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1. Introduction. LetR = (rtj) be an m X n matrix and let 5 = (sm) be 
dip X q matrix denned over a field F. The Kronecker product R X Soî R and 
S is denned as follows: 

Definition 1.1. The Kronecker product R X S of the matrices R and 5 is 
given by 

> n 5 r i2 5 . . . ri» 5" 
f2i 5 r22 S. . . r2n S 

1.1 i ? X 5 = 

-^ra l »J ^w2 o . 

where r^ 5; i = 1, 2, . . . , m\ j = 1, 2, . . . , n, is itself a p X q matrix (1, 
69-70). 

We shall always use the symbol "X" in a product of matrices to denote the 
Kronecker product. The ordinary product of R and S (whenever it exists) will 
be denoted by R • 5 or R 5. 

The Hasse-Minkowski invariant is a number-theoretic function occurring 
in the arithmetical theory of quadratic forms. With respect to the matrix 
A = (atj) of a quadratic form 

n 

Q = J2 dijXiXj, 
i, j=l 

it is defined as follows: 

Definition 1.2. Let A be an n X n non-singular symmetric matrix with 
rational elements and let Dt(i = 1, 2, . . . , n) denote the leading principal 
minor determinant of order i in the matrix A. Suppose further that none of the 
Dt is zero. Then the integer 

n - l 

1.2 cv = cp(A) = ( - 1, - Dn\ n iPu - Di+i)P 

is called the Hasse-Minkowski invariant of A where p is a prime and (a, 6)p is 
the Hilbert norm residue symbol (2). 

From the properties of the Hilbert norm residue symbol we get the following 
expressions for cp(A) equivalent to 1.2: 

1.3 . cp(A) = ( - 1, - 1), n (Du " D*-I)P 
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where D0 

1.4 

1, and 

cp(A) = ( - ! , - D1)p t l (Di+h " Dt)p. 

T h e problem considered in this paper is t h a t of obtaining the value of 
cp(A X B) in te rms of cp(A), cp(B) and the de te rminan t s \A\ and \B\ of A 
a n d £ . 

In the next section we prove a theorem giving the exact relation between 
cp(A X B) on one side and cp(A), cp(B), \A\ and \B\ on the other . In §3 are 
considered some part icular cases of this result. 

2. T h e H a s s e - M i n k o w s k i i n v a r i a n t cp(A X B) : We shall first prove the 
following L e m m a : 

L E M M A 2.1 . If A is a square matrix of order m and B is a square matrix of 
order n, then the leading principal minor determinant \DU\ of order u in the 
Kronecker product A X B is given by 

2.1 \DU\ = \Ar\
n-s\Ar+l\*\B\r\Bs\ 

where m + s = u; 0 < r < m ; 0 < s < ? z ; \Ar\ denotes the leading principal 
minor determinant of order r in A, \BS\ denotes the leading principal minor 
determinant of order s in B, and none of the determinants \Ar\ is zero. 

Proof. In the first place observe t h a t for a n y given u, 1 < u < mn, there is 
one and only one pair of integers r and 5 such t h a t m + s = u with 0 < r < m 
and 0 < 5 < n. W e therefore have : 

2.2 

\DU\ = 

auB 
a2iB 

a12B 
a22B 

alrB 
a2rB 

aitT+iB 

a2,r+iB 

(s) 

?(s) 

#r+l,r+l-£>(s) 

ar\B ar2B . . . arrB 

\Q>T+l,lB(s) #r+l ,2-B(s) • • • # r + l , rB(8) 

where Bis) is the n X s mat r ix obtained from B b y deleting the last (n — s) 
columns, J5(«> is the sXn mat r ix obtained from B by deleting the last (n — s) 
rows, and Bd) is the s X s mat r ix obtained from B by deleting the last (n — s) 
columns and (n — s) rows. F rom (2.2) we have, since \Ai\ = an ^ 0, 

I Ail = oîi 

B 

«llB 

an 

an 
B 

an 

<h±B 
an 

VnXn 

a22n 

#32 £> 

ar2r> 

VnXn 

a23±> 

a^n 

arz& 

OwXn 

a2r±> 

a%rn 

a2ir+itf 

(1) 
arrn ar,r+i^> (*) 

a n 
(D -Dis) CI) T>(S) 

. a r+i, rx> a r+i, r+i£> (s) 
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SO t h a t 

I A, I =aï i | J3 | 

Cl22-E> 

a$B 

ar 2B ar 3J5 

a ^ 5 
a2, r+l^ 

&r7. J3 CD >(*) 

(lr+l,r-L>(s) # r + l , r + l ^ ( s ) 

where 0wXw is the zero matrix of order m X n, 

CD _ aij a 11 — dadij 
an — 

an 
ij = 1,2, . . . , r + 1; 

and in particular 

aYi = M2I/M1I 9*0. 

Proceeding in this way we finally get, since none of \AV\ is zero, 

B 0, 

\DU\ = M.n^r-1 ( r - l ) 
° r + l , f r? 

( r - l ) X5(s) 

4 X « 

_(r) D ( « ) 
# r + l , r + l -L>(S) 

where 

Hence 

Cr-1) ( r - l ) ( r - l ) ( r - l ) 
(r) _ flr+l.f+l^rr ~ # r + l , r fly, r+1 

# r + l , r + l — n{T~l) 

Urr 

\A, 
\AT 

9*0. 

\DU\ = \Ar\
n-s\Ar+1\

s\B\r\Bsl 

which proves the Lemma. 

It is interesting to note that if we let r = m — 1 and s = n, then 2.1 
reduces to a well-known result (3) 

2.3 \A XB\ = \A\n\B\m. 

We are now in a position to prove the following: 

THEOREM 2.1. Let A be a symmetric matrix of order m and B be a symmetric 
matrix of order n. Let the elements of A and B be rational numbers and assume 
that all the leading principal minor determinants of A and B are different from 
zero. Then 

2.4 cp(A X B) = ( - 1, - 1) m+n—l cp(A)\n {cAB)}m (\A\, - i ) J - ( - » 

X (\B\, - l)lm(m-1} (\A\, \B\)T 

Proof. In the first place observe that A X B is symmetric and none of the 
leading principal minor determinants of A X B is zero since the same pro­
perties hold for A and B. Thus cp(A X B) has a meaning. Further from 1.3 
and 2.1 we have 

m— 1 n 

2.5 cv{A X B) = ( - 1, - 1) , E I n (\Ar\
n-s\Ar+1\

s\B\r\Bs\, 
r=Q 8=1 
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Since the Hilbert norm residue symbol (a, b)v satisfies the property 

2.6 (ai a2, b)p = (ah b)v (a2, b)v 

it follows that the factor written after the product signs on the right hand 
side of 2.5 breaks into twenty factors which are simplified as follows, where 
we have dropped, for convenience, the subscript p: 

(i 
(ii 
(iii 

(iv! 

(v 

(vi 
(vii 

(viii 

(ix 

(x 

(xi 
(xii 

(xiii 

(xiv 

(xv 
(xvi 

(xvii 
(xviii 

(xix 

(xx 

(Kr s , -1) = (\Ar\, - i r s , 
(\AT\*-; \Ar\

n-s+1) = (\AT\, \ArI)<"-s)(re-s+1) = 1, 

(M, |—, lA^r1) = (\Ar\, lA^tf*-'"-»- (\Ar\, M H - I I ) * - " , 

(\AT\", \B\r) = (\AT\, \B\)rl*-\ 

(\Arr
s, \B^\) = (\Ar\, \Bs^\r\ 

(\AT+1\
S, - 1) = (\Ar+1\, - lY, 

(\Ar+1\
s, \ATr+1) = (\Ar\, M r+1 | ) s ( ï î- s+1 ) = (\Ar\, \Ar+1\r, 

(\AT+1\
S, \AM\-1) = (\Ar+1\, - l ) 5 ' 8 - 1 ' = 1, 

(\Ar+1\
s, \B\T) = (\Ar+1\, \B\)". 

(\AT+1\\ \BS^\) = (\Ar+1\, IB^IY, 

(\B\r, - 1) = (\B\, - If, 

(\B\T, \Ar\
n-s+1) = (1,4,1, \B\y'n-s+1), 

(\B\\ M r + 1 | s - x ) = (\AT+1\, 151)^-" , 

(\B\\ \B\r) = (\B\, - \y, 

{\B\\ \B^\) = ( |5 | , IB..XI)', 

( l B . 1 , - 1 ) , 
(is.l, M rr

s + 1) = (\Ar\, \Bs\y~s+\ 
(\B,\, M r + i r 1 ) = (\Ar+1\, \B.\)-\ 

(\B,\, \B\r) = (|B|, \BS\)\ 

(\B.\, IB^D = (|5S_X|, |5 , | ) . 

All the well-known properties of the Hilbert norm residue symbol, in addition 
to 2.6, have been made use of in the above simplifications. 

The factors (ii) and (viii) drop out automatically. The factors (iii) and 
(vii) give 

(\AT\, \Ar+1\r
s'1}(\Ar\, \Ar+1\y

s = (\Ar\, \Ar+l\y. 

The factors (iv) and (xii) give 

(M,|, \B\y(n-s+1)(\AT\, \B\y'n's) = (|,4r|, \B\)'. 

The factors (ix) and (xiii) give 

(\Ar+1\, | £ | r ( K + 1 | , |5 | ) r ( s - x ) = (M r + 1 | , \B\y. 

The factors (xi) and (xiv) give 

( | S | , - 1 ) ' ( | B | , - l ) r = 1. 
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Hence the factor on the right hand side of 2.5 reduces to 

2.7 f = (\Ar\, \AT+1\)
n (\AT\, \B\Y (\Ar+1\, \B\)r (\AT\, - 1 ) - ' (\Ar+1\, - l ) s 

X {(\Ar\, \Bs\r
s+1(\AT\, \B^\rs}{(\Ar+1\, l ^ i r 1 (\Ar+1\, \B^\y} 

X {(\B\, \BS\Y (\B\, IB^IY} l(\B.\, - 1) (\B.\, |B_i|)}. 

Now 

n {(\Ar\,\Bs\r
s+1(\Ar\,\Bs-i\r

s} 

= (Mrl, i r ^ n (Mr|, l ^ l ) 2 ^ } (\Ar\, \B\) 

= (\Ar\, |B I) 

since (\AT\, 1) = (\Ar\, l)p = 1 for any prime p. 
Similarly 

n KMUil, IB.i)-1 (\Ar+1\, IB^IY} = (Mr+1|, \B\)n-\ 
s=l 

I Î {(|B|, |B.|) r( |B|, |B^i|) r} = ( | B | , - i r 

and 

I I {(\BS\, - 1) (|B.|, |BS_X|)Î = ( - 1, - 1) \c(B)} 
5 = 1 

from 1.3 and 2.6. 
Hence we get 

F = n {f} = (M.i, K+ 1 i r 2 (\Ar\, \s\r ( K + 1 | , \B\r 

X (\AT\, - l)in(n-1} (MH-II, - l)é"("+1) (Mr|, |B|) 
X (M,+1|, \B\)n~l (|B|, - I)' ( - 1, - 1) {c(B)\. 

But 

(Mrl, \Ar+l\f = {\Ar\, M m l ) " * " = ( M ,+11, \Ar\)\ 

Hence 

2.8 F = ( - 1, - 1) {c(B)\ (|B|, - 1)' (Mr|, - DW-11 

x (MH-II, - i)^""1 ' (MH-II, - M,D" 
X { ( M , I , i s i r + l ( M ^ U B i r ^ - 1 } . 

Now 

f=0 

and 

n d-Bi , - i ) r = (|BI, -1)*«<—», 

m— 1 

n {(i4r|, - D*" 0-" (Mr+1i, - D*"0-"} = (MI, - D 1 " - " 
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m—1 

n {(\Ar+1\,-\Ar\)
n} = i(-i,-i)c(A)r 

from 1.3 and 2.6. 
Finally 

m— 1 

n {(\Ar\,\B\r+1(\Ar+1\, \B\r+n-i\ 

= (M|, \B\T*-\ 

Making use of all these simplifications, we get 
m— 1 

n {F} = ( - 1, - l )m {c(B)}m X (|^|, - lfn{n-l) 

X { ( - 1, - l)c(A)}n ( |S|, - lfm{m-l) (\A\y \B\)mn-\ 

This, after a little rearrangement and restoring the prime p, reduces to 2.4. 
This completes the proof of the theorem. 

3. Some particular cases. We shall show that two well-known formulae 
are particular cases of the result 2.4. 

Jones (2) has shown that if a is a non-zero rational number and B is an 
n X n matrix whose Hasse-Minkowski invariant is defined, then 

3.1 cp{aB) = cp(B) (a, - l ) |w U + 1 ) (a, \B\)l'\ 

This can be easily deduced from 2.4 by observing that a B = a X B, a 
being a scalar. 

MacDuffee (3) has defined the direct sum of matrices A and B by the relation 

A +B = 
A 

LO B °i 
B A where 0 is a null matrix of appropriate order. Let B be an n X n matrix whose 

Hasse-Minkowski invariant is defined and let 

Am = B + B + ...+B 

there being m B's in the direct sum. Bose and Connor (4) have shown that 

3.2 cp(Am) = ( - 1, - I)™-1 [cv{B)\m (|B|, - l),*»0"-". 

This can also be deduced as a particular case of 2.4 by observing that 
Am = B-\-B-\-B + ...-\-B = Im X B where Im is the identity matrix of 
order m. 

Applications of the result 2.4 to some combinatorial problems connected 
with statistical designs are being investigated (5). 

4. Summary and acknowledgment. In this paper the Hasse-Minkowski 
invariant cv (A X B) of the Kronecker product of matrices A and B is obtained 
in terms of cp(A), cp(B), \A\ and \B\ ; and two well known results regarding the 
Hasse-Minkowski invariant are shown to be particular cases of the result. 
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