BOUNDS FOR SOLUTIONS OF A SYSTEM OF LINEAR
PARTIAL DIFFERENTIAL EQUATIONS ON DOMAINS
WITH BERGMAN-SILOV BOUNDARY
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1. Introduction.

1. The method of integral operators has been used by Bergman and others
(4;6;7;10; 12) to obtain many properties of solutions of linear partial differen-
tial equations. In the case of equations in two variables with entire coefficients
various integral operators have been introduced which transform holomorphic
functions of one complex variable into solutions of the equation. This approach
has been extended to differential equations in more variables and systems of
differential equations. Recently Bergman (6; 4) obtained an integral operator
transforming certain combinations of holomorphic functions of two complex
variables into functions of four real variables which are the real parts of solu-
tions of the system

%y
= F1(21, Zl*)‘l’y
0z, 9z.*
1) 212 “
iy "
92, 925 Falzz 29,

where 21, 21, 22, 22* are independent complex variables and the functions
F; (j =1,2) are entire functions of the indicated variables. (In general, j
takes the values 1 and 2. Note that if the variables x1, v1, x, y2 are introduced
in the usual manner by writing z; = x; + 2y;, 2, = x;, — ¢y, and if the new
variables are restricted to real values, z,;* coincides with the conjugate Z, of z;).

Bergman showed that there exist four functions 7,(z; 2,* ¢;) and
P,(z;, z;* ¢;) which are entire functions of the indicated variables such that
every real solution of (1), regular at the origin, can be represented in a neigh-
bourhood of the origin in the form

2) ¥ (21, 21, 22, 22) = Rel[y/ (21, 21, 29, Z2) + ¥ (21, 21, 29, 22)],

where
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(2a) ¥ (21,21, 29, 22) = ga(21, 22) + ‘£=0 T'1(21, 21, $1)g1(¢1, 22)din

+ J{ e (22, 22, $2)g1(21, $2)dSn
+ f J L1746 250 £)g1(5n, £2)ds1 de,
f1=0 Jro—0

(2b) ¥ (21, 21, 22, B2) = ga(z1, 22) + £ . Pi(z1, 21, $1)g2(C1, 22)ds

z22

+ Py(22, 2, $2)ga (31, $2)dis

$o=0

+ -£1=0 J; =0H7’P1(ij Z;, £5)82(C1y C2)di1 dis

and g, and g, are arbitrary functions of 21, 2, and 2, Z» respectively, holo-
morphic in a neighbourhood of the origin.

In this paper we assume that g; are defined on a domain lying in the space
C? of two complex variables whose boundary consists of a finite number of
segments of analytic hypersurfaces. The intersections of these hypersurfaces
form a 2-dimensional manifold called the Bergman-Silov boundary of the
domain on which a function holomorphic on the domain takes the maximum
of its absolute value. The closed domain consists of the interior 9%, the
Bergman-Silov boundary ©2, and the complementary part b? of the 3-dimen-
sional boundary m?. (The superscript indicates the dimension of the set.) We
investigate what properties of the solution on b? can be used to obtain bounds
for the solution on % In §§2 and 3 bounds for the solution in a set N* C P4,
where z = (21, 22) € N* implies that a 2-dimensional set €2(2) lies in 4 (see
(3)), are obtained by means of the Schottky inequality for holomorphic
functions of one complex variable. In §2 it is assumed that through every
point { of &2(z) there passes an analytic surface A2({) which intersects the
boundary of ¢ in a set lying on one analytic hypersurface only. In §3 this is
extended to the case that 92(¢) meets m® in a Jordan curve which cuts the
Bergman-Silov boundary in a finite number of points if the functions g, in (2)
are bounded in a neighbourhood of the Bergman—Silov boundary lying on m3.
For other possible bounds for holomorphic functions of two complex variables,
see (9; 13).

The author wishes to thank Professor Bergman for several helpful discussions
in the preparation of the paper.

2. Geometry of the problem. Let IM* be a domain in C? with boundary m?® and
0 € M4, which possesses a distinguished piece of boundary D? in the sense of
Bergman-Silov boundary. ©? is constructed as follows (3; 5):

n
3 T3
m =Ulk)
k=1
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where 1,3 is a closed segment of analytic hypersurface and # is finite:

-iks": U §k2()\k)y

02

3,2(\e) being a segment of analytic surface given by
\_C}kz()\k) = [zlzj = hi;(Zy, o)y j = 1,2, IZk[ < 1],

H; = (g1, hg2) a 1 to 1 continuous map of Dy = [|Z;] < 1] X [0 < N < 27]
onto 1,3, each h;; being a continuously differentiable function on D;* and holo-
morphic on |Z;] < 1 for each A\; in [0, 27]. Since D;? is compact, the set i;? is
compact and Hj is a homeomorphism. Hence m?® is compact and since 0 € Ii*
and IMM* is connected, PM* is bounded. For fixed N\, let A,(\;) be the point
(hx1(0, Ni), Bx2(0, N)) corresponding to Z; = 0 and call

the axis of ;% The representation of ;3 given here is said to be normalized
with respect to the axis ;! (3, p. 186). On m?® there are two kinds of points,
namely those that belong to one 1,* only and those that belong to the inter-
section of two or more 1;*'s. Bergman has shown that every point of the
boundary curve i!(\;) of §2(\:) must belong to the intersection of two or
more ;*’s (2). Thus

W) = Uk 0w, w0 = 600 NE =R,

Set
@ksz = U iksl(kk) = U iksl()‘s)y
02T 0<h <2
and
DP=U UG  (s=Fk)
k=1 s=1

is the Bergman-Silov boundary of It
If we assume for every s in (0, so] with s, sufficiently small that the sets

2|2, = he;(Zj Mo — 15), Zi € BNy s), B = 1,..., ]

form the boundary of a domain M, with M, C M*, where B2(\,, s) are
simply connected domains which for s = 0 become the unit disk [Z;] < 1,
and for each Ny, 74;(Zx, \y — is) are continuous in Z; and s on |Z;] < 1,
0 < s < so, then it follows from Cauchy and Morera’s theorems that f(zi, 22),
holomorphic in 9* and continuous on M4, implies Flx1(Zy, M), Fxe (Zi, M) ]
holomorphic on |Z;| < 1 for every \; € [0, 27] (3, p. 188).

Let §,'(z;) be a curve in the z;-plane connecting 0 to z; whose points {; are
such that [¢;] < |z;]. Set

3) @2(z) = Cil(z1) X Col(z2) = [¢ = ({1, $2)[$5 € ()]
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Then for each z € I for which &2(z) C M4, bounds can be obtained for the
functions g;in (2). Let N* be the largest subset of M* such that z € N*implies
that &2(z) C M* (Notice that for any bicylinder or complete Reinhardt
circular domain with center at the origin M* = IN4.)

Let o2 = [w]| w; = f,()] be an analytic surface through the point z, that is,
f; are holomorphic functions of the complex variables ¢, chosen so that the
boundary a! of the set Az = A2 M I lies on m® and the inverse image of 92
under the mapping F = (f1, f2) is a compact set in the ¢-plane. (The boundary
of 92 could lie partly in I*%) Similarly assume that through every point { of
©?2(z), there is an analytic surface %(¢) with the same properties as 9,2

The representation (2b) is valid for ¢’/ only if the domain IR* is symmetric
with respect to x; y; xo.-space; that is, (21, 22) € IM* implies (21, Z2) € M4, and
we may take the curve joining 0 to 2, in the z,-plane as the reflection of §,!(z5)
with respect to the x,-axis. Also the functions g;(2;, 0) and g2(0, 22) are assumed
to be holomorphic on 9 and continuous on M.

2. Bounds for solutions of system (1.1) on analytic surfaces
which meet the boundary hypersurfaces of I along sets lying in
one segment i,

1. If the curve a! lies entirely in one segment i;%, then there exists an r < 1
such that |Z;| < r for all points on a'. Otherwise there is a sequence P™ € q!
such that the corresponding coordinate Z;™® — Z;0 and |Z;9 = 1. Let ;™ be
the corresponding value of \; for P™. There exists a convergent subsequence of
M converging to A0 € [0, 27] and the corresponding subsequence of Z,™
converges to Z;°. Reletter these subsequences as (Z;™, ;). By continuity
of hyj, the corresponding coordinate of P™ converges to h;;(Z;% A\ with
|Zx°] = 1, but the point P° with these coordinates lies on the boundary of
iz since Hy = (hy1, hy2) is @ homeomorphism. Since P? is a limit point of the
closed set a!, P% € a!, which is a contradiction. Thus such an 7 < 1 exists. Let

1) td = [z 2; = ha;(Zi \o),y | 2] < 7).

and say that t;® has a representation normalized with respect to the axis ;! and
in this representation is of radius ». We also assume that the boundary a!(¢)
of A2(¢) = We2(¢) M M lies in t,® for each § € S2(z).

Since T';and P;in (1.2) are entire functions of z;, 2,*, {;, there exist functions
T, P; depending on |z,], |2,*|, and 9 such that
(2) T4z 2% £)| < Ti(l=il, 2%, [P (25 2% £ < Py(lzi, [2,*))
on M for [¢,] < [zy].

2. We now obtain a bound for solutions ¢ of (1.1) in terms of the bounds (2),
2o = |g1(0, 0)] and various quantities connected with the boundary segment t;2.

TaEOREM 2.1. (a) Let IN* be a domain with a Bergman-Silov boundary surface
satisfying the hypotheses of §1.2 and symmetric with respect to x1 y1 xs-space.
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(b) Let y be a solution of (1.1) with the representation (1.2), where g1, g2, g1(21, 0),
and g:(0, 25) are holomorphic on IM* and continuous on M* and g,(0, 0) is real,
and such that (1) ¢1(21, 22) = ¢ (21, 0, 29, 0) and ¢2(21, 22) = ¢ (21, 0,0, 22) omit
the values e1;(\y), es;(\i) resepctively on the lamina S2(\.) where

|€y1()\k)' + Iev2()\k)' <E, <

(3) ‘evl()\k) - ev2(>\k)| > F]cv > 0

v =1,2),

E,,, Fy, constants depending only on k and v; (ii) on the axis [} of 1;*, ¢’ and ¢"’

are bounded by Ay;(LY) (G = 1,2) respectively. (c) Let A2 = A2 M M be a

segment of analytic surface whose boundary o' lies in the segment 1, of 1:® of

radius r when the representation of 1 is normalized with respect to the axis ;!

and similarly for the boundary a'(¢) of A2(¢) for all ¢ € S2(z) (see (1.3)).
Then for any z € N4

4) lll/(z1, Z1, 2, 22)] < I_:Il 1+ Tj(|zj|) Izjl]ckl[g(h r, By, Fia, Akl(lk1>]

2
+ Il 1+ Pi(lzj])lzj”cw[gm 7, Ex1, Exe, Fe1y Fyo, Akl(lk1>y Ak2(1k1>]y

where Cy; are constants depending only on the indicated quantities.

Proof. Continue x,, v;, 2; = x; + 1y; to complex values. Using the bounds
(2) for T'; and P, we need bounds on ¢! for the functions g; and g,.
By (4, formula (16))

) g1(z1, 22) + £1(0,0) = 2¢,(21, 22).

Setting z; = 22 = 0 in (5) gives, since g:(0,0) is real, g,(0,0) = ¢(0, 0).
From (5) and the hypothesis of the theorem, ¢, is holomorphic on 9t* and
continuous on ¢t Hence by the second paragraph of §1.2 the function

(6) ‘I’kl(Zky >\k) = \Ll[hkl(zlm )‘k)y th(Zky )‘k)]

is holomorphic on |Z;] < 1 for each \; € [0, 27] and omits there the values
e1;(\r). Then ¥ * = (W1 — e1r) (€12 — e11)~! is holomorphic on |Z;] < 1 and
omits there the values 0 and 1 so that Ahlfors’ form of Schottky’s theorem (1)
gives for [Z,] <7

1
[Wr* (Zx, M) | < exp l—i_—: (7 + log " [W,r* (0, Ne)]).

By (6) and (ii) of the theorem, |¥;;(0, \r)| < 4x1(%*), which gives a bound for
W1 *(0, \¢). Thus, using (3) for |Z;| < r,

() [Wallir(Z, M), Baa(Zi, N)]| = [Wra(Z, M) |

1+7r
1—7

= Bi(r, Ex, Fra, Akl(lkl))-

< Ekl{l + exp (7 + 10g+(Ak1(lk1) + Ekl)/Fkl)}
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Since the boundary a' of A2 lies in the segment t,® of {;® with |[Z;| < r and
the domain of the mapping F in the {-plane is compact when F is restricted to
A2, ¢1[f1(t), f2(¢)] is an analytic function of ¢ for z € A? and continuous on a
compact set. Hence by the maximum modulus theorem, || takes its maximum
on the boundary of the set in the {-plane which corresponds to a! under the
holomorphic transformation F (8, p. 86). Thus

®) lg1(21, 22)| < go + 2Bi(r, Ex1, Fra, A (lh))
= Culgo 7y Ex1, Fr1, A (Ueh) .

Similarly by the hypotheses on A2(¢) and a'({), gi1(¢1, 2) satisfies inequality
(8) for ¢ € &2(z). Thus ¢’ in (1.2) is bounded for all z € N* and z* € P4,

To get bounds for ¢”” in (1.2) we need bounds for the functions g,. By
(4, formula (17))

9) Ya(z1, 22%) = 3[ga(21, 22*) + £1(21, 0) + 2:(0, 22%)].

By hypothesis (b), ¢, is holomorphic on I and continuous on M. Thus as
for ¢ the function [k (Zx, M), 7i2(Zx, )] is holomorphic on lel <1 and
bounded in absolute value on [Z;| < r for A\, € [0,27] by Bi(r, Eys, Fa,
A1) (see (7)). Since by hypothesis any point (zi, 2*) of N* lies in the
analytic segment 9?2, similarly as for ¢;, the function ¢,(z;, 22*) has the same
bound. Since also (21, 0) € &%(2), g1(21, 0) satisfies the bound (8) and similarly
for g:(0, 25*). Thus

(10)  |ga(2z1, 22*)| < 2By (7, Egay Fro, Apa(lx)) + 2Cualgo, 7, Ex1y Frr, A (1))
= Cyalgo, 7, Enr, Exo, Fray Fro, A (bet), Az (Y]
Similarly ga({y1, ¢2) satisfies (10) for all ¢ € &2(z). Thus by inequalities (2),

(8), and (10), on setting z,* = Z;, P;(|z, |2;]) = P,(|2,]) and similarly for T,
we obtain (4) as a bound for ¢.

3. Bounds for solutions of (1.1) if the analytic surface 2,2 meets m?
in a closed curve lying on more than one segment i,%. Suppose that the
analytic surface fp? meets m® in a Jordan curve a' and the Bergman-Silov
boundary ®? in a finite number of points; also there exists a number 7y,
0 < 7y < 1 such that a! crosses the set

(1) t? = [zl 2; = hkj(ZIcv )\k)v ]Zkl =75, 0 < N\ < 27"]
C 1% at most a finite number of times, although a piece of a! may lie on t;2.

The curve a'({) for ¢ € S%(z) is assumed to have similar properties. Then

THEOREM 3.1. In addition to hypotheses (a) and (b) of Theorem 2.1, (ci) the
analytic surface No? meets m3 in a Jordan curve a* which intersects the Bergman—
Stlov boundary D? in a finite number of points and crosses the set t,® given by (1)
at most a finite number of times; similarly for the curve a'(¢) for ¢ € &2%(z);
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(cii) the functions ¢ ; are bounded on that part of 1,® such that Ap(z) N i, #= B,
where

') = U A'E), zeR
te®2(2)
and 1, < |Zy) <1 (R =1,...,n). Then for all 2 € N*

) |¥(z1, 21, 20 2)|
2
< max Byilgo, 74, Er1y Fra, Akl(lkl), Dkl]n 1+ Tj(lzjl)‘zil]

{x} j=1

+ Hlla)x Bkz[go, 74 Ex1y Exoy Fr1, Fe, Akl(lkl)y Akz(lkl), Dy, DkZ]
%

2
X TL L+ PGl 2],
=
where By, are constants depending only on the indicated quantities.

Proof. For points on 12 for which |Z;| < 7, g1 has the bound (2.8) and for
points on 1,3 for which r, < [Z;] <1
3) lg[hkl(zlm M), e (Zy, )\k)” < go + 2D;,

where [¢1| < Dy, for all A\, and Z,, given in (cii) of the theorem.
The Jordan curve a! has a representation a! = [z 2, = f,(¢%),0 < ¢ < 27],
f; continuous functions of e% and a' a 1 to 1 map of [0, 2x). Thus

W = gz, = f,), f] <1I.

By (ci) a!' meets ©? at points corresponding to ¢, (v =1,...,q) say,
0<P1 <p2<...<¢,<2m, ¢g< o. Let at Ca' correspond to
¢, < ¢ < dy1 w=1,...,¢g — 1). Then a,! lies entirely in one segment i;* of

m3, and the points P,, P,y; on a,! corresponding to é,, ¢,.1 respectively lie on
the boundary of i;® and correspond to values of Z, with |Z] = 1. Also a,!
crosses 1;2 a finite number of times, say at points Q1, Qs, . .., Q,. Since a! is a
Jordan curve, to each Q; corresponds a distinct ¢(* with the possible exception
of ¢» = 0. Now for all ¢ € (¢?, ¢¢**D) such that the corresponding piece of
a! does not lie on t;2, either |Z;| > r; or |Z;| < rx but not both. This can be
seen as follows. Since Hy = (hy1, hi2) is a homeomorphism and hence 1 to 1,
t,2 subdivides 1,® into two disjoint sets t;,® with |Z,| < ryand t;® with |Zx] > 7y
Also t;,® is connected since H;~!(t;,;*) is connected, but H;~!(t;1* \U t;2?) is not
connected so that t;;® U t;.*is not connected. Now the set a,;! = F[(¢(?, ¢(itD)]
is connected since f; are continuous so that a,;! cannot intersect both t;;® and
txe3. Hence (¢, ¢,41) is further subdivided into a finite number of intervals in
each of which only one of |Z;| > 7, |Z:] < 7; holds:

¢, < ¢, <L <P < By

Lett = e®, ¢ € (¢,?, (D), which either corresponds to Z; with |Z;| < 7,
or with 7, < |Z;] < 1. For intervals of the first type, gi[f1(e*), f2(¢*)] has the
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bound (2.8) and for intervals of the second the bound (3). Since g; is a holo-
morphic function of ¢ on |f| < 1 for 2 € A? and continuous on [t| < 1, the
Poisson integral for the unit disk may be used and gives

sl < [ laln@), nepe o = [ + [ |

where I is the sum of a finite number of integrals whose points correspond to
|Z] <7 (B=1,...,n) and I, is similar with [Z;] > 7;. Thus from the
bounds for g; and well-known properties of the Poisson kernel we deduce that

lgl(zl, Z2)l < max Bkl[go, 7xy Ex1, Fa, Akl(lkl), Du]-
k

Since a!({) is also a Jordan curve for { € @2(z), g1({1, ¢2) has the same bound
for such ¢.

As in §2, ¥l (Ziy, M), Bi2(Zy, M)] is bounded by B; for all points on 7,3
with |Z;] < 7. Asin the case of g; for those intervals with |Z;| < 7, for some %,
Yalfi(e*), f2(e*)] has the same bound B, and for intervals with 7, < |Z;] < 1
by (cii) a bound Dys. Since ¢ is holomorphic in (21, 25*) on A2 and continuous
on P, ¥,[f1(2), f2(#)] is holomorphic in ¢ on |¢| < 1 and continuous on |¢| < 1.
Thus from these bounds for . and the bound for g; we obtain from (2.9), by
using the Poisson integral formula, that

lg2(z1, 22%)| < max Byo[go, 74, Ex1, Erz, Fr1, Fro, Akl(llcl)’ A (), Dia, D]
k

and the bound is valid for g2(¢1, ¢2) if ¢ € &2(2). Thus we obtain a bound for
Y (21, 21%, 29, 22%), and replacing z,;* by Z;, (2) follows for all (21, 2:) € N4
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