course, are
lattices where Minp L is a compact space and the problem reduces to the theory
of Boolean spaces. A possible explanation of this fact is that there is no body of
knowledge built up about spaces of prime (or maximal) ideals of lattices which is
comparable to that which exists regarding commutative rings or commutative
Banach algebras.

What we can do sometimes is relate the space Minp L to some other space
about which much more is known, or more often obtain a lattice L from an object
associated with a space about which we have knowledge, and thereby deduce
information about Minp L. It is this approach, similar to looking for problems
for which one has a solution, which we take below.

7A. The Lattices L(X).

In this subsection X will always denote a completely regular topological
space, [5] p. 36. We have already defined a zero-set in a topological space,
however we introduce the notation (c.f. [5] Chap. 1)

CL(f) = {xeX: f(x) = 0}

where fe C(X), the set of all continuous real-valued functions defined on X.
It is not hard to see that Z(fg) = Z(f) U Z(g) and Z(| f| + | g|) = Z(f) n Z(9)
where f, g € C(X), and so the family Z(X) = {Z(f): fe C(X)} forms a distributive
lattice called the lattice of zero-sets of X. These definitions apply to any topological
space, but for later use we need the following:

Lemma 7.1. If X is completely regular, then Z(X) is disjunctive.

PROOF. {Suppose ¢ # Z(f)< Z(g). Then choose x,€ Z(9)\Z(f) and, by
the definition of complete regularity, there is a continuous function h defined on
X such that h(x) = 0 for all x in the closed set Z(f), andih(x,) = 1 for the point
Xo ¢ Z(f). Clearly Z(1 — h) nZ(f) = ¢ and Z(1 — h) n Z(g) # ¢; thus Z(X)
is disjunctive.

Our next result provides a useful means of identifying 4 y,.
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LeEMMA 7.2. M?r;p Z(X) and BX (the Stone-Cech compactification of X)
are canonically homeomorphic.

Proor. We use the definition of X given in [5] pp. 86-87 i.e. fX is the set
of all z-ultrafilters on X equipped with a certain topology. Now it follows from
the definitions in [5] (which we omit) that a z-ultrafilter on X is just 2 maximal
dual ideal of the lattice Z(X), and so the set-theoretic complement (in Z(X)) of
a minimal prime ideal of Z(X). The topology which the set of all z-ultrafilters is
given is easily seen to carry over, via the correspondence just mentioned, to the
dual spectral topology on .#,, and so the proof is complete.

By the preceding Lemma it is clear that Minp Z(X) will equal X whenever
Z(X) satisfies any of the conditions of 5.1; in fact this is very rarely. A topological
space X is called a P-space if every zero set is open — this is equivalent to the
definition given in [5] where further facts about P-spaces may be found.

PROPOSITION 7.3. The following are equivalent:

(i) Minp Z(X) is compact.

(i) Minp Z(X) is canonically homeomorphic with BX.
(iii) Z(X) is a Boolean lattice.

(iv) X is a P-space.

ProoF. (i) and (ii) are equivalent by 5.1 and 7.1.

(i) and (iii) are equivalent by Theorem 2 of [12] in the light of 7.2 abeve.

Also since zero-sets are closed (iii) implies (iv) and (iv) similarly implies (iii),
completing the proof.

Thus any completely regular topological space X which is not a P-space
(e.g. an infinite compact space) gives us a lattice Z(X) for which Minp Z(X) is
non-compact. In fact we have more. Recall that a space X is perfectly n,ormal
if every closed set is a G;. ‘ '

PROPOSITION 7.4. Let X be a perfectly normal compact space. Then
Minp Z(X) is homeomorphic to the set X equipped with the discrete topology.

Proor. In this case Z(X) is just the lattice of all closed subsets of X. We
assert that for x € X the set M, = {ae€ Z(X): x¢ a} is a minimal prime ideal of
Z(X). and that all minimal primes of Z(X) are of this form. Clearly M, is a prime
ideal; for ae M, we have x¢a and by the normality of X we can find a closed
bo{x} witha nb=¢ie b¢M, ond a nb = ¢, which characterises M, as
a minimal prime ideal. Next take a minimal prime M of Z(X); the family Z(X)\M
has the f.i.p. and so, by compactness (| Z(X)\M 5 ¢. It is easy to see that this
intersection can only contain a single point, say x, and then M = M,.

. Thus X and .y, correspond bijectively, and we now turn to describe the
topology on ;. Let ae Z(X) be a closed set; then #(a) = {Me Myy:
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a¢ M} is open by definition, i.e. {M,: xe X and xea} is open. In particular
each set {M,} is open and thus the topology on .#y, is discrete completing our
proof.

In later work we will just identify Minp Z(X) with X when X is a perfectly
normal compact space.

7B. The Lattices L(A)

In this section A will denote a commutative ring, not necessarily with identity;
we will find that for any such A there is a lattice L(A) with canonically homeo-
morphic space of minimal prime ideals. The space X = Spec A of the ring A is
fully discussed in [3], [7], and the corresponding space Spec L for L a distributive
lattice is discussed in [14] although originally in [17]. We refer to these works
for notation and basic facts.

PROPOSITION 7.5. For any commutative ring A there is a lattice L(A)
such that X = Spec A and Spec L(A) are canonically homeomorphic.

PROOF. A basis for the topology of X = SpecA is the family of sets
X, = {xeX:f¢x} where fe 4. These sets satisfy X, n X, = X/, for f, ge 4,
and so finite unions of them, which we denote by X, = U { X,: feu} where u
ranges over the set #(4) of finite subsets of A4, form a distributive lattice. We
denote this lattice by L(A): it is the lattice of all quasi-compact open subsets of
X = SpecA. To prove the proposition we will show that the map

x> {X,eL(A): x¢ X,} = P,

defines a homeomorphism from X onto Spec L(A). Clearly P, is a prime ideal of
L(A). Conversely, if Pis a prime ideal of L(A) then {X,e L(4): X,¢P} =& is a
family of quasi-compact open subsets of X ; by a known result the easiest reference
to which is [7], the family & has a unique point in its intersection. Call this x
and then P = P_, as required. It remains to show that the exhibited bijection is
in fact a homeomorphism. But this is easy since the sets X, = {xe X: f¢x},
(fe A) and the sets {P,: X, ¢ P,} correspond bijectively, each being a basis set
for the respective topology. This concludes the proof.

COROLLARY 7.6. The spaces Minp A and Minp L(A) are canonically homeo-
morphic.

PRrOOF. It is only necessary to remark that the subspace Minp A of Spec A
can be identified by purely topological means (and similarly for L(A)). But this
is so because we can define the order x < y itff ye {x}~; MinpA is then the set
of points of X which are minimal in this order, equipped with the relative spectral

topology. The order is preserved by the homeomorphism and so the corollary is
proved.
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The corollary can be paraphrased as follows: if A is any commutative ring
the space of minimal prime ideals of the lattice L(A) of quasi-compact open
subsets of X = Spec A is cannonically homeomorphic with Minp A. A precisely
similar result is valid when A is replaced by any commutative l-group G; although
we do not give the (parallel) proof, we will use this fact in 7.12 below, and denote
the lattice obtained by L(G).

7C. Illustrations, and the necessity of hypotheses

ExaMPLE 7.7. Let X be an infinite discrete space. Then X is a zero-dimen-
sional Baire space (since it is locally compact) which is not a {-space; cf. 2.7, 2.8.

ExamPLE 7.8. Let X be the unit interval [0,1] equipped with the usual
topology. Then Minp Z(X) is an uncountably infinite discrete space by 7.4; in
particular Minp Z(X) is not compact, c.f. 6.1 above. Further, if a € Z(X) is an
infinite zero-set, then .#,(xy(a) is not compact cf. 5.5, 5.6 above.

ExaMPLE 7.9. Let X = BN\N where N is the natural numbers equipped
with the discrete topology. It is shown in [ 6] Example 5.9 that the ring C(BN\N)
is such that no point of Minp C(8N \N) possesses a compact neighbourhood.
Thus no point of the space Minp L{(C(fN \N) possesses a compact neighbourhood
by 7.6; in particular Minp L(C(SN\N)) is not locally compact, c.f. 5.8 above.

ExampLE 7.10. Let A be the ring of Example 3.3 of [6]. There it is shown
that Minp A is not countably compact, and so by 7.6 Minp L(A) is not countably
compact, c.f. 5.10 above.

ExaMpLE 7.11. Let G be a conditionally o-complete [-group without a
weak order unit. Then Minp L(G) is not compact although all of the sets #(x)
are compact and the space is basically disconnected. Thus 6.7 represents a non-
trivial extension of 6.3. Similarly, if G is a conditionally complete I-group without
a weak order unit, Minp L(G) is not compact although all of the sets .#(x) are
compact, and the space is extremally disconnected. Thus 6.9 is a non-trivial
extension of 6.6. These facts are proved in [16]. For I-groups with the stated
properties, see [1].

To conclude the author would like to thank Mr. J. H. Rubinstein for per-
mission to print the joint result 2.7, and the referee for his comments which led
to the rewriting of a first attempt of this paper.
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