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1

Results concerning classes of null sets have been obtained by various authors.
See, for example, [3], [4], [6], [7]- This paper contains results concerning classes
of null sets and the notion of a ‘small system’. The motivation for considering
‘small systems’ comes from a paper by Riecan (c.f. [2]).

The main result of this paper is a natural method of constructing a class
of null sets on a o-ring. We begin with a nonempty class & and a sequence
{A " }a=1 of nonempty subclasses of &. Using a method analogous to Cara-
theodory’s method of extending measures, we construct a class of null sets on
the generated o-ring ¥(&).

Other results are also obtained which are generalisations of those for outer
measures. Finally, the relationship between the results obtained and measure
theory is indicated.

Throughout this paper, the notation E° is used for the complement of a set
and E A F for the symmetric difference of the sets E and F. The symbol N is
used for the set of positive integers, and ¢ for the empty set. Any concept, which
is not defined, is to be understood in the sense of Halmos [1].

DEFINITION. Let X be an abstract set, & a o-ring of subsets of X, and
{M,}v-1, a sequence of subclasses of &, such that

(A) for each ne N, .#, is non-empty

(B) for each ne N, there exists a sequence {k;}i%, of positive integers
such that E;e M, (i = 1,2,---) implies |J;2,E; e #,

(C) for each neN, if Eec #, and Fe¥, then ENFe #,.

A sequence {M,}r-, satisfying all the above properties will be called a
small system on & .

ExaMPLE. Let X be a set, & a o-ring of subsets of X and 1 a measure on
& . For each ne N, define
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1
M, =;{Eey|u(E) < -} .
n

Then the sequence {.#,};_, satisfies (A), (B) and (C). Property (B) is the re-
placement for the o-subadditivity of u, while property (C) replaces the monoto-
nicity of u.

If we put

M ={EcS | uE) =0},

then it is easy to see that # = N7, .#,, and also that

(a) for each sequence {E;}2, in & such that u(E;) = 0, for each i, then
p(U2,E) =0, and

(b) if w(E) =0, Fe&, then w(ENF) = 0.

Hence we are led to the following definition.

DEFINITION. Let & be a o-ring, and A" a non-empty class such that A = &.
Then A will be called a class of null sets in &, if

() U2, E;e AN, where E;e V" (i = 1,2,-+)

(i) ENFeA, where Ec A and Fe%.

Now let {#,},>; be a small system on &. If we put A = 7., 4,
then the following result holds.

THEOREM 1. & is a class of null sets in & .

ProoF. (i) Suppose E;e # (i = 1,2,---). Hence, for each ne N, we have
E;e#, (i =1,2,--). Now fix n. Then, by (B), there exists a sequence {k;}7,
of positive integers such that for any F;e 4, , then |J2,F;e 4#,.

Choose F;, = E;e #,, (i =1,2,---). Hence UX,E;e#,, and this is
true for all neN. So {J7-,E;e .

(ii) Suppose E€ # , Fe ¥ . So, for each ne N, Ec #,, and thus by (O),
EnNnFe#,. Thatis, ENFe.#. Thus the theorem is proved.

2

Let X be an abstract set, and & any non-empty class of subsets of X. Let
H(&) be the hereditary o-ring generated by &, and {A4",}7-, be any sequence
of non-empty subclasses of &.

REMARK 1. It will help the reader if he keeps the following example in mind.
Let & = #, a ring, and let u be a measure on #. Then for each ne N, define

1
Ny = {Eegi’ | w(E) <;=.
Using this example, one should see the connection between the construction to
follow and Caratheodory’s method of extension of measures,
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DEFINITION. Given E € (&), we say the class of sets {E;};c 1, [# ¢, [c N
is an n-cover for E, provided that E;e A", for some k;e N (i€l), JicEi2 E
and X, ;1/k; < 1/n, where neN.

Now we define a sequence {AF};; of subclasses of the class (&) as
follows:

DEFINITION. For each ne N, we define Ay = {E ef(é”)[E has an n-cover}.

REMARK 2. Suppose E;e A}, where ieI < N and X, ;1/k; < 1/n, then
U ieIEiE‘A/:'

LemMmA 1. If the sequence {A'F}7-. is defined as above, then N} o> N,
for each ne N. Further ¢ € /¥, for each neN.

ProOF. Given ne N, let Ee.#",. Then {E} forms an n-cover for E. Hence
Ee¥. 1t is clear that ¢ e A"F, for each neN.

DEFINITION. The small system {#,}y =y on the a-ring & is said to be de-
creasing, if M,,, c M,, for each neN.

THEOREM 2. {A' ¥} is a decreasing small system on H#(8).

ProoF. It is clear that {#"F}2., is decreasing, since any n + 1-cover of a
set E in (&) is also an n-cover of E.

(A) For each neN, 4 ¥# ¢, since /¥ A,.

(B) We have to show that, given ne N, there exists a sequence {k;};%,
of positive integers such that for any E;e A% (i = 1,2,--+), then U7 E;e 4.

So, given ne N, choose {k;};~, such that X /2, 1/k; < 1/n. (It is sufficient
to put k; = n.2'(i = 1,2,---)). Hance, for any E;e A"}, by remark 2, we have
UF=1Ee A7,

(C) Given neN, let Ee#¥ and Fe#(&). Then E has an n-cover and
this will also be an n-cover for ENF. Thus ENFe /%

So {A ¥}, is a decreasing small system on #(&), and the thecrem is

proved.
DEFINITION. We will call {47}, the small system induced by {A "} ;.
NOTATION. We put /™* = =1 A x.
THEOREM 3. A°* is a class of null sets in #(&).

Proor. The result follows from theorem 1, since {7} }7-, is a small system
on H#(8).

THEOREM 4. {A '} N F(8)}-1 is a decreasing small system on F(&), the
o-ring generated by &.
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ProoOF. (A) For each neN, ¢e A X NF(E).

(B) We know that, given ne N, there exists a sequence {k;}{2, of positive
integers such that for any E;e #F, then | 2, E,e 4 F. This same sequence
{k;};j=, can be used for {AF ﬁg’(é”)},, . since, given neN, for any
Fie A/ ENF () (i =1,2,--), we have U2, Fe A ¥and U2, Fie#(&). So
U2 F.e A NnF(&).

(C) Given neN, let Ee /' ¥NS(£), and FeF(£). Then
ENnFeA}NF(8), since {AF}7., is a small system on #(&).

Finally, {4/ F NF(&)}-, is decreasing, since {A#F}., is decreasing. Thus
the theorem is proved.

THEOREM 5. A * NF(8) is a class of null sets in F(&).

Proor. The result follows from theorem 1, since

A*NF(E) = (YN *NFL(E)
n=1
and {#FNF(E))-, is a small system on F(&).

REMARK 3. Theorems 4 and 5 remain true if ¥ (&) is replaced by any o-ring
&, such that (&) = & < H(8).

REMARK 4. Theorem 5 completes the construction of the class of null sets
on &#(&). As we shall show in section 4, for the special case when {47, }>., is
defined by

Ny = {Eege]u(E) < rl:}

for each ne N, as in remark 1, then A™* is precisely the class of sets of induced
outer measure zero in (%) . Unfortunately, it is not true for an arbitrary measure
i that

N = :Eeyf(gz)|u*(E) <’1;} .

However, as the reader will see in section 4, if he thinks of A" as the class of
sets of induced outer measure < 1/n, it will provide motivation for the work
in this and the next section.

We now consider two sequences {43 }2,, {#2}2, of non- empty sub-
classes of &. Then we can form the induced small systems {47, * ~, and
{‘/Vz tn=1 oD H(8).

THEOREM 6. In the above notation, we have ./Vl = ./V2 , for each neN,
if and only if both NS #2 and 42 S HL, for each neN.
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PROOF Suppose ./V1 = ./Vz* for each neN. Then ./V,}* = ./V,f*:./V,,z
and 42 = 41" 3./1/'1 for each neN.

Conversely, given any_ ne N, we show that 4", 1 =4, 2*  From remark 2,
it follows that W e ./V,,2 , for all ne N implies ./V‘ c./Vf , for each neN.
Similarly 41 5 #2* | and the theorem is proved.

Now suppose that # is a class of sets such that & ¢ # < #(&). If
{AN a1, is a sequence of non-empty subclasses of & (and hence of &), we can
construct the small system {AF}:°., on H#(8) = H(F). Thus {#F N F}°_,
is a sequence of non-empty subclasses of #. Hence we can construct the small
system {(AF N F)*}_, induced on H#(&) by {A#F NF )2, on F. Then, with
this notation, we have the following result.

PROPOSITION 1. For each ne N, /¥ = (/¥ N F)*,

ProoF. Given ne N, we have /¥ o # ¥ NF, and also
NEINFVoANINF N . NF =A,.
Hence the result follows from theorem 6.

COROLLARY 1. For each ne N, AF = (#/5)*.
Proor. Put & = (&) in proposition 1.

3

Let X be an abstract set. Throughout this section let & be a non-empty
class of subsets of X and {47,},%, a sequence of non-empty subclasses of &
such that

i) Aoy A,, for each neN

(i) EeANy, FeAN, implies EAFe A",

(iii) Ee /4, Fe & implies ENFeA,.

REMARK 5. From (iii), we see that Ee A#",, Fe A", implies ENFeA",.
Hence (ii) and (iii) imply that 47, is a ring.

REMARK 6. With {#7,},%, defined as in remark 1, put A", = {Ee 2| u(E)
< o}. Then {A#",},2, satisfies the conditions (i), (ii) and (iii) above.

As in section 2, we can define the induced small system {AF}°-; on (&),
from the sequence {47, }7-; on &. We can also define the class 4§ < H#(6)
as follows:

DEFINITION., A3 = {Ee%(cf?)] for each ne N, there exists Fe ¥, such
that E—Fe A }.
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REMARK 7. Itis clear that A"y = A% and also A7 is hereditary, in the sense
that Ee #¢ and F < E imply Fe /5.

REMARK 8. We will see later that for the case when {A7,},%, is defined as
in remark 6, A4"¥is precisely the class of sets of finite outer measure in J#(%).

PROPOSITION 2. For each me N, /& o> N%.

Proor. Given me N, let Ee A"}, Hence E has an m-cover {E;};.;. Sup-
pose ne N is given. If I is finite, choose F = |J;.;E;. Otherwise choose i,
such that X ., 1/k; < l/n, where E;e\4", , and put F = [Jj2, E;. In either
case, Fe ¥, and E — FeA#*. Thus the proposition is proved.

PROPOSITION 3. & < H#(N',) implies H (&) = H(NE), where H(AN,) and
H(N'E) are the hereditary o-rings generated by Ay and A% respectively.

PROOF. & < (N ) implies H#(8) = #(Ay). Then, since A& > A, we
have (N g) o H (N o) o H(6).

To motivate the next two definitions, we remind the reader of the following
measure-theoretic results.

PROPOSITION 4. Let Ee 2 (R). Then E is p*-measurable and p*(E) < o0,
if and only if, given &> 0, there exists Fed siuch that uw(F)< oo and
u*(EAF) <eg.

PROPOSITION 5. If E€ # (&), then E is py*-measurable, if and only if, given
¢>0and Ae X such that p(A) < o, there exists F € & such that u(F) < o and
P(ENAAF] <e.

With these results in mind, we make the following definitions.

DEFINITION. S 4= {Ee%(f)l given ne N, there exists Fe Ny such that
EAFe ¥}

DEFINITION. % = {Ee%(éa)] given ne N and Ae .V, there exists Fe A,
such that (ENA)AFe )},

REMARK 9. Itisclear that Ee #*if and onlyif ENAe #§, forallde A,
Also we will see later that with {47}, defined as in remark 6, &5 is the class
of measurable sets of finite outer measure in J#£(%), and &* is the class of mea-
surable sets in ().

THEOREM 7. &F§ = S* N ANE,

ProoF. Let E€ 5, Ae Ny and ne N. Hence there exists F, € 4", such
that EAF, e /¥, Now

(ENA)AF,NA) =EAF,)NAcEAF,.
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So if we put F = F; N Ae A, then (ENA) AFe A} That is Ee %*. Hence
Foc I*,

Further, since E—~ F c EAF, we have Ee A"y, Thus &% < A&, and so
FocF*NANE.

Now suppose Ee.&* NA"§. Heuce, given ne N, there exists F, € 4", such
that E — F, e #°;,. Then since E also belongs to .#*, there exists F € 4", such
that

ENF)AFeA3,.
Then ( DAFeA7s3,

EAF = [(ENF,) UE - F)]AF c[(ENF)AF]U(E — F,)e #*.
Thus E e &¢. That is $* N A < &5, and the theorem is proved.

DErINITION. We say the sequence {AN "}, satisfies the finiteness condition,
if given ne N, Ae A, and {E};=, such that E;e &% (i = 1,2,---), where the
E; are pairwise disjoint and \J2 E; = A, then there exists i€ N such that
Ui;ioEieJV:-

THEOREM 8. If {A )70 satisfies the finiteness condition, then &* is a
g-ring.

PROOF. Suppose E; e F* and E,e5*, Hence given neN and AeA,
there exists F, e #, and F,e.4", such that

(Ey NA)AF e, and (E, NA)AF,eNF,.
Then F;, UF,eA, and
[(E, UE) NAJA(F, UF,) c [(E, N A)AF,JU[(E, N A)AF,Je & *.

Hence E, VE, e ¥*.
Further, F, — F,e A", and

[(E,—E,) NA]A (F{—F,) < [(E; N A)AF,JU[(E; N A)AF,]e &

Thus E; — E, e %*, and so &* is a ring.
Now let {E;};2, be a sequence of pairwise disjoint sets from &*, If we can
show that U=, E;e &*, then &* will be a o-ring.

Suppose we are given AeA",. Then

(U E,.) N4 = (JEnNAHCcA.

vi=1 i=1

Since the E; € &*, we have that E; Nn4es*(i = 1,2,---). Hence, by the finiteness

condition, given ne N, there exists ioe N such that {J;5; (E;NA)eA5,.
Further, since &* is a ring, |J;2;' E;e ¥*. Hence, there is F e 4", such

that
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io—1
[( U Ei) nA] AFen ).
i=1

Now

[(Q Ei) "‘A] AF} U {(0 Ei)nA} eN*,

1=10

(©e) ]

Hence, |J2,E;e%*, and the theorem is proved.
PROPOSITION 6. If {AN "}~ satisfies the finiteness condition, then ¥ (&) = S*.

PrOOF. Suppose E€ &. Then given Ae Ay, we have ENAde AN, by the
properties of A4",. Then '

(ENAAENA) =dpesF,
for all neN. So Ec.¥*. Hence & < %*, and since &* is a o-ring, we have
L(8) = F*.

PROPOSITION 7. #* = F§.

PrOOF. Suppose Ee.A#*. Then, given neN, Ee 4. Now ¢e A", and
EAp = EeN}. So Ec 5.

ProrPosITION 8. If E€ & *, and E° € #(&), then E° e £*.

PrOOF. E € &* implies, given ne N and 4Ae A"y, there exists Fe A", such
that (ENA)AFeN*¥. Then A~ Fe Ay, E°e#(£) and
(EENAAA—-F)c(ENA)AFeN}F.
Hence E‘e %*.

PROPOSITION. 9. E€ (&) and ENAeN*, for all Ae Ay implies

() Ec o

and (ii) either Ec /* or Ec H(&) ~ N¢§.

PROOF. (i) We have that ENAe A/ ™* < ¢, for all Ae #y. Hence Ee 5*

(ii) Assume E ¢ (&) — A°§. Hence E e 47§ and, given ne N, there exists
Fe A, such that E — Fe A'},. Also; since Fe Ay, ENFeA%,. Hence

E=(E-F)UENF) e,

and since this is true for all ne N, Ee /7%,

https://doi.org/10.1017/51446788700010788 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010788

9] On classes of null sets 325

4

Throughout this section we suppose that we have a set X, a ring £ of sub-
sets of X, and a measure p on &#. Let u* be the induced outer measure of x on
H(R), the hereditary o-ring generated by . We define the sequence {A",}5 -0
on £ by 1
N, = {Ee.%|,u(E) < ;} ,

for each neN, and A4, = {Ee%lu(E)< o}. Note that, for each neN,
A, is non-empty. Hence the small system {475}, on # (%) can be induced
from the sequence {A",};-, on #, by the method of section 2. We can also
construct A°§, F§ and F*, as in section 3. We will be concerned with the rela-
tionships between {A "} }: Lo, Lo, F* and certain classes of sets, which are
defined by means of u*.

First of all, note that, in general, it is not true that

NE = {Ee.?f(?l)] p*(E) <1ﬁ} ,

for each ne N. For let X be any countably infinite set {a,};~, . Let # be the ring
of all finite subsets of X . We specify a measure u on 2, by assigning u(a,) = 0.21,
way) = 0.26, u(a;) = 0, (i # 1,2). Then p*(X) <1, but X ¢ #"3. However, the
following results do hold.

ProposITION 10. For each ne N, #F c {E ef(ﬂ)[ﬂ*(E) <1/n}.

PrOOF. Given ne N, let E e #*. Hence there exists a class {E;};cr, [ # ¢,
I< N,suchthat E;e A, ,some k;e N (i), U;c;E;>E and X, 1/k; < 1/n.

Hence u(E;) < 1/k;, for each ieI. If N — I # ¢, put E; = ¢, for ie N—1I.
So L2, mE)< X 1/k; £ 1/n. That is u*(E) < 1/n, and the proposition
is proved.

PROPOSITION 11. For each ne N, ¥ > {E e #(R)| p*(E) < 1/2n}.

PrOOF. Given ne N, let E e #(®) with p*(E) < 1/2n. Hence there exists a
sequence {E;}i>, such that E;e® (i = 1,2,---), U%, E; o E and X%, u(E)
<1/2n.

Now, for each u(E;) > 0, define 1/k; as the smallest number of the form 1/p
(where p is a positive integer) strictly greater than u(E;). Then, by the definition
of 1/k;, we have 1/2k; < u(E;) < 1/k;, for ie M = {i e N|u(E;)>0}. Hence

1 ® 1
3 EM = iEEMu(E,-) = El HE) < 5o

That is, ¥ ;.\ 1/k; < 1/n.
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Now, if N—M # ¢, we choose a set {k;};.y—u of positive integers such that

1 1 1
z F§ - X -
ieN—-M

ieM ki

Hence we have a sequence {E;}{2, such that

8
II/\
:I»—k

Ee N, (i=1,2,: sz .o E and lki

13

I

So Ee A"}, and the proposition is proved.
THEOREM 9. If #'* = %o ¥, then N* = {E e #(R)| u*(E) = 0}.
Proor. From propositions 10 and 11, we have, for each ne N,

{Ee%’(ﬂ)[u*(E) <%} SAH¥ > {Eef(@)[u*(E) < zln} )

Hence

[ 1 @ 1
nO1 {Ee.%’(,%)ly*(E) < ’;} > A * > ﬂ {E e%(%)[u*(E) <27: .
That is, #™* = {E e #(&)| u*(E) = 0}.
For a certain class of measures, including Lebesgue measure, it is true that

N* = :Ee.}f(,%’)l,u*(E) < %}
for each neN.

DEerFINITION. If 1 is a measure on a ring &, a set E € R of positive measure
is called an atom if, given Fe % such that F < E, then either u(F) =0 or
WME—-F)=0,.

LemMA 2. (c.f. [5], p. 272). Let & be a ring, and p a measure on . If
Ee is of finite positive measure and E does not contain any atoms, then for
any real number B, such that 0 < B < u(E), there exists a subset F of E such
that Fe# and u(F) = B.

REMARK 9. We see from lemma 2, that for «; 2 0 (i = 1,2,--,n) and
2o = u(E), there exist disjoint sets E;e %, such that |J7_, E; = E and
WE;) = a.

Tueorem 10. If u has no atoms, then N ¥ = {E e #(R)| u*(E) < 1/n}, for
each neN.

Proor. In view of proposition 10, we need only show that

NE S {Eef(@)[y*(E) < %’
for each ne N. ’
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Given ne N, let Ee s (#) with y*(E) < 1/n. Then there exists a sequence
{E;}2, such that E;e# (i=1,2,--), U2, E>E and X2, w(E)<1/n.
Now, for each i, choose p;fq; (p; and g¢; are positive integers) such that
WE) < pi/g; and XF_ p(E) < K-y pilg; = 1n.

This can always be done for the following reasons. Choose ¢ > 0, such that
£ <1/n— X2, u(E), and then choose p;/g; such that

u(E)< - = u(El)+—- (i=1,2,-).
Then

T (e < _°>°2 Bg TuE)+esy.

For each i, from remark 9, we can choose p; disjoint subsets {EJ}?L, of
E,; such that \J?L, E{ = E; and p(E!) = p(E))/p;. Hence

wED = ”(E‘) o1 i, for j=1,2,-,p;.
Di 4; P 4

That is, for each i, E} eA,,, for j =1,2,---,p;. Further,

e

™38

1yl
1 4 =149 R

i
1]

i=1 j

Hence the class {E{};2, ¥., forms an n-cover for E. Hence Ee.#";, and the
theorem is proved.

We remind the reader of the following measure-theoretic result. If E € (%),
then u*(E) < oo, if and only if there exists Fe# such that p(F) < oo and
p*(E — F) < ¢. Then with this and propositions 10 and 11 in mind, it is easy
to see that

= {Ee #(R)| u*(E) < ).

Proposition 3 is then the generalisation of the result: ‘u is o-finite, implies p*

is o-finite’.
Comparing propositions 10 and 11 and propositions 4 and 3, it is easy to
see that
= {Ee%(@)ht*(E) < 00 and E is p*-measurable}
and

F* = {(Ee H(R)|E is p*-measurable}.

Finally we have the following result.

ProPOSITION 12. {A",}%, satisfies the finiteness condition.
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ProOF. Let Ae &, where u(4) < o and {E;}{2; be a pairwise disjoint se-
quence of sets in &%, such that |Ji2, E; = 4. Then, for each i, E; is u*-mea-
surable and

2 @) = i (UE) < ued) < co.
i=1 i=1
Hence, we can choose ig € N such that

=2
Y u*E) < —.
1=ig+ 1u ) 2n
Then for i > iy, we have E;e 4%, where X5, 1/k; < 1/n. Hence U;zi E€ A4
and the proposition is proved.
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