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The concept of a "set of p-discs" for complex-valued functions defined in

the open unit disc U was introduced in [4 5, p. 265] and various results

concerning the existence of such sets associated with spirals and Stolz angles

were derived. These sets are non-Euclidean analogues to the classical cercles

de remplissage of Milloux [7 8]. In the present paper additional theorems

about Stolz angle phenomena and the existence of p-discs in more general

subsets of CJ are established and new proofs are indicated for some results of

Seidel [9, Theorem 2 and Corollary 1].

It is necessary to recall some definitions. We view the open unit disc U

as a non-Euclidean plane of the Poincare variety, employing the non-Euclidean

metric defined by d(zQ, z) - ^~ log -γ-1—, where u = | τ-^—j» and z0, Z<EU,
& x. 1A j _L —~ Z dZ j

[21 Given a point τ for which | r| - 1, the set of all z e U for which

I arg (1 - τz) \ < a < ~~, I z - r 1 < ε,

where a is a given angle and ε is so small that the boundary of the resulting

set has only the point r in common with the boundary of Z7, is called a sym-

metric Stolz angle with vertex τ and opening 2 a, and will be denoted by Λf«.

We now define what is meant by a set of p-discs for a complex-valued

function / defined in U and taking its values in the w-plane [5]. We shall say

that /possesses a set of μ-discs if for any prescribed sequences {Lv\v = 1, 2, . . .}

and {ev|ι> = l, 2, . . .}

where

(A) KLχ<L2< - <Lv<Zv+i< , limLv= °°,

and
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(B) 1 > ei > e2 > > ev, > ev + i > * , lim ev = 0,
V-»oo

there exists a sequence { D v l / ' - l , 2, . . .} of discs D» = {z\d(ζ),, z)<ev} in £/,

having the following proper t ies :

(C) |CvKlCv+il, * = l, 2,

(D) li

(E) in each disc Z)v, i> - 1 , 2, . . . , the function / assumes all values w satisfy-

ing \w\<Ly,y with the possible exception of a set of values, £\,, whose diameter
2

is less than τ -

Any such sequence {Dv} or any infinite subsequence {DVA|£ = 1, 2, . . .} of

{Dv} will then be called a set of p-discs for f.

The set of centers {Cv} associated with such a set of discs is called a set
00

of p points for f. In the set U Zλ, the function / obviously assumes infinitely
v = l

often every finite complex value, with at most one exception. The term μ-

discs is used to indicate the analogy to Milloux's cercles de remplissage for

entire functions. As pointed out in [5], it is possible to give other essentially

equivalent definitions of a set of p-discs, and this has been done in a subsequent

paper Cl, p. 264], in which, with the aid of the concept of normal functions

[6], generalizations of some of the results in [5] are established, in particular,

results concerning what were called p*-spirals in [5, p. 271].

THEOREM I. Let f be holomorphic in U and let x = etφ be a fixed point!

I TI = X. Let {zn) and {z'n} be sequences of points in U having the following

properties:

(i) Zn=zpne
ip; z'n = Pneh; Pn>0, p'n>0;

(ϋ) Pn<Pn<Pnϊl<Pn + i I

(in) lim d(zn, 2n+i)<tf, 0<σ<OQ

n->oo

(iv) f(zfn)-+ °° as n-> °° ',

(v) \f{zn) I <M, where M is some finite constant w = 1, 2, . . . . Then there

exists a set of p-discs {Zλ} of f such that U D*CJχ,?t where β is any angle
V = 1

which satisfies 0<β< ^ and σ<d(β) = 2 log cot ̂  ̂  - j*-J

Proof. To prove the theorem we employ the following lemma which is
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based on Schottky's theorem and is part of a lemma proved in [δ, Lemma 1].

LEMMA 1. Let -η and λ be given numbers satisfying 0 < γ < λ < oo. Let f be

holomorphic in the disc {z\d{z^, z)<λ) and let it fail to assume the values 0

and 1 there. If \ f(zo)\> Ei, ivhere Eι is a certain positive constant which

depends only on -η and λ, it then follows that for all z in the disc {zldizo, z)

<λ--η} we have \ /(zo)l F'z < 1/(2)1, where Ei is another positive constant de-

pending only on vj and λ.

We now use this lemma, with y = -£ and λ = σ, to prove:

LEMMA 2. The points z'n of Theorem I have the following property: there

exists an index N such thai for infinitely many n>N the function f assumes

the value 0 or the value 1 in the disc Cn(e) = {z\d(z'n, z) <a).

Proof. By conditions (i)-(iii) of Theorem I, we know that for infinitely

many «>some m the disc Cn(w ) Ξ= \z\d(zl

m z) < ~£-j contains a member of the

sequence {zn). By condition (iv) and Lemma 1, there exists an N>nι such

that n>N implies M< |/U5,)Γ2 < | / U ) | for all 2 G C ^ ). if the disc Cn(a)

contains no points at which / assumes the values 0 or 1. This contradicts (v),

and proves Lemma 2.

The establishment of Lemma 2 now enables us to use Theorem I in [5]

to assert the existence of a set of p-points {Cv} for / and that these points are

located in our discs Cn{σ). Now U Cn{o) is bounded by two hypercycles which

are symmetric with respect to that diameter of the unit circle which terminates

in τ. At r these hypercycles form angles - γ and γ with this diameter, γ satisfy-

ing 0 < r < I ' a~ 2 * o g c o t ( 4 ~" V) Ξ ^^r^* ^ w e r e ^ e r t o condition (B) of

the definition of p-discs, above, and consider appropriate hypercycles, we can

readily assure ourselves that the p-discs associated with the Cv may be chosen

to lie in J-f?, if β satisfies 0<β< Γ* and σ<δ (β). Theorem I is now proved.

Before proving the next theorem it is necessary to give several definitions.

By a spiral we mean a simple continuous curve in Ugiven by z = C(f), 0 <, t < oo,

where lim |C(ί) I = 1 and limargC(ί)= °°. If a spiral S is given by 2 = C(ί),

then, for a given value of t there exists a first value of t, say tr, satisfying

t<V and argC(*')=argC(f)+2τr. We let jι = μ(S) = limrf(C(ί), C(ίO), this
ί->00

number giving us a measure of the "tightness" of the spiral S. By the symbol

https://doi.org/10.1017/S0027763000002385 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002385


44 L. H. LANGE

(V, μ< oo) w e shall mean, as in [5], the family of all unbounded holomorphic

functions in U for each of which there exists some spiral S, with μ(S) < °°, on

which the function remains bounded.

The next theorem concerns spirals and Stolz angles.

THEOREM II. If f <= (F, μ< <*), then for arbitrary r, with | r | = l, there

exists a set of p-discs jor f in Jτ.p if β satisfies 0< β< -~ and μ<δ(β).

Proof Let S be the spiral in our hypothesis; that is, \f{z)\<M for z e S

and μ(S) < °°. According to a theorem stated by Valiron LlO], a theorem for

which a correct proof is indicated in [1, Lemma 1], there exists a spiral S'

along which / tends to infinity. Letting τ = etφ be an arbitrary point on the

boundary of U> letting e>0 be given, referring to the definition of μ and the

fact that S' is a continuous curve, we can readily establish the existence of a

pair of sequences {zn) and {z'n}, with Z « G S and z'n e S', meeting all the require-

ments of the hypothesis of Theorem I for a = μ + e. The conclusion of Theorem

II then follows from Theorem I.

Remark /. If one established the inequality μ(S) <2 μ(S) and then used

Theorem VIII of [5] to get an estimate on the size of the Stolz angle we are

dealing with here, the resulting estimate would be weaker than the one given

in Theorem II.

Remark 2. The work above, based on Schottky's theorem, yields new

proofs of two results of Seidel [9, Theorem 2 and Corollary 1], results there

proved with the aid of normal family arguments. See Remark 3, below.

The next theorem puts into a more general setting the basic argument

employed in the theorems above.

THEOREM IU.Ύ Let f be holomorphic in U and let A be any set A<^U, such

that AC\(U- U)^0. If there exist sequences {zn} and {z'n} in A such that

(i) limdizn, Zn) =af<a, 0<σ< °o

(ii) l i m / ( « i ) = oo;
λ<->αo

(iii) \f(zn)\<M, where M is a finite constant; n — 1,2,... then there

exists a set of p-points for f in the set A{o) = {z\d(At z)<a). (d(A, z)

=>g.l.b.{d{zf, Z)\Z'GLA)).
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Proof. Using Theorem I in [5], all we must do here is to show that for all

sufficiently large n the discs Cn(a) Ξ {z\d{z'n, z)<a) each contain a point C*

such that either /(Cn) =0 or /(C*) = 1. This we easily accomplish with the

aid, once more, of Lemma 1, above. For if n is large enough, the conditions

in the hypothesis of Theorem III insure both the existence of a point

zMg Cn(σ 2 ° ) and t n e validity of the inequality

M<\f(z'n)\E2<\f(z)\

for all 2 e Cn{ - ~ ^ ) Ξ {z\d(z'n, z) <,~a~~1-), if C«(<τ) does not contain points

C at which / assumes the value 0 or 1. This would contradict condition (iii)

of our hypothesis and hence Theorem III is proved.

To state our next theorem we need the following definition [3, p. 1211. If

A is any subset of U such that AΓ\0-U)*βf then by the symbol R(f, A)

we mean the set of all finite complex values a for each of which there exists

a sequence of points {2n}, with zn<^A, and lim I a« I =* 1, such that f(zn)=a.
n-*co

By CR(f, A) we mean the complement of R{f, A) with respect to the set of

all finite complex numbers.

THEOREM IV. Let f be holomorphic in U and let A be any set A c U, where

Ad (£7— U) # 0. Let CR(f, A) consist of at most one (finite) complex value.

If there exist a positive constant a and a sequence {zn) of points Zn^A such

that

(i) lim/U«) = oo, and
n->oo

(ii) G {z\d(z'n, z)<a)^A,
n = l

then there exists a set of p-points for f lying in the set

Proof Here again we use Theorem I in [5], together with an argument

similar to the one used in proving Theorem VII in [53. Since C/?(/, A)

consists of at most one finite complex value, there exists a sequence {Ck} of

points c i e A such that for each k either /(Ci) = 0 or f(ζ'k) = 1. We are then

assured, by conditions (i) and (ii) in our present hypothesis, of the existence

of a sequence of discs Cn(σ) ̂ {z\d(zf

ni zXa) in each of which the function /
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assumes the values 0 or 1 and such that lim f(z'n) = oo. By Theorem I in [5]

there exists a set of p-points {Cv} of / associated with the set A These p-

points need not all lie in A, (see condition 3 of Theorem I in [5] and the proof

of Theorem VII in [5], but we can say that they necessarily satisfy d(A, Cv) <a

for every v. Our theorem is proved.

Remark 3. The nature of the set A in special cases may, of course, permit

us to assert the existence of a set of p-points lying in a set which is smaller

than A{σ). To illustrate this, we consider the theorem of Seidel mentioned in

Remark 2, above. In our notation, his theorem reads:

If f e (F, μ<cχ>), then for arbitrary r, where | r | = l, the set C/?(/, Jτ,*)

consists of at most one finite complex value for every Jτ,« for which β<δ(a).

If we now applied our Theorem IV (its hypothesis can be satisfied, with

a — μ, if we use the "Valiron spiral" occurring in our proof of Theorem II,

above, and make repeated use of the Heine-Borel theorem), we could then say

that there exists a set of p-points for / lying in J(

τ%. (If it happens that ji = 0,

we may let a be an arbitrary positive number and make the appropriate

adjustment.) This latter estimate is not, however, as good as the one proved

in Theorem II, above.

Since the primary use of Theorems III and IV may involve sets A which

are Stolz angles, it is perhaps worthwhile to record the following corollary

concerning symmetric Stolz angles.

COROLLARY 1. 7/ the set A in Theorems III and IV is a {symmetric) Stolz

angle Jx,a then the set J(

τ% may be replaced by any Stolz angle Jτ,? satisfying

The proof of this corollary is easily effected by a consideration of hyper-

cycles terminating in τ. (See the argument which precedes Theorem VIII in

[51)

In [5] and [9] several non-Euclidean analogues to the classical lines of Julia

for entire functions were established. (See the Jo-spiral of Seidel in [9, p.

162J Γδ, p. 273] the p-spiral, the p*-spiral and the p-line in [5, p. 271 and p.

276]. See also [1, p. 264]). We state below an elementary corollary involving

the p-line.
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If A is a radial line joining the center 0 of the unit circle to a point r, I r| = 1,

such that in the angular sector determined by an arbitrarily prescribed positive

angle a having its vertex at 0 and having A as its bisector there is to be

found a set of p-discs for a given function /, the line A is called a p-line of /.

The proof of this corollary is then clear:

COROLLARY 2. If f and A satisfy the hypothesis of Theorem HI (or IV),

there exists a μ-Iine of f terminating in Λ[σ) Π (ϋ- U) = A Π (Π- U).

Of course, this p-line terminates in r if A is a Stolz angle at τ.
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