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Cylindrical vesicle and cell membranes under tension can undergo a Rayleigh–Plateau
instability leading to break-up. In Part 1 (Graessel et al., J. Fluid Mech., vol. xxx, 2021,
Ax) we showed that anisotropic tension, created by active biological processes underneath
the cell membrane, can significantly influence this process for a liquid–liquid interface.
Here, we study the combined influence of anisotropic tension and membrane elasticity
on the Rayleigh–Plateau instability. We analytically derive the dispersion relation for
an interface endowed with bending and/or shear elasticity considering explicitly the
dynamics of the suspending fluid. We find that the combination of bending elasticity and
tension anisotropy leads to three qualitatively different regimes for the Rayleigh–Plateau
scenario: (i) the classical regime in which short wavelengths are stable and long
wavelengths are unstable, (ii) the suppressed regime in which the system is stable against
all perturbation wavelengths and (iii) the restricted regime, in which a stable region at
short and another one at long wavelengths are separated by a range of unstable modes
centred around the dimensionless wavenumber kR0 = 1. The width of this unstable range
as well as the dominant wavelength of the instability depend on the bending modulus
and tension anisotropy. For shear elasticity and area dilatation, on the other hand, only the
classical and the suppressed regimes are observed, with the transition between them being
independent of the tension anisotropy.

Key words: capsule/cell dynamics, membranes, instability

1. Introduction

The break-up of cylindrical vesicles under external tension has been successfully
described by a Rayleigh–Plateau mechanism in direct analogy to the break-up of a
liquid jet due to surface tension (Bar-Ziv & Moses 1994; Goldstein et al. 1996;
Kantsler, Segre & Steinberg 2008; Powers 2010; Sanborn et al. 2013; Boedec, Jaeger
& Leonetti 2014; Narsimhan, Spann & Shaqfeh 2015; Pal & Khakhar 2019). In living
cells, a Rayleigh–Plateau instability has further been proposed for fission of mitochondria
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(Gonzalez-Rodriguez et al. 2015) and for blood platelet formation (Bächer, Bender &
Gekle 2020).

In contrast to passive systems such as vesicles or liquid jets, living cells can actively
produce tensions within their cell membrane (Prost, Jülicher & Joanny 2015; Salbreux
& Jülicher 2017; Jülicher, Grill & Salbreux 2018). These tensions, in turn, are often
anisotropic (Rauzi et al. 2008; Salbreux, Prost & Joanny 2009; Mayer et al. 2010; Behrndt
et al. 2012; Reymann et al. 2012; Murrell et al. 2015; Blackwell et al. 2016; Callan-Jones
et al. 2016; Reymann et al. 2016; Zhang et al. 2018), which has substantial consequences
for the Rayleigh–Plateau scenario as we have demonstrated by linear stability analysis and
numerical simulations for a fluid interface in Part 1 of this series (Graessel, Bächer &
Gekle 2021): if azimuthal tensions are stronger than axial tensions, the range of unstable
wavelengths grows and the most unstable mode shifts towards a shorter wavelength.

Another crucial difference between liquid jets and cell or vesicle membranes is the
elastic response of the latter. The elastic response typically consists of independent
contributions which can be related to different structural components of the membrane.
First, the lipid bilayer induces a resistance to bending as well as area dilatation. Second,
biological cells possess a cellular cortex, located directly beneath the lipid bilayer (Alberts
et al. 2007), in which cross-linked polymers such as spectrin form an elastic network which
adds a resistance to shear deformation. Over the last decades, a series of semi-empirical
constitutive laws have been shown to fairly accurately describe these resistances. For
bending, the Helfrich Hamiltonian (Helfrich 1973; Guckenberger & Gekle 2017) is the
most widely used description, while for shear and area dilatation the Skalak (Skalak et al.
1973) as well as neo-Hookean laws (Barthès-Biesel, Diaz & Dhenin 2002; Barthès-Biesel
2016; Jaensson & Vermant 2018) have been established. The elasticity is not only
important for the regulation of vesicle or cell shape (Fischer 2004; Barthès-Biesel 2016;
Jelerčič 2017), it is further known to drive wrinkling on the vesicle surface (Finken &
Seifert 2006; Li & Sarkar 2008; Finken, Kessler & Seifert 2011; Dupont et al. 2015;
Narsimhan et al. 2015) and can lead to budding of vesicles (Seifert, Berndl & Lipowsky
1991; Seifert & Lipowsky 1995).

A small number of theoretical studies have so far investigated the influence of these
elastic properties on the Rayleigh–Plateau instability of vesicles and cells. Bending
elasticity has been shown to set a threshold for the tension required to trigger the instability
(Nelson, Powers & Seifert 1995; Goldstein et al. 1996; Powers 2010; Patrascu & Balan
2020). Furthermore, Campelo & Hernández-Machado (2007) show by simulations that
a non-zero curvature in the Helfrich Hamiltonian due to membrane anchoring proteins
(Tsafrir et al. 2001) is capable of triggering a Rayleigh–Plateau instability. Boedec et al.
(2014) investigate the growth rate and the most unstable wavelength for a general tension
with respect to bending elasticity. They show that increasing the bending modulus leads
to a smaller range of unstable modes compared to the classical Rayleigh–Plateau regime,
where modes grow up to a wavenumber equal to the undeformed tube radius (Rayleigh
1878; Drazin & Reid 2004). Beyond a threshold bending modulus, they find that the
instability is suppressed (Boedec et al. 2014). Considering shear elasticity, Hannezo,
Prost & Joanny (2012) use an energy argument to predict a Rayleigh–Plateau instability
of a tissue tube above a critical active tension depending on the Young’s modulus of
the tissue. Going in the same direction, Berthoumieux et al. (2014) derive the Green’s
function of an elastic membrane subjected to active tension. Both approaches, however,
do not lead to the full dispersion relation for the growth of perturbations. To the best
of our knowledge, a full linear stability analysis including shear elasticity has so far
not been carried out. Furthermore, and most importantly, all the above studies on the
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Rayleigh–Plateau instability under the influence of bending and shear elasticity consider
isotropic tension.

In this paper, motivated by the frequent observation of anisotropic active tensions in
cell membranes, we explore the diversity of the Rayleigh–Plateau instability which results
from the interplay of tension anisotropy and interface elasticity. We first consider bending
elasticity in the framework of the Helfrich model and analytically derive the dispersion
relation in the Stokes limit by a linear stability analysis. In addition to the classical
scenario with a single wavenumber separating stable from unstable modes, we find that
bending elasticity introduces a new restricted regime in which an intermediate range of
unstable modes is bounded from above and below by two separate stable ranges. Bending
resistance can also lead to a regime where the interface is stable against all perturbations,
the onset of which strongly depends on the tension anisotropy. We also provide a detailed
investigation of the influence of the reference curvature. We show that the scenario
remains qualitatively unchanged when replacing the Stokes by the Euler equation for
the fluid dynamics. Next, we consider shear elasticity and area dilatation based on the
Skalak law and calculate the corresponding dispersion relation in the Stokes limit. The
dominant wavelength is found to increase due to the damping nature of the shear elasticity.
Above a critical shear modulus only a stable phase exists, the critical value decreases
when strengthening the resistance to area dilatation. While the threshold to the stable
phase is independent of tension anisotropy, increasing the latter systematically increases
the instability wavelength. Investigating the interplay of bending and shear elasticity, we
analyse the resulting dispersion relation and observe a combination of the characteristic
features of both effects with strong influence of the tension anisotropy.

We start by introducing the description of a deformable, elastic interface in § 2 which
requires a different theoretical basis than the purely viscous interfaces in Part 1. In § 3 we
proceed with the interfacial forces due to bending elasticity based on the Helfrich model
and in § 3.1 perform a linear stability analysis which leads to the dispersion relation. Next,
we analyse the growing modes and the different regimes induced by the bending elasticity
(§ 3.2), followed by the dominant wavelength in § 3.3. In § 3.4 we systematically vary the
reference curvature. As a next step we derive the dispersion relation for shear resistance
and area dilatation based on the Skalak law and investigate the stability and dominant
wavelength under the influence of both Skalak elasticity and tension anisotropy in § 4.
Eventually, we combine bending and shear resistance in § 5. We conclude in § 6.

2. Problem set-up: a deformable elastic interface surrounded by fluid

2.1. Differential geometry of a deformable interface
We consider an initially cylindrical elastic interface subjected to an axisymmetric periodic
perturbation along its axis, as illustrated in figure 1. In contrast to Part 1, the elasticity of
the interface now requires us to consider the total deformation u of an interface point from
its initial location, and not only the local curvature and velocity. For this we employ the
differential geometry (Kreyszig 1968) of thin shells as detailed in Green & Zerna (1954),
Deserno (2015), Salbreux & Jülicher (2017) and Bächer & Gekle (2019), whose notation
we follow. In the following, we introduce all quantities used in the linear stability analysis.

The undeformed state of the interface is a cylinder with radius R0 in the radial direction
r, which is parametrised in cylindrical coordinates by azimuthal angle φ and axial
position z

X 0 = X 0(φ, z) = R0êr + zêz (2.1)
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z
X (φ, z)

X0

ez

n
eφ

cφ
φ

cz
z

FIGURE 1. Cylindrical, elastic interface under periodic perturbation. We consider an
axisymmetric interface between an inner, enclosed and an outer, surrounding fluid. The surface
of the complex interface is parametrised by X (φ, z), the undeformed reference state (dotted line)
is described by X 0. The in-plane coordinate vectors which point along the interface are eφ and ez,
the unit normal vector on the interface n points outwards. In addition to the azimuthal curvature
cφφ along eφ the perturbation leads to an axial curvature cz

z along ez.

with the normalised radial êr = (cosφ, sinφ, 0) and axial coordinate vector êz = (0, 0, 1).
A periodic perturbation along the axis leads to a deformation u of the interface

u = X − X 0 = urêr + uzêz, (2.2)

where we parametrise the deformed interface with varying radius R(z) = R0 + ur(z) by

X = X (φ, z) =
⎛
⎝ R(z) cosφ

R(z) sinφ
z + uz(z)

⎞
⎠ . (2.3)

In the following, we consider small amplitude perturbations and therefore keep only terms
up to linear order in the deformation (Berthoumieux et al. 2014; Daddi-Moussa-Ider,
Lisicki & Gekle 2017). The in-plane coordinate vectors, i.e. the coordinate vectors along
the deformed interface, are

eφ = ∂

∂φ
X =

⎛
⎝ −R sinφ

R cosφ
0

⎞
⎠ , ez = ∂

∂z
X =

⎛
⎝ R′ cosφ

R′ sinφ
1 + u′

z

⎞
⎠ , (2.4a,b)

with the prime denoting a derivative with respect to z. From the in-plane coordinate vectors
the metric on the deformed interface can be calculated (Kreyszig 1968) and linearised

gαβ = eα · eβ =

⎛
⎜⎝ R2 0

0
(
1 + u′

z

)2 + R′2

⎞
⎟⎠ ≈

(
R2

0 + 2R0ur 0
0 1 + 2u′

z

)
, (2.5)

with α, β = φ, z. The inverse metric defined by gαγ gγβ = δβα takes the form

gαβ =

⎛
⎜⎜⎝

1
R2

0

0
1(

1 + u′
z

)2 + R′2

⎞
⎟⎟⎠ ≈

⎛
⎝ 1

R2
0

− 2
ur

R3
0

0

0 1 − 2u′
z

⎞
⎠ . (2.6)
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Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-5

We obtain the metric on the undeformed interface Gαβ by setting the deformation to zero

Gαβ =
(

R2
0 0

0 1

)
, Gαβ =

⎛
⎝ 1

R2
0

0

0 1

⎞
⎠ . (2.7a,b)

From the metric the Christoffel symbols can be calculated by

Γ
γ

αβ = 1
2 gγ δ

(
∂βgαδ + ∂αgβδ − ∂δgαβ

)
, (2.8)

where indices occurring twice are summed over according to the Einstein notation. By the
use of the Christoffel symbols the covariant derivative of an arbitrary tensor tαβ is defined
by

∇αtβγ = ∂αtβγ + Γ
β

αδt
δγ + Γ

γ

αδt
βδ. (2.9)

The unit normal vector on the interface, which points outwards, can be calculated in
linearised form as

n = eφ × ez

|eφ × ez| ≈
⎛
⎝ cosφ

sinφ
−R′

⎞
⎠ . (2.10)

The curvature tensor, which is defined by cαβ = −(∂αeβ) · n, becomes on the deformed
interface

cβα ≈
⎛
⎝ 1

R(z)
0

0 −R′′

⎞
⎠ . (2.11)

On the undeformed surface the curvature tensor is

Cβ
α =

⎛
⎝ 1

R0
0

0 0

⎞
⎠ . (2.12)

2.2. Mechanical properties of the interface
The mechanical properties of the interface are (i) the anisotropic interfacial tension and
(ii) the resistance to elastic deformations. If in addition interface viscosity is included, we
would expect effects similar to those discussed in Part 1. In general, mechanical properties
of the interface are described by the surface stress (Green & Zerna 1954; Barthès-Biesel
2016; Guckenberger & Gekle 2017; Salbreux & Jülicher 2017; Bächer & Gekle 2019),
which can be expressed in vector notation as

tβ = tβαeα + tβn n, (2.13)

with its in-plane components tβα and the normal component tβn . As introduced above, we
split the surface stress into an (i) anisotropic and an (ii) elastic contribution

tβ = tβaniso + tβel. (2.14)

As discussed in Part 1, anisotropic interfacial tension can have different origins. In
this paper, we focus on biological cells where proteins in the cell cortex produce an
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active tension, which enters the anisotropic contribution of the surface stress (2.14).
A positive active tension accounts for the internal tendency of the cortical protein network
to contract. Similar to surface tension triggering the Rayleigh–Plateau instability of a
liquid jet (Eggers & Villermaux 2008), such a contractile active tension in the cell
cortex can lead to a Rayleigh–Plateau instability of a cell or tissue tube (Hannezo et al.
2012; Berthoumieux et al. 2014; Bächer & Gekle 2019; Bächer et al. 2020). In contrast
to the classical surface tension, however, here, a constitutive law directly prescribes
the active, thus interfacial, tension (rather than deriving it from an interfacial energy)
(Salbreux & Jülicher 2017; Bächer & Gekle 2019). In analogy to Part 1, the anisotropic
interfacial tension is denoted by γ φ and γ z, distinguishing azimuthal and axial directions,
respectively, and it contributes to the surface stress as

tβaniso,α =
(
γ φ 0
0 γ z

)
. (2.15)

The normal component of the anisotropic surface stress vanishes, i.e. tβaniso,n = 0. We
assume that the anisotropic tension is constant along the interface and therefore derivatives
of the anisotropic tension vanish, i.e. ∇αtβγaniso = 0.

In addition to Part 1, we here consider a resistance to elastic deformations, which splits
into the three different contributions due to bending deformation, shear deformation and
area dilatation. The surface stress due to elasticity tαel can be derived from constitutive
laws typically defining an energy functional, which covers the elastic properties (Green
& Zerna 1954). In the present paper we use the Helfrich law for bending elasticity with
the bending modulus κB and the Skalak law for shear elasticity with modulus κS and area
dilatation with modulus CκS. The corresponding contributions to the surface stress tαel are
derived in §§ 3.1 and 4.1, respectively.

We end this section with a discussion of typical values for vesicles and cells. For the
active cortical stress values in the range of 10−5–10−3 N m−1 have been reported depending
on the cell type (Lomakina et al. 2004; Krieg et al. 2008; Tinevez et al. 2009; Bergert et al.
2012; Fischer-Friedrich et al. 2014; Chugh et al. 2017; Dmitrieff et al. 2017). Exact values
for the anisotropy of the active stress are scattered as well. Mayer et al. (2010) report
a polar tension half the angular tension for an ellipsoidal embryo, Behrndt et al. (2012)
report a factor of 4 in the case of epiboly. Reymann et al. (2016) report anisotropy in terms
of a nematic order parameter which takes values from −0.04 to 0.12. Rauzi et al. (2008)
consider planar anisotropy from 1 to 4. Typical values for the bending modulus are in a
range from 10−20–10−18 Nm (Goldstein et al. 1996; Freund 2014; Guckenberger & Gekle
2017). The shear elasticity of a red blood cell is in the range 10−6–10−5 N m−1 (Freund
2014) and the Youngs modulus of a tissue tube is approximately 104–106 Pa (Laurent et al.
1994; Hannezo et al. 2012). Eventually, the typical radii from vesicles to tissue tubes varies
from approximately half a micrometre (Bar-Ziv & Moses 1994; Goldstein et al. 1996) to
several micrometres (Freund 2014) to a millimetre. All in all, this leads to a wide parameter
space, which we cover by presenting phase diagrams for a broad range of dimensionless
parameters in the following sections.

2.3. Coupling to the surrounding fluid
Due to the presence of the surrounding fluid, in addition to the surface stress, forces
from the fluid act on the interface, which are described by the traction jump across the
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membrane (Pozrikidis 2001; Daddi-Moussa-Ider & Gekle 2018)

Δf = Δf αeα + Δf nn, (2.16)

with components parallel to the interface denoted by Δf α and components along the
outward pointing normal vector by Δf n. The traction jump is given by the difference
of the three-dimensional (i, j = x, y, z) stress tensors σ out

ij , σ in
ij of the outer and inner

fluid, respectively, projected onto the normal vector of the interface (Chandrasekharaiah
& Debnath 2014)

Δfj = (
σ out

ij − σ in
ij

)
ni. (2.17)

For a Newtonian and incompressible fluid with shear viscosity η the stress tensor is
(Chandrasekharaiah & Debnath 2014)

σ = −pI + η
[(∇v + (∇v)T

)]
, (2.18)

where v(r, t) is the velocity field and p(r, t) the pressure of the fluid.
The interface is considered in mechanical equilibrium with the fluid enclosed by the

interface and the surrounding fluid. Therefore, interfacial forces derived from the surface
stress (2.14) together with the traction jump (2.16) fulfil the force balance equation (Green
& Zerna 1954; Barthès-Biesel 2016; Salbreux & Jülicher 2017)

∇βtβ + Δf = 0. (2.19)

The interfacial forces acting from the interface onto the fluid are thus given by either the
derivative of the surface stress or the negative traction jump and denoted by

f ≡ ∇βtβ = −Δf . (2.20)

Decomposing the force balance into components parallel and normal to the interface and
using (2.14), (2.15) and (2.16) leads to the force balance equations in the form

∇αtαβel + cβα tαel,n = −Δf β, (2.21)

∇αtαel,n − cαβ tαβel − cαβ tαβaniso = −Δf n. (2.22)

In contrast to Part 1, the interface elasticity causes a traction jump in the tangential
component Δf β along the interface and, in addition, modifies the normal force balance.
For the exact form of the elastic surface stresses we again refer to §§ 3.1 and 4.1. According
to the normal component of the force balance equation (2.22) the anisotropic interfacial
tension leads to a contribution

cαβ tαβaniso = γ z

Rz
+ γ φ

Rφ
, (2.23)

which balances the normal component of the traction jump. In the present paper we
consider an interior fluid which has the same viscosity as the surrounding fluid.

3. Bending elasticity restricts anisotropic Rayleigh–Plateau instability

3.1. Dispersion relation from the Helfrich Hamiltonian
We now investigate the influence of bending elasticity on the anisotropic Rayleigh–Plateau
instability of an interface specifically aiming at the description of vesicle and cell
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membranes composed of a lipid bilayer. This bilayer resists bending deformations,
i.e. changes of the mean curvature H, which is given by half the trace of the curvature
tensor (2.11) (Deserno 2015; Daddi-Moussa-Ider et al. 2017)

H = 1
2 cγγ = 1

2

(
cz

z + cφφ
)
. (3.1)

Deformations which lead to a mean curvature H different from the reference curvature
H0 trigger elastic forces. Due to the Gauss–Bonnet theorem the Gaussian curvature
does not affect the interface elasticity (Deserno 2015; Daddi-Moussa-Ider et al. 2017).
The resistance to bending is described by the Helfrich Hamiltonian (Helfrich 1973;
Guckenberger & Gekle 2017) with the elastic bending modulus κB as a measure of the
bending elasticity

WHF = 2κB(H − H0)
2. (3.2)

As detailed above, the bending elasticity contributes to the elastic surface stress tαel
in (2.14). This contribution can be derived from the Helfrich Hamiltonian (3.2) using
thin shell theory (Capovilla & Guven 2002; Guven 2004; Powers 2010; Deserno 2015;
Guckenberger & Gekle 2017), which leads to the general form

tαel,B = 2κB (H − H0)
2 gαβeβ − 2κB (H − H0) cαβeβ + 2κB∇β (H − H0) gαβn. (3.3)

In the following, we explicitly consider the initially cylindrical interface, subjected to a
deformation as given by (2.2) and shown in figure 1. Using the curvature tensor (2.11) the
mean curvature of the interface in linearised form is

H ≈ 1
2

(
1
R0

− ur

R2
0

− u′′
r

)
. (3.4)

In contrast to previous works (Powers 2010; Boedec et al. 2014) we first choose as reference
curvature the curvature of the unperturbed cylindrical interface that can be obtained from
the curvature tensor of the undeformed interface (2.12)

H0 = 1
2R0

. (3.5)

In § 3.4, we investigate the influence of different values for the reference curvature.
Linearising the surface stress (3.3) and splitting it into tangential and normal components
gives

tβel,Bα = 2κB(H − H0)
2δβα − 2κB(H − H0)cβα ≈ κB

(
ur

R2
0

+ u′′
r

)
cβα (3.6)

tαel,B,n = 2κB∇β(H − H0)gαβ ≈ −κB∇β

(
ur

R2
0

+ u′′
r

)
gαβ. (3.7)

Using (2.6) to explicitly write out the z-component of the last equation gives

tz
el,B,n = −κB

(
u′

r

R2
0

+ u′′′
r

)
gzz ≈ −κB

(
u′

r

R2
0

+ u′′′
r

)
= −κB

(
u′

r

R2
0

+ u′′′
r

)
, (3.8)

and for the φ-component tφel,B,n = 0. The tangential component of the force balance (2.21)
results in a vanishing tangential bending force f αB = 0 consistent with the general case

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

94
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.946


Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-9

(Guckenberger & Gekle 2017). The normal component of the force balance (2.22) has two
contributions from the bending elasticity

−cαβ tαβel,B = −cφφtφel,Bφ − cz
zt

z
el,Bz ≈ −κB

(
ur

R4
0

+ u′′
r

R2
0

)
, (3.9)

∇αtαel,B,n = ∇zt
z
el,B,n ≈ −κB

(
u′′

r

R2
0

+ u′′′′
r

)
. (3.10)

Eventually, the linearised form of the normal component of the elastic force due to bending
is obtained as

f n
B = −κB

[
ur

R4
0

+ 2u′′
r

R2
0

+ u′′′′
r

]
. (3.11)

This is consistent with the result given in Daddi-Moussa-Ider et al. (2017).
In a next step, we perform an analytical linear stability analysis of the interface. The goal

is to derive the dispersion relation, which relates the growth rate ω of a perturbation to its
wavenumber k = 2π/λ with wavelength λ. We use a perturbation ansatz for the interface
depicted in figure 1 of the form

R(z, t) = R0 (1 + ε cos(kz)) , ε = ε0 eωt, (3.12)

with amplitude ε growing in time. Due to the bending force (3.11) and the anisotropic
interfacial tension (2.15) the normal force balance (2.22) leads to the traction jump at the
interface of the form

Δf n = γ φ

R0
+

[
−γ

φ

R0
+ γ zk2R0 + κB

(
1
R3

0

− 2k2

R0
+ k4R0

)]
ε cos(kz). (3.13)

As can be seen from (2.17) and (2.18) the traction jump includes the pressure at the
interface p0 + δp(r = R), where p0 denotes the pressure difference of the undeformed
interface and δp(r = R) the pressure perturbation as a consequence of the interface
perturbation (3.12). By comparing the constant terms, which do not arise from the
perturbation, on both sides of (3.13) we identify the Laplace pressure for the unperturbed
interface as

p0 = γ φ

R0
. (3.14)

The perturbation in the traction jump in (3.13) due to the disturbance of the interface is
now balanced not only by the contribution from anisotropic interfacial tension as in (B 3)
of Part 1 but also by contributions from the resistance to bending.

The motion of inner and outer fluid with same density ρ and viscosity η are in general
governed by the Navier–Stokes equation and continuity equation, the solution of which is
the velocity v and pressure field p of the fluid. In the following, we consider a fluid in the
limit of small Reynolds number, which is usually a very good approximation for vesicles
and cells (Freund 2014; Barthès-Biesel 2016). Thus, for the inner and outer fluid the Stokes
equation holds, which we solve in presence of the interface using the same approach as in
Part 1. Compared to Part 1 the traction jump (3.13) includes a fourth-order polynomial in
the wavenumber stemming from bending, which behaves in the same way with respect to
the variables r, z as the anisotropic tension does in (B 3) of Part 1. We thus can continue as
described in appendix B.1 of Part 1 to derive the dispersion relation: we choose a periodic
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ansatz also for the velocities in the r- and z-directions and for the pressure p, then transform
their amplitudes to Hankel space, where we solve the Stokes and continuity equation for
the velocity components. Transformation back to real space and inserting the results into
the kinematic boundary condition at the interface finally leads to the dispersion relation in
the Stokes regime including bending elasticity

ω(k) = ωS
0

(
1 − γ z

γ φ
(kR0)

2 − B (
1 − 2(kR0)

2 + (kR0)
4))

×
[

I1(kR0)K1(kR0)+ kR0

2
(I1(kR0)K0(kR0)− I0(kR0)K1(kR0))

]
, (3.15)

with the relative bending modulus B = κB/(γ
φR2

0). The dispersion relation consists of
a constant prefactor ωS

0 = γ φ/(R0η) fixing the dimensions of the growth rate, the factor
accounting for membrane forces

F(k) =
[

1 − γ z

γ φ
(kR0)

2 − B (
1 − 2 (kR0)

2 + (kR0)
4)] (3.16)

and a factor of Bessel functions, which is positive for positive argument kR0 and
stems from the fluid dynamics. For a similar setting but with isotropic tension, Boedec
et al. (2014) and Powers (2010) derive dispersion relations including in addition tension
gradients and surface viscosity, respectively. These derivations also differ in the choice of
reference curvature, as mentioned above, which leads to different factors in the bending
contribution.

In appendix A we in addition show the result for an ideal fluid described by the Euler
equation, which is derived from the Navier–Stokes equation in the limit of vanishing
viscosity, where we solve the Laplace equation for the pressure.

3.2. Bending elasticity introduces stability

3.2.1. Qualitative description
The dispersion relation (3.15) of an anisotropic interface including bending elasticity,

which gives the growth rate ω for each mode with wavenumber kR0, is shown in figure 2
as a blue line. Additionally, we show the γ z-contribution from the anisotropic interfacial
tension in orange, the γ φ-contribution in green and the bending contribution as a red,
dashed line. From the left to the right column we increase the anisotropy ratio from
γ z/γ φ = 0.5 to the isotropic case γ z/γ φ = 1.0 in the middle and up to γ z/γ φ = 2.0 on
the right. From top to bottom the bending resistance increases from B = 0 in the first line
2(a) to B = 2.0 in the last line (e). Where the dispersion relation takes positive values,
modes with corresponding wavenumber kR0 will grow, i.e. the interface is unstable to
these modes. In contrast, modes with negative growth rate are damped, correspondingly
the interface is stable to these modes. The maximum of the dispersion relation determines
the dominant, i.e. fastest growing, wavelength, which eventually defines the size of the
fragments (Drazin & Reid 2004). The γ φ-contribution is purely positive, thus destabilises
the interface, whereas the γ z-contribution is purely negative and dampens the instability.
We observe that the bending part dampens the growth rate for all wavenumbers except
kR0 = 1, where the bending energy (3.2) and thus the force (3.11) vanish since the mean
curvature equals the reference curvature. This further illustrates that the initial cylindrical
interface remains stable if solely bending elasticity is considered.
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FIGURE 2. Dispersion relations for bending resistance and anisotropic interfacial tension. We
distinguish the contributions from bending resistance B (red), γ φ (green) and γ z (orange). From
left to right the anisotropy ratio increases, whereas from top to bottom the bending resistance
increases, with values given as labels. The bending and γ z contributions are stabilising for all
wavenumbers, while the γ φ-contribution destabilises the interface. Bending either reduces the
unstable range from its right, large kR0, boundary (classical regime) and/or restricts the range
of growing modes by the appearance of another positive root to its left, small kR0, boundary
(restricted regime). The maximum of the dispersion relation shifts depending on bending
resistance. Large bending and anisotropy in (d,e) on the right can even lead to a purely negative
dispersion relation, thus completely suppressing the Rayleigh–Plateau instability (suppressed
regime).

For γ z/γ φ = 0.5 (left column), increasing the bending modulus leads to a shift of the
right-most root towards smaller values and thus entails a shrinking of the range of unstable
modes. The position of the maximum shifts towards larger wavenumbers. For the isotropic
case γ z/γ φ = 1.0 (middle column), however, shrinkage of the range is not observed: the
right stability boundary remains at the Rayleigh–Plateau value kR0 = 1 and is not affected
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by bending as the bending contribution is identically zero at kR0 = 1. Yet, also in the
isotropic case, we observe a shift of the maximum to larger wavenumbers. In the right
column, where γ z/γ φ = 2.0, once again a shrinking range is observed. Interestingly, the
variation in the position of the maximum is now reversed and it shifts towards smaller
wavenumbers. Most remarkably, for B ≥ 1 the total dispersion relation is purely negative.

From figure 2, we can identify three different regimes occurring at certain combinations
of tension anisotropy and bending modulus. The first case, resembling what is known from
the classical Rayleigh–Plateau scenario (Rayleigh 1878), we term the classical regime.
Here, the dispersion relation has one root at wavenumber zero and another at a larger
wavenumber kmax R0. Thus, modes in the range ]0; kmax R0[ are growing. The classical
regime is located at low to moderate values of the bending modulus and persists for
all anisotropy ratios. The second case, which we term the restricted regime appears
at moderate anisotropy ratio and large enough bending contribution (first two columns
in row e). Here, the dispersion relation develops another root at a finite wavenumber
kminR0 < kmax R0. Therefore, modes with small enough wavenumber become stable while
modes with intermediate wavenumber ]kminR0; kmax R0[ still grow. Thus, bending elasticity
restricts the range of growing modes from above and from below. Finally, for large bending
modulus (rows (d) and (e)) an anisotropy of γ z/γ φ = 2.0 can lead to a completely negative
dispersion relation: no modes are growing and the cylindrical interface remains stable.
We call this stable phase the suppressed regime. The fact that bending can, in principle,
suppress the instability has also been reported by Boedec et al. (2014) for isotropic
tension if the reference curvature vanishes (H0 = 0). Our results in figure 2 show that
the combination of anisotropic tension and bending elasticity can lead to suppression of
the instability also for the natural case of a cylindrical reference curvature H0 = 1/(2R0).

In appendix A we show in figure 12 that for an ideal fluid the destabilising
γ φ-contribution does not possess a maximum and the maximum of the dispersion relation
shifts towards larger kR0. In this work, we explicitly consider only positive interfacial
tension for which the Rayleigh–Plateau instability occurs. We note briefly that for
negative axial tension γ z, independent of the sign of γ φ , the dispersion relation still
shows a maximum at a finite wavenumber, as it does in figure 2. This corresponds to a
buckling instability with finite wavelength due to the extensile nature of the axial tension
(Berthoumieux et al. 2014; Bächer & Gekle 2019).

3.2.2. Quantitative discussion
We now turn to a quantitative analysis of the range of unstable modes. As discussed

based on figure 2, the unstable range is either (i) bounded on the left by kR0 = 0 and
on the right by the single positive root of the dispersion relation (classical regime),
(ii) bounded on the left and right by the two positive roots of the dispersion relation
(restricted regime) or (iii) completely absent (suppressed regime). The roots of the
dispersion relation in turn are given by the roots of F(k) in (3.16). For vanishing bending
resistance the single root obeys

γ z

γ φ

∣∣∣∣
root,B=0

= 1
(kR0)2

, (3.17)

whereas for finite bending resistance the roots obey

γ z

γ φ

∣∣∣∣
root,B /= 0

= 1
(kR0)2

− B 1
(kR0)2

+ 2B − B(kR0)
2. (3.18)
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FIGURE 3. Range of unstable modes as a function of tension anisotropy and bending modulus.
The curves show the roots of the dispersion relation such that regions above the curves are stable,
while regions below are unstable. For bending moduli between 0 and 1 the single root shifts to
the left. Bending moduli above 1 in addition lead to a second root at finite wavenumber, which
determines the left border of the unstable domain. Thus, bending elasticity restricts the range of
unstable modes and for large bending modulus a critical tension anisotropy exists, above which
the cylinder remains stable. For a three-dimensional illustration we refer to the supplementary
gnuplot script, supplementary material available at https://doi.org/10.1017/jfm.2020.946.

Figure 3 shows the range of unstable modes with increasing bending modulus B coded
by colours and with tension anisotropy on the ordinate. Each curve represents the strictly
positive root(s) (kR0 > 0) of the dispersion relation. The area underneath a curve thus
corresponds to unstable modes and the area above a curve to stable modes.

At vanishing bending (dark green curve), for each tension anisotropy there exists only
a single root marking the right boundary of the unstable range. The unstable range
shrinks when tension anisotropy increases. However, the right boundary goes to infinity for
infinitesimal small anisotropy, thus for the anisotropy being zero all modes are unstable.
When adding a small bending contribution (lighter green curves), the right boundary shifts
to the left and the unstable range shrinks, qualitatively independent of the anisotropy. All
green curves correspond to the classical regime with the left root of the dispersion relation
being at kR0 = 0 (not shown in figure 3) and a finite root on the right. Increasing bending
resistance further, at B = 1 (orange) the factor F in (3.16) becomes zero at kR0 = 0, so
the orange curve is the only one which intersects the ordinate. It is also the first to exhibit
an upper bound at γ z/γ φ = 2.0 indicating the appearance of the suppressed regime for all
γ z/γ φ ≥ 2. Further increasing the bending modulus (blue curves) leads to another root at
finite wavenumbers and a corridor of unstable modes develops as seen in figure 2(e) in
the first two columns. All blue curves correspond to the restricted regime. The corridor
of unstable modes narrows for increasingly larger bending modulus and is centred around
kR0 = 1. In addition, the instability threshold (maximum of the curves), which indicates
the transition from the restricted to the suppressed regime, shifts to smaller values of the
tension anisotropy. Interestingly, for isotropic tension, the right root is pinned at kR0 = 1
and is not affected by bending contributions.

3.2.3. Phase diagram
The goal now is to derive a relation for the instability threshold as a function of B and

γ z/γ φ . For this, we again consider the factor F(k) in (3.16). For positive k the sign of the
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growth rate is determined by F(k). If F(k) < 0 ∀ k > 0, all perturbations decay and the
interface is stable indicating the suppressed regime

γ z

γ φ
>

1 − B
(kR0)

2 + 2B − B (kR0)
2 . (3.19)

If B < 1, the right-hand side tends to infinity for small kR0 (see first term) and thus the
condition (3.19) is violated, i.e. growing perturbations do exist for any γ z/γ φ . This is
the classical regime. For B ≥ 1, a suppressed regime exists whenever condition (3.19) is
fulfilled for all values of kR0, especially for the maximal value of the right-hand side.
Determining the position kR0|max of this maximal value and inserting it into (3.19) we can
determine a critical value above which the suppressed regime appears

γ z

γ φ

∣∣∣∣
crit

= −2 [B (B − 1)]1/2 + 2B. (3.20)

For γ z/γ φ larger than this critical value, no perturbation grows. For B = 1 (3.20) yields
the critical value γ z/γ φ|crit = 2. This corresponds to the intersection of the orange line
with the ordinate in figure 3, where the two roots which determine the unstable range
collapse. For large bending energy the critical value (3.20) approaches one. This manifests
itself in the maximum of the dark blue line in figure 3.

The detailed variation of the threshold determined by (3.20) is illustrated by the
phase diagrams in figure 4(a,b). In the region where unstable modes exist, (a) dominant
wavelength λm and (b) maximum growth rate ωm are colour coded. We obtain the dominant
wavelength, i.e. the position of the positive maximum of the dispersion relation, by
calculating the root of its derivative using Mathematica, and in turn the maximum growth
rate from the dispersion relation. At the top of the phase diagram, i.e. at large bending
modulus, a corridor exists at small anisotropy ratios, which broadens with decreasing
bending modulus. In this corridor the range of unstable modes is bounded by two roots of
the dispersion relation, this is the restricted regime. For B < 1 unstable modes always exist
and the instability wavelength increases with increasing tension anisotropy, we termed this
the classical regime.

In total, our results show that bending resistance can suppress the Rayleigh–Plateau
instability in a certain parameter space: the bending force is another damping factor in
the dispersion relation as is γ z, which explains why this strong increase happens for
large bending elasticity and large γ z. However, at anisotropy ratios smaller than one,
there always exists a corridor of unstable modes where the destabilising γ φ-contribution
dominates the stabilising γ z-contribution and in total the dispersion relation becomes
positive.

3.3. Bending elasticity affects dominant wavelength and growth rate
We now discuss the dominant wavelength of the instability in more detail. Figure 4(c)
shows the dominant wavelength depending on the anisotropy ratio for different values
of the bending modulus. We note that curves in figure 4(c) are horizontal lines in the
phase diagram 4(a), i.e. drawn for constant bending modulus at the same values as
used in figure 2. In general, the wavelength decreases towards small anisotropy and vice
versa, which means that smaller fragments form for γ z/γ φ ≤ 1 and larger ones for larger
anisotropy. The red curve without bending elasticity recovers the result shown in figure
4(a) of Part 1. Next, the blue and orange curves for B = 0.1 and B = 0.5 show that small
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FIGURE 4. (a,b) Phase diagrams with bending resistance and anisotropic tension. The solid grey
line indicates the instability threshold below which the interface undergoes a Rayleigh–Plateau
instability. For bending moduli above 1, the range of unstable modes is restricted. The border to
the classical regime is independent of the tension anisotropy. Strong bending elasticity B ≥ 1
together with γ z/γ φ > 1 can suppress the instability (white region). In the unstable phase
(a) the dominant wavelength λm and (b) the maximum growth rate ωm are given by colour
code. Crosses correspond to the dispersion relations in figure 2. (c,d) Dominant wavelength
and growth rate for different values of the bending modulus. Increasing bending resistance (from
red to green) changes the wavelength strongly, especially at very large anisotropy ratio. For large
enough bending contribution and larger anisotropy ratios, the instability is suppressed (lilac and
green curve) with the growth rate decreasing towards zero at the threshold. Curves correspond
to horizontal lines in the phase diagrams (a,b).

and moderate bending resistances do not significantly affect the dominant wavelength.
Especially for anisotropy values around the isotropic case γ z/γ φ = 1.0, the bending
resistance only slightly lowers the wavelength. Increasing bending further, however, the
lilac curve for B = 1.0 shows a qualitatively different behaviour: the wavelength strongly
bends upwards and tends to infinity for γ z/γ φ → 2.0. This corresponds to the tension
anisotropy approaching the instability threshold in figure 4(a). Finally, the green curve for
B = 2.0 abruptly ends at an anisotropy ratio slightly larger than 1. This corresponds to
figure 2(e) where in the last column the maximum is negative and therefore no instability
wavelength exists and this is again due to the threshold in the phase diagram 4(a). Before
this abrupt end is reached, the wavelength is nearly the same for all values of γ z/γ φ .

We further investigate the influence of anisotropy on the dominant growth rate in the
phase diagram 4(b) and specifically for certain values of the bending modulus in 4(d).
Most remarkably, the growth rate is not significantly affected by the bending modulus at
small anisotropy. In contrast, at large anisotropy increasing the bending modulus reduces
the growth rate. For the lilac and green curve, where bending suppresses the instability at
large anisotropy the growth rate goes to zero with the anisotropy reaching the threshold.
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3.4. Influence of reference curvature
Up to now, we assumed H0 = 1/(2R0). However, in real systems, such as cell membranes,
the bending reference shape (where bending forces vanish) can be different from the
equilibrium shape (where the sum of all forces vanishes) leading to H0 /= 1/(2R0) for a
cylindrical equilibrium shape. The limits H0 = 0 and H0 = 1/R0 refer to a flat or spherical
reference shape, respectively. For a membrane made of lipid molecules both the shape and
the mixture of the lipids determines the reference curvature (Burger 2000; Fuller & Rand
2001; Dimova 2019). The effect of the reference curvature on the shape of vesicles and
cells has been intensively studied (Seifert et al. 1991; Fischer 2017). Especially, for the
Rayleigh–Plateau instability a non-zero reference curvature has been used to explain the
effect of anchoring proteins (Tsafrir et al. 2001; Campelo & Hernández-Machado 2007).
To complete our discussion, we therefore vary in the following the reference curvature and
investigate its effect on the dispersion relation and the phase diagram. For a general value
of H0, the normal component of the interfacial force due to the bending elasticity (3.11)
takes the form

f n
B = −

(
4H2

0R2
0 − 1

)
κB

2R3
0

− ur(z)
(

3κB

2R4
0

− 2H2
0κB

R2
0

)

−
(

−2H2
0κB + 4H0κB

R0
+ κB

2R2
0

)
∂2

z ur − κB∂
4
z ur. (3.21)

Considering both the anisotropic tension and bending elasticity with general reference
curvature, we can identify the constant part of the pressure analogously to (3.14) as

p0 = γ φ

R0
+

(
4H2

0R2
0 − 1

)
κB

2R3
0

. (3.22)

For a reference curvature smaller than that of a cylinder the second term becomes negative
and the corresponding contribution to p0 counteracts the tendency of the interface to
increase the radius in order to minimise the curvature (Goldstein et al. 1996). For H0 = 0
the reference pressure p0 equals the one obtained by Powers (2010) and Boedec et al.
(2014).

Omitting details, we derive the dispersion relation in the Stokes regime starting from
(3.21) in the same manner as above. The result is shown in figure 5 for systematically
increasing reference curvature. We choose (a) the value of a flat membrane H0 = 0,
(b) H0 = 1/(4R0) a value smaller, (c) H0 = 3/(4R0) a value larger than H0 = 1/(2R0) –
which is used in figure 2 – and eventually (d) H0 = 1/R0, corresponding to a spherical
reference shape. In figure 5 we show in the left column results for γ z/γ φ = 0.5, in
the middle for γ z/γ φ = 1.0 and in the right column for γ z/γ φ = 2.0. The value of the
bending coefficient is fixed at B = 1.0, thus the curves can be directly compared to
figure 2(d) where H0 = 1/(2R0). For vanishing reference curvature in figure 5(a) we
observe a strongly damping bending contribution such that the dispersion relation is purely
negative and no mode is unstable. Increasing the reference curvature to H0 = 1/(4R0) in
5(b) reduces damping, but does not qualitatively change the picture. For H0 = 1/(2R0)

(which was already shown in figure 2d) the sign for some wavenumbers changes, leading
to unstable modes. Most remarkably, a further increase in the reference curvature to
H0 = 3/(4R0) in figure 5(c) even leads to positive values of the bending contribution to
the dispersion relation. This trend continues for the spherical reference shape H0 = 1/R0
in figure 5(d). Therefore, the larger the reference curvature the larger the maximum of the
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FIGURE 5. Influence of the reference curvature on the dispersion relation. Curves are shown for
different reference curvatures in the different rows and from the left column to the right column
the anisotropy ratio increases while the bending modulus B = 1.0 remains fixed. In (a) the flat
reference curvature leads to strong damping, which suppresses the instability. Increasing the
reference curvature weakens this damping nature in (b) and eventually in (c,d) leads to positive
values even of the bending contribution itself. Thus, a reference curvature beyond that of a
cylinder can destabilise the interface.

dispersion relation becomes and the broader the range of unstable modes is. Variation of
the anisotropy ratio which increases from left to right leads to damping of the dispersion
relation and thus shifts the maximum to smaller wavenumbers. We note that the linear
stability analysis considers small deformations and thus describes the initial behaviour of
the interface after the onset of the instability. Therefore, for reference curvatures larger
than that of a cylinder, despite the (initially) positive growth rates the tube might not break
up completely but assume an undulated final shape, which minimises the total surface
energy (Goldstein et al. 1996).

To further clarify the effect of different reference curvatures on the instability we show
phase diagrams in figure 6. For vanishing reference curvature in figure (a), we observe an
instability threshold which is nearly independent of the tension anisotropy γ z/γ φ . Only
at very small anisotropy the threshold slightly shifts towards larger bending modulus. The
nearly constant threshold of B = 2/3 matches the critical value obtained for isotropic
tension by Boedec et al. (2014). Increasing the reference curvature to H0 = 1/(4R0) in
6(b) the threshold shifts towards a larger bending modulus for all anisotropy values.
Moreover, the threshold bends upwards towards smaller anisotropy in a more pronounced
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FIGURE 6. Phase diagrams for varying reference curvature. Instability threshold (grey line) and
dominant wavelength (colour code) are shown for different reference curvatures (a) H0 = 0,
(b) H0 = 1/(4R0), (c) H0 = 3/(4R0) and (d) H0 = 1/R0. With increasing reference curvature
the dominant wavelength decreases and the area of stable interface in the phase space becomes
smaller. For the largest reference curvature no stable phase exists at all, thus a larger reference
curvature facilitates the instability. Crosses refer to the dispersion relations in figure 5.

fashion and over a broader range of the anisotropy ratio. Thus, with increasing reference
curvature the unstable phase is larger. For H0 = 1/(2R0), figure 4(a) has already shown
that at anisotropy ratios γ z/γ φ ∈ [0; 1] no stable phase exists. Further increasing the
reference curvature to H0 = 3/(4R0) in 6(c), on the one hand, increases the bending
modulus of the threshold and the instability phase even further. On the other hand,
the shape of the threshold curve changes strongly: at large anisotropy a vertical line,
i.e. increasing the bending modulus for fixed anisotropy, intersects the threshold twice.
Thus, increasing the bending modulus first leads to a transition from instability to the
stable phase, but further increasing the bending modulus leads to another transition from
the stable phase to the instability. Eventually, for the reference curvature of a sphere
H0 = 1/R0 in figure 6(d) unstable modes exist for any combination of anisotropy and
bending.

The complex behaviour with respect to the reference curvature can be understood by
considering the limit of a flat and that of a spherical membrane. For a reference curvature
of zero, the preferred shape of the interface is flat. As a consequence, the curvature due to
the perturbation along the axis in addition to the azimuthal curvature is penalised more
strongly by the bending energy. Thus, the instability threshold shifts towards smaller
bending moduli. However, at very small anisotropy the destabilising γ φ contribution
strongly dominates and the instability sets in up to a larger bending modulus. If the
reference curvature takes the value of a sphere, it favours the additional curvature of the
developing fragments (after instability onset). Therefore, large reference curvature not only
renders the interface unstable for all anisotropy values, a large reference curvature can lead
to a dominant bending contribution such that bending alone can trigger an instability.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

94
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.946


Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-19

4. Shear elasticity can render the interface stable

4.1. Dispersion relation from the Skalak Hamiltonian
Apart from the resistance to bending deformations, very often the resistance to
shear deformation and area dilatation is of great importance (Hannezo et al. 2012;
Berthoumieux et al. 2014; Freund 2014; Bächer et al. 2020). In the following, we study the
Rayleigh–Plateau instability of a membrane endowed with resistance to shear measured by
the shear modulus κS and resistance to area dilatation measured by the modulus κA = CκS,
which is expressed as a multiple of κS. In stark contrast to the bending forces above, here,
forces tangential to the interface arise. Therefore, the hydrodynamic approach used in
Part 1 and for the bending elastic interface above has to be modified. In the following,
we first derive the tangential and normal elastic forces from the constitutive law and then
present the changes required for including the tangential force. Eventually we obtain the
dispersion relation for a shear elastic interface.

As the constitutive equation for the shear elasticity including area dilatation we use the
energy functional introduced by Skalak et al. (1973),

WSK = κS

12

[(
I2

1 + 2I1 − 2I2
) + CI2

2

]
, (4.1)

with the invariants of the deformation (Green & Zerna 1954; Skalak et al. 1973;
Barthès-Biesel 2016; Daddi-Moussa-Ider et al. 2017)

I1 = Gαβgαβ − 2, (4.2)

I2 = det
(
Gαβ

)
det

(
gαβ

) − 1 (4.3)

and the additional parameter

J =
√

1 + I2. (4.4)

The Skalak Hamiltonian (4.1) represents a nonlinear constitutive law empirically proposed
for elastic cell membranes (Skalak et al. 1973). It describes a strain hardening behaviour
of the membrane (Barthès-Biesel et al. 2002). The first term of (4.1) describes the shear
elasticity of the elastic membrane. The second term proportional to C is related to area
incompressibility, where the value of C is chosen much larger than one for a completely
area incompressible membrane (Barthès-Biesel et al. 2002; Freund 2014). A typical value
used for simulations of red blood cells is C = 100 (Gekle 2016; Bächer, Schrack & Gekle
2017; Bächer et al. 2018; Guckenberger et al. 2018). The invariants (4.2), (4.3) and (4.4)
can be calculated using (2.5) and (2.7a,b). We perform a linearisation of the invariants
with respect to small perturbations ε using that the actual radius is R = R0 + ur(z)with the
deformation ur = O(ε) and in turn R′ = O(ε), R′2 = O(ε2), u2

r = O(ε2) and thus R2/R2
0 =

(1/R2
0)(R

2
0 + 2urR0 + u2

r ) ≈ 1 + 2(ur/R0). The invariants in leading order of ε therefore
are

I1 ≈ 2
ur

R0
+ 2u′

z, (4.5)

I2 ≈ 2
ur

R0
+ 2u′

z, (4.6)

J ≈ 1 + ur

R0
+ u′

z. (4.7)
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From the given strain energy functional (4.1) the in-plane components of the elastic surface
stress tαel in (2.14) are deduced as

tαβel,SK = 2
J
∂WSK

∂I1
Gαβ + 2J

∂WSK

∂I2
gαβ, (4.8)

where we obtain using (2.6), (2.7a,b), (4.1), (4.5)–(4.7)

tφφel,SK = 2κS

3R2
0

(
(1 + C)

ur

R0
+ Cu′

z

)
, (4.9)

tzz
el,SK = 2κS

3

(
C

ur

R0
+ (1 + C)u′

z

)
. (4.10)

Due to the in-plane and normal force balances (2.21) and (2.22), respectively, the elastic
interfacial forces are calculated by (Green & Zerna 1954; Barthès-Biesel 2016; Salbreux
& Jülicher 2017)

∇αtαβel,SK = f βSK, (4.11)

−cαβ tαβel,SK = f n
SK, (4.12)

with tαel,n = 0 (Daddi-Moussa-Ider, Guckenberger & Gekle 2016; Daddi-Moussa-Ider et al.
2017; Daddi-Moussa-Ider & Gekle 2018). Due to the derivatives of the metric in its
definition (2.8) the Christoffel symbols only possess terms linear or of higher order in ε.
In the covariant derivative of the in-plane surface stress a multiplication occurs with
the in-plane surface stress components and the resulting terms are of higher order, thus
negligible. Therefore, the covariant derivative (2.9) equals the partial derivative in linear
order. Calculating the derivatives and using the curvature tensor (2.11), we obtain the
elastic interfacial forces

f z
SK = 2κS

3

(
C

u′
r

R0
+ (1 + C)u′′

z

)
, (4.13)

f n
SK = − 2κS

3R0

(
(1 + C)

ur

R0
+ Cu′

z

)
, (4.14)

in the limit of small deformations. Due to axisymmetry the force in azimuthal direction
vanishes, i.e. f φ = 0.

We then perform a linear stability analysis for the elastic interface endowed with
anisotropic tension in the limit of small Reynolds numbers, i.e. for the Stokes equation
covering the dynamics of the suspending fluid. Using the perturbation ansatz for the
interface (3.12) we obtain for the radial deformation ur = εR0 cos(kz). Furthermore, the
deformation fulfils the kinematic boundary conditions (Daddi-Moussa-Ider et al. 2016,
2018)

∂ur

∂t
= vr|r=R0, (4.15)

∂uz

∂t
= vz|r=R0, (4.16)

which allow us to couple the deformation and the fluid velocity. Starting from the
kinematic boundary conditions we use ∂tε = ωε. For the velocity components we choose
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a perturbation ansatz vr(r, z) = (γ φε/η)v̄r(r) cos(kz) and vz(r, z) = (γ φε/η)v̄z(r) sin(kz)
as done in the case of bending elasticity and as in (B 5), (B 6) of Part 1. Doing so, we
obtain the growth rate and further the axial deformation

ωεR0 cos(kz) = γ φε

η
εv̄r(R0) cos(kz), (4.17)

uz = γ φε

η

1
ω
εv̄z(R0) sin(kz). (4.18)

The elastic forces from (4.13) and (4.14) become

f z
SK = −2κS

3

(
Ck + (1 + C)

γ φ

η

1
ω
v̄z(R0)k2

)
ε sin(kz), (4.19)

f n
SK = − 2κS

3R0

(
(1 + C)+ C

γ φ

η

1
ω
v̄z(R0)k

)
ε cos(kz). (4.20)

Using again the separation ansatz for the velocities, the perturbation ansatz of the interface
(3.12), the elastic forces and utilising the ring forcing concept, we obtain the fluid equations
of motion in the Hankel space

s
R0

P(s)− (
s2 + k2) Vr(s)

+

⎛
⎜⎜⎜⎝1 − γ z

γ φ
(kR0)

2 − 2κS

3γ φ

(
(1 + C)+ C

γ φ

η

1
ω
v̄z(R0)k

)
︸ ︷︷ ︸

=χ

⎞
⎟⎟⎟⎠ J1(sR0) = 0, (4.21)

k
R0

P(s)− (
s2 + k2) Vz(s)

+

⎛
⎜⎜⎜⎝− 2κS

3γ φ

(
CkR0 + (1 + C)

γ φ

η

1
ω
v̄z(R0)k2R0

)
︸ ︷︷ ︸

=ψ

⎞
⎟⎟⎟⎠ J0(sR0) = 0, (4.22)

sVr(s)+ kVz(s) = 0, (4.23)

where we introduce the abbreviations χ and ψ and with Vr(s),Vz(s),P(s) being the
Hankel transforms of the r-dependent parts of the velocity and the pressure. As in the
previous part, the anisotropy of the interfacial tension is given by the fraction γ z/γ φ . The
influence of shear elasticity is determined by the dimensionless factor S = 2κS/(3γ φ),
which appears in both χ and ψ . The influence of area dilatation compared to shear
elasticity is tuned by the factor C according to the Skalak law (4.1).
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We solve the fluid equations of motion in Hankel space (4.21)–(4.23) for the velocities

Vr = −ksψ
J0(sR0)(
s2 + k2

)2 + χ
k2J1(sR0)(
s2 + k2

)2 , (4.24)

Vz = s2ψ
J0(sR0)(
s2 + k2

)2 − χ
ksJ1(sR0)(
s2 + k2

)2 (4.25)

and we obtain in real space, evaluated at the interface

v̄z(R0) = ψ

∫ ∞

0
ds

s3J0(sR0)J0(sR0)(
s2 + k2

)2︸ ︷︷ ︸
=ξ1

−χ
∫ ∞

0
ds

s2kJ1(sR0)J0(sR0)(
s2 + k2

)2︸ ︷︷ ︸
=ξ2

, (4.26)

v̄r(R0) = −ψ
∫ ∞

0
ds

ks2J0(sR0)J1(sR0)(
s2 + k2

)2︸ ︷︷ ︸
=ξ2

+χ
∫ ∞

0
ds

k2sJ1(sR0)J1(sR0)(
s2 + k2

)2︸ ︷︷ ︸
=ξ3

, (4.27)

where ξ1–ξ3 abbreviate the corresponding integrals, which can be calculated e.g. using
Mathematica. Plugging the definitions of χ and ψ into the expression (4.26) leads to an
equation which can be solved for v̄z:

v̄z(R0) =
−ξ1SCkR0 − ξ2 + ξ2

γ z

γ φ
(kR0)

2 + ξ2S(1 + C)

1 + ξ1S(1 + C) γ
φ

η

1
ω

k2R0 − ξ2SC γ φ

η

1
ω

k
, (4.28)

which still contains the growth rate. Using furthermore the relation following from
(4.17) for the growth rate ω = (γ φ/(ηR0))v̄r(R0) = −(γ φ/(ηR0))ψξ2 + (γ φ/(ηR0))χξ3
and inserting all definitions above, leads to a final expression, which we solve with
Mathematica for the growth rate. This procedure results in the dispersion relation for the
interface endowed with shear elasticity and area dilatation

ω1,2 = ∓1
2
ωS

0S(kR0((C + 1)kξ1R0 − 2Cξ2)+ Cξ3 + ξ3)+ 1
2
ωS

0ξ3

(
γ z

γ φ
k2R2

0 − 1
)

∓ ωS
0

[
k2R2

0S
(
ξ 2

2 − ξ1ξ3
) (
(C + 1)

(
γ z

γ φ
k2R2

0 − 1
)

+ 2CS + S
)

+ 1
4

(
ξ3

(
CS + γ z

γ φ
k2R2

0 + S − 1
)

+ kR0S((C + 1)kξ1R0 − 2Cξ2)

)2
]1/2

.

(4.29)

Because the Skalak law equals the neo-Hookean constitutive law in the limit of small
deformations and C = 1 (Barthès-Biesel et al. 2002) all of the above results for C = 1
apply also to interfaces with neo-Hookean elasticity.

4.2. Shear elasticity introduces stability
Figure 7 shows the dispersion relation (blue line) for different relative shear moduli S
and different area dilatation coefficients C as given by (4.29). One of its two solutions is
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FIGURE 7. Dispersion relation for shear elasticity and anisotropic interfacial tension.
Contributions from the shear elasticity S (purple), γ φ (green) and γ z (orange) are distinguished
(dashed lines). Dispersion relations are shown for two different area dilatation moduli in the
upper two and the lower two rows, respectively, and in each case for two different shear moduli
(first and second row of each case). The anisotropy ratio is varied column-wise. The shear
contribution is always negative and thus damping. Increasing the shear modulus strongly lowers
the maximum of the dispersion relation. A similar effect is obtained for increasing area dilatation
to the extent that both together can lead to a purely negative dispersion relation and thus a stable
interface.

always negative and thus not shown in the figure. Tension anisotropy γ z/γ φ is increased
from the left to the right column using the same values 0.5, 1.0 and 2.0 as before. The
shear contribution depicted by the purple, dashed curve is purely damping. Therefore, the
initial state would be stable when interfacial tension tβaniso,α is absent. While the bending
contribution in figure 2 has a root at kR0 = 1, the shear contribution does not show any
positive root. The negative shear contribution alters the range of growing wavenumbers.

From 7(a) to (b) and from (c) to (d) the shear modulus S is increased while the resistance
to area dilatation C is held constant. From (a) to (c) and from (b) to (d) the resistance
to area dilatation increases but the shear modulus does not change. Both an increase in
the shear modulus and in the area dilatation coefficient strengthens the damping shear
contribution. In (b) the increase in shear modulus strongly dampens the dispersion relation,
but it still retains a positive maximum and thus an unstable range exists for all γ z/γ φ .
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FIGURE 8. Phase diagram for anisotropic tension and shear elasticity. We vary the resistance to
area dilatation from (a) C = 0 to (b) C = 1, (c) C = 25 and (d) C = 100. Above a critical shear
modulus S the shear elasticity renders the interface stable, where the critical value decreases
from (a) to (d), but never depends on γ z/γ φ .

In (d), due to an additional increase in C the total dispersion relation eventually becomes
negative such that the cylindrical interface remains stable.

In order to investigate the transition to a stable phase for shear elasticity in more detail,
we show the corresponding phase diagrams for several area dilatation coefficients in
figure 8. The colour in the phase diagrams encodes the dominant wavelength. We find that
above a critical shear modulus Scrit a region of stable interfaces develops in all cases. Most
remarkably, this threshold is independent of the tension anisotropy. Compared to the phase
diagrams including bending elasticity (figure 4a), the unstable corridor for γ z/γ φ ≤ 1 no
longer exists. Besides the increase in wavelength for stronger area dilatation, in figure (b)
to (d) we observe that increasing the value of C lowers the critical shear modulus.

The change of the critical shear modulus with increasing area dilatation coefficient C is
quantified in figure 9. For C = 0 the critical shear modulus Scrit is one, towards larger C
values the critical value saturates around 0.5. Thus, increasing area dilatation can render
the interface stable, just as the shear elasticity can. The curve is the same for different
values of the tension anisotropy. The predicted threshold for an axisymmetric, isotropic
active membrane without surrounding fluid by Berthoumieux et al. (2014), which has been
confirmed in simulations by Bächer & Gekle (2019), agrees very well with our findings
for C = 1 (blue triangle in figure 9).

4.3. Shear elasticity affects dominant wavelength
In figure 10 we systematically investigate the change in dominant wavelength λm due to
changes in the anisotropy ratio and the shear modulus. Figure 10(a) shows an increase
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FIGURE 9. Critical shear modulus. The critical elastic shear modulus, Scrit, above which the
interface remains stable, decreases with increasing area dilatation coefficient C and towards
larger C saturates at approximately 0.5. Findings of Berthoumieux et al. (2014) for isotropic
tension in absence of any fluid agree very well with our data (blue triangle).
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FIGURE 10. Dominant wavelength for shear elasticity. The resistance to area dilatation is
varied from (a) C = 0 to (b) C = 1, (c) C = 25 and (d) C = 100. Increasing shear modulus
S (differently coloured curves) increases the most unstable wavelength λm as does increasing
anisotropy of the interface tension γ z/γ φ as well as increasing C. Curves for large shear modulus
such as the yellow or dark blue curve in (a) vanish in (b), because the interface becomes stable
by increasing C for large shear modulus. Curves correspond to horizontal lines in the phase
diagram 8.

in wavelength with increasing anisotropy γ z/γ φ for fixed C and varying shear modulus.
A larger shear modulus for fixed tension anisotropy leads to an increase in the dominant
wavelength of the instability. Furthermore, increasing the area dilatation coefficient C
from figures 10(a) to 10(d) increases the wavelength: all curves shift towards larger
values of the wavelength, while the shape of the curves remains similar. For a large
shear modulus, the increase in C renders the dispersion relation negative, the cylinder is
stable and therefore curves for large shear elasticity gradually disappear when going from
figures 10(a) to 10(d). As seen based on the dispersion relation in figure 7, the transition
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FIGURE 11. Phase diagram combining bending and shear elasticity. We vary the shear
elasticity S for fixed (a) B = 0.1, C = 1, (b) B = 0.4, C = 1, (c) B = 0.4, C = 100 and
(d) B = 0.6, C = 1. The interplay of resistance to bending and shearing leads to a phase diagram
which combines the corresponding effects from figures 4(a) and 8. In particular, the instability
threshold shifts to smaller values of the shear modulus for fixed bending elasticity and increasing
anisotropy.

to the stable phase is independent of γ z/γ φ , which is in stark contrast to the bending
elasticity. For larger C values in figures (c) and (d), changes are less pronounced, which
reflects the saturation of the effects for strong area dilatation as observed in figure 9. As a
consequence, we do not expect any distinct effects for even larger area dilatation modulus.

5. Interplay of bending and shear elasticity

Finally, in this section we combine both bending and shear elasticity. We perform a
linear stability analysis in the same way as detailed in § 4.1, but modify the normal
component of the ring force, expression χ in (4.21): bending elasticity leads to
contributions to the normal force and thus the terms in (3.13) which are proportional to
the bending modulus are added to χ . In figure 11 we show the resulting phase diagram for
different combinations of the elastic parameters: while we vary the tension anisotropy and
the relative shear modulus S , each diagram belongs to a fixed bending elasticity and area
dilatation coefficient.

Small bending elasticity in (a) leads to results which are similar to those of a pure
shear elastic interface with C = 1 in figure 8(b): except the small increase around zero, we
have an instability threshold that is constant for varying tension anisotropy. Compared
to pure shear elasticity in figure 8(b) the threshold decreases despite the rather small
value of the bending resistance. Increasing the bending elasticity in figure 11(b) shows
an overlap of effects due to shear elasticity and due to bending elasticity: while shear
elasticity alone leads to a constant threshold for all γ z/γ φ , bending elasticity alone leads
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to a range of unstable anisotropy values and a threshold towards larger anisotropy as
shown in figure 4(a). Together these result in a peak and a decrease of the threshold
at smaller anisotropy. At larger anisotropy the threshold is at lower shear modulus due
to the finite bending elasticity and interplay of both. An additional increase in the area
dilatation coefficient in 11(c) leads to an overall shift of the threshold towards smaller
shear modulus, but the corridor extension over γ z/γ φ ≤ 0.7 remains. Further increasing
the bending modulus in 11(d) compared to (b) for C = 1 keeps the peak in the threshold at
small anisotropy but further decreases the plateau at larger anisotropy. The transition of the
threshold is therefore more pronounced. For finite shear elasticity a corridor of unstable
modes towards bending modulus to infinity does not exist. In all cases, the instability
wavelength increases in the whole parameter space compared to pure bending and pure
shear elasticity.

6. Conclusion

In this series of two papers we provided a detailed study of the Rayleigh–Plateau
instability driven by anisotropic tension. The common starting point of all studied
scenarios is the linear stability analysis of an infinitely long cylindrical interface subjected
to an azimuthal and an axial contractile tension, the ratio of the two representing our
main control parameter. We consider the full dynamics of the interior and the exterior
fluid and perform a separate analysis for the high Reynolds number (Euler) and low
Reynolds number (Stokes) regime. Physically, this includes fluid jets with a liquid–liquid
or liquid–air interface in the Euler regime as well as tubular vesicles and biological cells in
the Stokes regime. While anisotropy in the surface tension of fluid jets may be considered
a somewhat special case, anisotropic tension is a common feature in cell cortices. An
anisotropic tension can arise, e.g. due to alignment of actin stress fibres, and represents the
core motivation of our work. In Part 1 we studied the general mechanism of anisotropic
Rayleigh–Plateau instability for fluid–fluid interfaces. The present paper extends these
studies by including elastic forces due to bending, shearing and area dilatation in order to
properly account for the mechanical characteristics of membranes. Our main findings can
be summarised as follows:

(i) Increasing azimuthal with respect to axial tension leads to destabilisation of
the interface. Destabilisation expresses itself in an extension of the range of
unstable wavenumbers beyond the classical Rayleigh–Plateau threshold kR0 = 1.
It furthermore leads to a shift in the dominant, most unstable mode towards shorter
wavelengths.

(ii) Bending forces have only a small influence if the driving tension is isotropic. If axial
tension dominates, however, they exert a strongly stabilising effect up to a complete
suppression of the Rayleigh–Plateau instability.

(iii) The interplay of bending forces and anisotropy leads to the creation of a novel
regime, in which the interface is stable against both very large and very small
wavelengths. Only at intermediate wavelengths does an unstable range appear.

(iv) Increasing bending forces and/or varying tension anisotropy can completely
suppress the instability.

(v) Shear elasticity always leads to stabilisation of the interface.

An important future research direction will be to investigate the coupling of anisotropic
tensions with anisotropic elastic properties of the interface, where a modified elastic
constitutive law including anisotropy must be derived or proposed.
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Appendix A. Anisotropic Rayleigh–Plateau instability of an ideal fluid jet with
bending elasticity

We derive the dispersion relation of a liquid jet filled with an ideal fluid (Rayleigh 1878;
Eggers & Villermaux 2008) including the bending elasticity of a possible surfactant. We
here consider vanishing influence of an ambient fluid, but according to appendix C of
Part 1 including an ambient fluid leads to results which look similar. The interfacial force
due to bending in (3.11) together with the anisotropic interfacial tension (2.14) contributes
to the traction jump at the interface given in (3.13). If we rewrite the radius R(z) with the
perturbation ansatz R0 + ur(z) and consider a perturbation of the interface of the form

ur = ε0 exp(ωt + ikz), (A 1)

with a small amplitude ε0, growth rate ω and wavenumber k, we can calculate the linear
traction jump at the interface. For an ideal fluid the traction jump in normal direction Δf n

is identical to the pressure p0 + δp(r = R) at the interface and we thus can write

p0 + δp(r = R) = γ φ

R0

(
1 − ε0

R0
exp(ωt + ikz)

)
+ γ zε0k2 exp(ωt + ikz)

+ κB

(
1
R4

0
− 2k2

R2
0

+ k4

)
ε0 exp(ωt + ikz). (A 2)

Starting from this pressure disturbance at the interface, we derive the dispersion relation
as detailed in appendix C of Part 1: we identify p0 as the constant Laplace pressure of
the unperturbed interface as given in (3.14), solve the Laplace equation for the pressure
and the linearised Euler equation for the velocity contribution in radial direction and use
the kinematic boundary condition (Eggers & Villermaux 2008). We neglect the density
of the outer fluid and thus consider a liquid jet in air (Eggers & Villermaux 2008). This
procedure leads to the dispersion relation for an ideal fluid including bending elasticity

ω2 = ω2
0kR0

[
1 − γ z

γ φ
(kR0)

2 − B (
1 − 2 (kR0)

2 + (kR0)
4)] I1(kR0)

I0(kR0)
, (A 3)

with the prefactor ω2
0 = γ φ/(ρR3

0). We obtain the same geometrical factor kR0(I1(kR0)/
I0(kR0)) as Rayleigh (1892) and Patrascu & Balan (2020) for isotropic tension without
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FIGURE 12. Dispersion relation for bending resistance and anisotropic interfacial tension for
the ideal fluid. From left to right the anisotropy ratio increases. From top to bottom the bending
resistance is increased, the values are given by the labels. The bending contribution is purely
damping for all wavenumbers, except at the position of its root. It alters the range of growing
modes and shifts the maximum of the dispersion relation. For the ideal the γ φ-contribution
tends to infinity.

and with bending elasticity, respectively. However, the prefactor including bending forces
deviates from the one obtained by Patrascu & Balan (2020) for isotropic tension. The latter
uses a bending tension expanded around zero curvature, which significantly differs from
the one obtained from the full Helfrich Hamiltonian (Guckenberger & Gekle 2017). In
contrast to the Stokes dispersion relation (3.15), we here obtain the square of the growth
rate. If ω2 is negative, the growth rate is imaginary and corresponding small perturbations
are oscillatory but do not grow in time. However, ω2 > 0 results in a positive ω leading
to growth of the perturbation, while the negative solution for ω will decay and is of no
interest. Thus, wavenumbers where ω2 > 0 are unstable. Analogously to the calculation
in the Stokes regime in § 3.1, the bending elasticity makes a contribution proportional to
the dimensionless prefactor B in addition to the contributions of the anisotropic tension,
already appearing in (C 15) in Part 1. The factor due to bending and anisotropy in
the dispersion relation (A 3) is identical to F in (3.16), thus the discussion of the
unstable range and the instability threshold is the same for the ideal fluid as for the Stokes
fluid in § 3.

However, the dispersion relation and its maximum, the dominant wavelength, change
strongly. The dispersion relation (A 3) of an anisotropic interface including bending
elasticity for the ideal fluid is shown in figure 12 as blue line. Analogously to figure 2 for
the Stokes limit, we also draw the bending contribution as red dashed line and the γ z- and
γ φ-contribution from the anisotropic interfacial tension in orange and green, respectively.
From the left to right columns in figure 12 the anisotropy ratio increases and from top to
bottom the bending resistance is increased from 0.5 to 1.0 and 2.0. As already observed for
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FIGURE 13. Stability of an ideal fluid jet with bending elasticity. (a) Phase diagram depending
on tension anisotropy and bending elasticity. Strong bending elasticity B ≥ 1 with γ z/γ φ > 1
can render the interface stable (suppressed regime), whereas for smaller tension anisotropy
unstable modes always exist but are restricted. (b) The instability wavelength for different
bending moduli, where each curve corresponds to a horizontal line through (a). Increasing
bending resistance (from orange to red) changes the wavelength strongly, especially at very small
and very large anisotropy ratio and can even suppress the instability (red curve). Around the
classical Rayleigh–Plateau instability, i.e. for anisotropy ratio of one, the wavelength changes
only slightly.

the dispersion relations in the Stokes limit in figure 2, the bending resistance is a damping
contribution for nearly all wavenumbers and becomes zero only at kR0 = 1, which is a
consequence of the reference curvature. Also in the case of the ideal fluid, an increase in
the anisotropy ratio (from left column to right column) as well as an increase in the bending
modulus (from top row 12(a) to bottom row (c)) strengthens the damping contributions
which eventually leads to a negative dispersion relation and therefore a stable cylindrical
interface (suppressed regime). We again observe that a large enough bending contribution
in 12(c) and moderate anisotropy ratios (first two columns) lead to another root of the
dispersion relation at finite wavenumbers and therefore stable modes at small wavenumber
(restricted regime). However, comparison with the dispersion relations in the Stokes
regime also shows that the different contributions and thus the shapes of the dispersion
relation differ visibly. In contrast to the Stokes regime the destabilising γ φ-contribution
for the ideal fluid tends to infinity, instead of bending downwards after having reached
its maximum. Thus the positive part of the dispersion relation is more asymmetric. As a
consequence the maximum shifts towards larger wavenumbers. However, the right root,
which determines the right border of the growing modes, is the same for both fluid limits.

In figure 13 we show the (a) phase diagram and (b) dominant wavelength λm for the ideal
fluid jet with bending elasticity. The threshold and the border between the classical and
restricted regime are the same as in the Stokes limit (figure 4a), because the factor F (3.16)
in the dispersion relation is the same. Each curve in 13(b) corresponds to a horizontal
line through the phase diagram in (a), where the value of the most unstable wavelength
is given by colour code. The curves without the influence of bending elasticity (orange)
recover the result shown in figure 4(b) of Part 1. Interestingly, around the anisotropy ratio
γ z/γ φ = 1 even very large bending contributions hardly affect the wavelength. However,
for strongly anisotropic interfacial tension, with a ratio close to zero or much larger
than one, the dominant wavelength changes distinctly. Strikingly, a finite wavelength for
γ z/γ φ → 0 is predicted if bending elasticity is included, whereas without bending for an
ideal fluid the wavelength approaches zero, as discussed in Part 1. This can also be seen
at the bottom left corner of the phase diagram. If the anisotropy ratio becomes larger for
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smaller bending resistance the wavelength strongly increases and tends to infinity. The red
curve for B = 2.0 shows that for larger anisotropy ratios no unstable wavelength exists,
which is reflected in figure 12(c): in the last column the dispersion relation does not
assume a positive value for any wavenumber. In the phase diagram this corresponds to
the region above the value B = 1.0 where on the right all modes are stable (white region).
As discussed above, for large enough bending (in the blue region in 13(a) and the red curve
in 13b) the wavelength, which correlates with the maximum of the bending contribution
due to reference curvature, stays nearly constant, independently of the tension anisotropy.
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