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Results concerning classes of null sets have been obtained by various authors.
See, for example, [3], [4], [6], [7]. This paper contains results concerning classes
of null sets and the notion of a 'small system'. The motivation for considering
'small systems' comes from a paper by RieCan (c.f. [2]).

The main result of this paper is a natural method of constructing a class
of null sets on a <r-ring. We begin with a nonempty class S and a sequence
{^Tn}"=1 of nonempty subclasses of S. Using a method analogous to Cara-
theodory's method of extending measures, we construct a class of null sets on
the generated a-ring £?{£).

Other results are also obtained which are generalisations of those for outer
measures. Finally, the relationship between the results obtained and measure
theory is indicated.

Throughout this paper, the notation Ec is used for the complement of a set
and E A F for the symmetric difference of the sets E and F. The symbol N is
used for the set of positive integers, and 0 for the empty set. Any concept, which
is not denned, is to be understood in the sense of Halmos [1].

DEFINITION. Let X be an abstract set, £f a a-ring of subsets of X, and
{•̂ n}"=i> a sequence of subclasses of £f, such that

(A) for each neN,Jtn is non-empty

(B) for each neN, there exists a sequence {kt}fLi of positive integers
such that EieJtki (i = 1,2,•••) implies \J?=1Eie^n

(C) for each neN, if EeJ?n and Fe£f, then EC\FeJtn.
A sequence {J?n}™=l satisfying all the above properties will be called a

small system on S?.

EXAMPLE. Let X be a set, S? a ff-ring of subsets of X and n a measure on
Sf. For each neN, define
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Then the sequence {Jtjfi=l satisfies (A), (B) and (C). Property (B) is the re-
placement for the c-subadditivity of n, while property (C) replaces the monoto-
nicity of fx.

If we put
Jt = {EeS?\n(E) = 0},

then it is easy to see that Ji = f) ™= x Jtn, and also that
(a) for each sequence {Ei}^=1 in £f such that ^(£;) = 0, for each i, then

M U I " I £ I ) = 0 . a n d

(b) if n(E) = 0, F e y , then n(EnF) = 0.
Hence we are led to the following definition.

DEFINITION. Let S? be a a-ring, and^V a non-empty class such that jVa <?.
Then ~W will be called a class of null sets in £?', if

0) U * - i ^ ! ^ . where EteJr (i = 1,2,-)
(ii) EC\Fe^V, where EejV and Fe^.
Now let {*#„}?= t be a small system o n ^ . If we put Jl = f | " = i ^ , ,

then the following result holds.

THEOREM 1. M is a class of null sets in SP.

PROOF, (i) Suppose E^Ji (i = 1,2,•••). Hence, for each neN, we have
EteJ(n (i = 1,2,•--). Now fix n. Then, by (B), there exists a sequence {fejf=1

of positive integers such that for any Ft e Jtk., then |Jf" t Ft e Jln.
Choose Ft = Ei€J?k. (i = 1,2,—). Hence \JiZ1EieJ?n, and this is

true for all neN. So (J?=i£;e.^r.
(ii) Suppose EeJl, F e ^ . So, for each neN, EeJln, and thus by (C),

E C\F' e Jfn. That is, E C\FeJt. Thus the theorem is proved.

Let X be an abstract set, and $ any non-empty class of subsets of X. Let
be the hereditary c-ring generated by S, and {̂ Tn}™=1 be any sequence

of non-empty subclasses of S.

REMARK 1. It will help the reader if he keeps the following example in mind.
Let i = 8?t, a ring, and let / ibea measure on ffl. Then for each neN, define

Using this example, one should see the connection between the construction to
follow and Caratheodory's method of extension of measures.
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[3] On classes of null sets 319

DEFINITION. Given EeJf(S), we say the class of sets {£,},• e j , / # <j>, I c N
is an n-cover for E, provided that EteJfkl, for some k,eN (iel), U u i ^ ; => E
and Ejg/l/fcj ^ 1/n, wnere neN.

Now we define a sequence {*#"*}%= i of subclasses of the class 3t?(&) as
follows:

DEFINITION. For each neN, we define ^V*— {Ee^f{S)\E has an n-cover}.

REMARK 2. Suppose Ete^Vt., where ielc-N and X,-£jl/fcj ^ 1/n, then

LEMMA 1. / / the sequence {^*}*=i IS defined as above, then JV* r> ^"n,
/or eac/i neN. Further (j>e^V*,for each neN.

PROOF. Given neN, let E e «¥n. Then {£} forms an n-cover for E. Hence
*. It is clear that fyeJ/'*, for each neiV.

DEFINITION. 77;e sma// system {^#B}"=i on f/ie a-ring Sf is said to be de-
creasing, if Jfn + l czJ?n,for each neN.

THEOREM 2. {^/'*}"=i is a decreasing small system on

PROOF. It is clear that {^*}"=i is decreasing, since any n + 1-cover of a
set E in J^f{S) is also an n-cover of E.

(A) For each neN, ^V*^ <t>, since Jf*=>Jfa.
(B) We have to show that, given neN, there exists a sequence

of positive integers such that for any Et e J^*. (i = 1,2, • • •), thsn U T= I £<
So, given neN, choose {fc,}?°=1 such that 2T=i l/̂ « ^ V«- (It is sufficient

to put ki = n.2'(i = 1,2,•••))• Hance, for any EjgyT*,, by remark 2, we have

(C) Given neN, let Ee^V* and Fe3f{$). Then E has an n-cover and
this will also be an n-cover for E C\F. Thus E C\FeJT*.

So {yT*} "= i is a decreasing small system on J^f{S), and the theorem is
proved.

DEFINITION. We will call {•Art}7=i. the small system induced by {^n}"=i.

NOTATION. We put J^* = f[^=i^r*.

THEOREM 3. Jf* is a class of null sets in #?{€).

PROOF. The result follows from theorem 1, since {^~Vit=x is a small system
on ( )

THEOREM 4. {yf * nSf(g)}™= x is a decreasing small system on £?(£), the
a-ring generated by &.
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PROOF. (A) For each neN, §eJf*C\if{g).

(B) We know that, given neN, there exists a sequence{fcJfLi of positive
integers such that for any Ete^V*it then (J ™=1EieJr*. This same sequence
{fcjjtx can be used for \JT* n ^(<?)}"= t since, given neiV, for any

(i = 1,2,-), we have U,*i Fj e >",* and U,™ j F,e^(g). So

(C) Given n e N , let £ e / , * n ^ ) , and FeST{0). Then
£ n F e ^ * n y W , since {>"*}"= I is a small system on ^f(<f).

Finally, {yT* n^(^)}n°°=1 is decreasing, since {̂ T*}n°°=i is decreasing. Thus
the theorem is proved.

THEOREM 5. Jf* C\SP{g) is a class of null sets in Sf{g).

PROOF. The result follows from theorem 1, since

and {^*n^(^ ) )^ = 1 is a small system on

REMARK 3. Theorems 4 and 5 remain true if Sf(&) is replaced by any t7-ring
S, such that £f(g) <= ^

REMARK 4. Theorem 5 completes the construction of the class of null sets
on £f{&). As we shall show in section 4, for the special case when {jVn }™= t is
denned by

for each n e N, as in remark 1, then Jf* is precisely the class of sets of induced
outer measure zero in #F(&). Unfortunately, it is not true for an arbitrary measure
H that

jr: =

However, as the reader will see in section 4, if he thinks of N* as the class of
sets of induced outer measure < 1/n, it will provide motivation for the work
in this and the next section.

We now consider two sequences {^l}^=i, {•̂ /"n}̂ °=i of non-empty sub-
classes of £. Then we can form the induced small systems {/T* }"=1 and

)^=i on

THEOREM 6. In the above notation, we have JT\ = Jf\ , for each neN,
if and only if both ^Vl => JV"1 and Jf^ => Jf\, for each neN.
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PROOF. Suppose jvf = JT2*, for each neN. Then JT^* = JT1* => Jfl
and Jff = J\r£ =>J^n\ for each n e N .

Conversely, given any neN, we show that Jf\ = Jf\ • From remark 2,
it follows that JT\ <= JT?, for all neN implies Jfx* ^JV2*, for each neN.
Similarly JV"1 =J JV~1 , and the theorem is proved.

Now suppose that $F is a class of sets such that & <= #" c ^f(^). If
{•̂ "n} "= i is a sequence of non-empty subclasses of $ (and hence of &), we can
construct the small system {>"*}"= I o n - ^ W = ^ ( ^ ) . Thus {Jf* n J 5 "}^!
is a sequence of non-empty subclasses of #". Hence we can construct the small
system { ( / , * n f ) * } ; = 1 induced on ^f(<f) by {̂ T* n#"}^°=1 on ̂ . Then, with
this notation, we have the following result.

PROPOSITION 1. For each neN, J/~t = (JV* C\3F)*.

PROOF. Given neN, we have ^ D ^ n F , and also

Hence the result follows from theorem 6.

COROLLARY 1. For each neN, J^* = (yV*)*.

PROOF. Put J5" = 3^{S) in proposition 1.

Let X be an abstract set. Throughout this section let $ be a non-empty
class of subsets of X and {^Vtt}™=0 a sequence of non-empty subclasses of &
such that

(i) JV0 => J^n, for each neN
(ii) £e*/r0, FejV0 implies
(iii) £ 6 ^ 0 , FeS implies

REMARK 5. From (iii), we see that EejV0, FeJf0 implies E (~\Fe^V0.
Hence (ii) and (iii) imply that ̂ Vo is a ring.

REMARK 6. With { r̂n}n°°=1 defined as in remark 1, put ^To = {Ee@\n(E)
< oo}. Then {•sVn}™=0 satisfies the conditions (i), (ii) and (iii) above.

As in section 2, we can define the induced small system {yT*}™=, on
from the sequence {-/T,, }™= i on S'. We can also define the class jV^^
as follows:

DEFINITION. Jf% = {EeJ?(£)\ for each neN, there exists FeJfQ such
that E-
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REMARK 7. It is clear that Jfa <= J/~* and also J/"% is hereditary, in the sense
that EGJV* and FcE imply

REMARK 8. We will see later that for the case when {-yVn}^=0 is defined as
in remark 6, Jf* is precisely the class of sets of finite outer measure in

PROPOSITION 2. For each meN, JV* => J^*.

PROOF. Given m e N, let EBJV^,. Hence E has an m-cover {£;};,= / . Sup-
pose neN is given. If / is finite, choose F = U ; e / £ ; - Otherwise choose i0

such that S;>,ol/fci ^ 1/n, where E-^JT^., and put F = U i= i£ ; - !n either
case, FeJ^o and E — FeJ^*. Thus the proposition is proved.

PROPOSITION 3. S c 3^{JVO) implies Jf(S) c ^f(^T*), wftere ^(J^o) and
"%~) are f/ie hereditary a-rings generated by J/~o and J^* respectively.

PROOF. # c JP(JV0) implies Jf(^) c= Jf ( ^ 0 ) . Then, since JV%=>JV0> we
have ^(^"o) => ^(-^o) => ^ ( ^ ) -

To motivate the next two definitions, we remind the reader of the following
measure-theoretic results.

PROPOSITION 4. Let E e 2?(M~). Then E is ^-measurable and n*(E) < oo ,
if and only if, given e > 0 , there exists F e f siuch that fi(F) < oo and
H*(EAF)<s.

PROPOSITION 5. If Ee3^(@), then E is \x*-measurable, if and only if, given
e > 0 and Ae& such that fi(A) < oo , there exists F e i such that fi(F) < oo and

With these results in mind, we make the following definitions.

DEFINITION. =$̂ 0= {Eedf($)\ given neN, there exists Fe^V^ such that

DEFINITION. Sf* = [Ee Jf(<f)J given neN and Ae~V0, there exists Fe JV^

such that (EnA)AFeJ^*}.

REMARK 9. It is clear that E e £f* if and only if E n A e ^ * , for all A e Jf 0 .
Also we will see later that with {-V^=o defined as in remark 6, £f% is the class
of measurable sets of finite outer measure in 3tif(0l), and &"* is the class of mea-
surable sets in

THEOREM 7. y% = &* C\JV%.

PROOF. Let Ee£f%, AejV0 and neN. Hence there exists F^BJ/'Q such
that EAFveJf*n. Now

(EnA)A(F1
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So if we put F = F1r\Ae^V0, then (EnA)AFeJ/'*. That is EeSf*. Hence

Further, since E-F<=EAF, we have EeJf%. Thus ^Jc / f"* , and so

Now suppose Ee^* O^T*. Hence, given neN, there exists Fi 6^To such
that E - Fte J/~*n. Then since E also belongs to £f*, there exists F e JV0 such
that
Then (

EAF = [(E nFJUiE -
Thus EeSf%. That is y * n ^ f o * c y * , and the theorem is proved.

DEFINITION. We say the sequence{Js~n}™=0 satisfies the finiteness condition,
if given neN, AeJf0 and {£,},•=! such that EisS^* (i = 1,2,---), where the
E{ are pairwise disjoint and Ui™i^/ c ^> tnen there exists ioeN such that

THEOREM 8. If {<yVn}™=0 satisfies the finiteness condition, then Sf* is a
a-ring.

PROOF. Suppose £ , 6 ^ * and E2eSf*. Hence given neN and AGJV0,

there exists Ft e Jf0 and F2 e ̂ Vo such that

tn and (£2

Then f t U F2 e J^o and

Hence E
Further, F1-F2e JV0 and

[(E1-E2) n A} A (Ft-F2) c [(£j nA^AF^ u [ (£ 2

Thus Et — E2e Sf*, and so if* is a ring.
Now let {£j," ! be a sequence of pairwise disjoint sets from £?*. If we can

show that \JT=iEie^'*, then £f* will be a a-ring.

Suppose we are given AeJf0. Then

Since the £ ; 6 ^ * , we have that E, nAe^*(i = 1,2,---)- Hence, by the finiteness
condition, given neN, there exists ioeJV such that Ui>;0(-E; n/4)e./f"2* .

Further, since ^ * is a ring, ( J J iV^ i 5 ^*- Hence, there is Fe^T0 such
that
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/ • ' o - l

[Qj E
Now

Hence, U ^ L ^ e ^ " * , and the theorem is proved.

PROPOSITION 6. / / {•^r
n}^=0 satisfies thefiniteness condition, then ^(<f) <=^*.

PROOF. Suppose £e<f. Then given Ae^V0, we have E C\AejV0, by the
properties of JT0. Then

(EnA)A(EnA) = (̂ ê T*,

for all neN. So £e-9"*. Hence £<=.<?*, and since < *̂ is a tr-ring, we have

PROPOSITION 7. ^T* <= £f%.

PROOF. Suppose £e^r*.Then, given neN, EeJ^*. Now (/>e^T0 and
. So

PROPOSITION 8. IfEeSf*, and EceJt?(£), then EC

PROOF. E e £f* implies, given neN and A e J/~Q, there exists F e ̂ To such

that (EnA)AFeJr*. Then A-FeJ^o, Ece3^{S) and

Hence £c

PROPOSITION. 9. £e.3f(<f) and £ n ^ e ^ * , / o / - all A&Jf0 implies

(i) £ e ^ *

and (ii) either £e^f"* or *

PROOF, (i) We have that EnAe Jf* <= ^ J , for all A € ̂ To. Hence £ e y * .

(ii) Assume £^Jf((f) -^T*- Hence £e^"*and, given neJV, there exists
o such that E-Fe JV"^n. Also, since Fe J^o, E OFe jV\n. Hence

and since this is true for all n e AT, £ e ̂ f *.
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Throughout this section we suppose that we have a set X, a ring M of sub-
sets of X, and a measure \i on 01. Let fi* be the induced outer measure of fi on
Jf(ffl), the hereditary a-ring generated by M. We define the sequence
on & by

for each neN, and */f"0 = {£e^|/x(E) < oo}. Note that, for each neN,
Jfn is non-empty. Hence the small system {^T*}*=1 on ^{ffl) can be induced
from the sequence {^fn}"=1 on 0t, by the method of section 2. We can also
construct -/T*, ̂ J and - ^ , as in section 3. We will be concerned with the rela-
tionships between {•/f*}™=o> &*, ^* and certain classes of sets, which are
defined by means of \i*.

First of all, note that, in general, it is not true that

for each neN. For let X be any countably infinite set {a,}r= I • Let @ be the ring
of all finite subsets of X. We specify a measure ft on ̂ 2, by assigning Mai) = 0-21.
H(a2) = 0.26, /*(a;) = 0, (i ^ 1,2). Then /r*(X) < i , but X $Jf%. However, the
following results do hold.

PROPOSITION 10. For each neN, J^* <= {Ee3f(!M)\ii*(E) < 1/n}.

PROOF. Given neN, let Ee^*. Hence there exists a class {£j}iej, I ?* <t>,
I <=JV, such t h a t E j e ^ . , some kteN (iel), \JieIEi=>E and Ei£il/fei g 1/n.

Hence/!(£;)< l/fc;, for each i e / . If i V - / # ( / > , put £; = 0,for ieN-I.
So Z i 'S iM^ ,^ 2,e/l/fc, ^ 1/n- That is /i*(E)< 1/n, and the proposition
is proved.

PROPOSITION 11. For eacfc n e N , J^* ^ {Ee^f{M)\n*{E)<\l2n}.

PROOF. Given neiV, let Ee Jf(^) with /r*(E) < l/2n. Hence there exists a
sequence {£;},"= I such that E{e® (i = 1,2,-), Ur=i Ei =>£ a n d Sf°=

/ n .
Now, for each /i(£;) > 0, define l//c; as the smallest number of the form Ijp

(where p is a positive integer) strictly greater than /x(£j). Then, by the definition
of Ilk,, we have l/2fe( S K^d < 1/fej, for i e M = {i eN| /z(£j )>0}. Hence

i4
itAf

That is, 2,eMl/fc,<l/fi.
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Now, if N—M T* 4>, we choose a set {fc;}isJ¥_M of positive integers such that

* U" IT-
ieiV-M Ki n i6 M Ki

Hence we have a sequence {£j}r=i such that

£,6^,(1=1,2,-..), (jE^E and 2 1 ^ £.

So EBJT*, and the proposition is proved.

THEOREM 9. If ^* = f l ' - i - ^ * . ( / i en ^ * = {£e •#"(#) |/*•(£) = 0}.

PROOF. From propositions 10 and 11, we have, for each neN,

/ I I I Z.YX

Hence
CO / ^ \ 00

n = 1 \ ' ' / n = 1

That is, ^T* = {£eJt?(0l)\y*(E) = 0}.

For a certain class of measures, including Lebesgue measure, it is true that

for each neiV.

DEFINITION, / / / I is a measure on a ringffl, a set Ee 3b of positive measure
is called an atom if, given F e l such that FcE, then either n(F) = 0 or

LEMMA 2. (c.f. [5], p. 272). Let Si be a ring, and n a measure on M. If
is of finite positive measure and E does not contain any atoms, then for

any real number p, such that 0 < )3 < n(E), there exists a subset F of E such
that Fem and n(F) = p.

REMARK 9. We see from lemma 2, that for a; ̂  0 (i = l,2,--,n) and
21 = 1 a, = KE), there exist disjoint sets Ete@, such that U"=i Ei = E and

THEOREM 10. If n has no atoms, then JV* = {E e3f (0)\ n*(E) < 1/n}, for
each neN.

PROOF. In view of proposition 10, we need only show that

for each neN.
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Given neN, let EG 3f{$) with n*(E) < 1/n. Then there exists a sequence
,}; = ! such that £ f e ^ (i = l , 2 , - ) , U . " i ^ = > £ and £°°= i /*(£/) < 1/n•

Now, for each i, choose pjqt (pt and qt are positive integers) such that
KE,) < p,lqt and If= t M(E,) < S ?„ x p,/?, ^ 1/n.

This can always be done for the following reasons. Choose e > 0, such that
s g l / n - XS î yU(£•,), and then choose p,-/̂ - such that

Then *'

. v Pi

For each /, from remark 9, we can choose pt disjoint subsets {E/JJij of

Et such that UJ^i^i = Et and /i(E/) = ^(E,)/p;. Hence

That is, for each i, £/ e^T,,, for j = 1,2, •••,pi. Further,

Hence the class {EJ
i}Jt1 f=1 forms an n-cover for E. Hence EBJV*, and the

theorem is proved.
We remind the reader of the following measure-theoretic result. If E e #P(0£),

then n*(E)< oo, if and only if there exists F e f such that n(F) < oo and
H*{E — F) < e. Then with this and propositions 10 and 11 in mind, it is easy
to see that

Proposition 3 is then the generalisation of the result: 'fi is c-finite, implies y*
is ff-finite'.

Comparing propositions 10 and 11 and propositions 4 and 5, it is easy to
see that

S?t = {EeJf(^)\n*(E)< oo and E is /r*-measurable}
and

^ * = {Ee^{m)\E is /^-measurable}.

Finally we have the following result.

PROPOSITION 12. {^V„}£=<> satisfies the finiteness condition.
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PROOF. Let Aeffl, where n(A) < oo and {£;}£ i be a pairwise disjoint se-
quence of sets in Sf%, such that \J?=1EiczA. Then, for each i, £; is /^-mea-
surable and

= /x* (\JE\ ^

Hence, we can choose i0 e N such that

Then for i ^ i0, we have Et e J^f., where Siglol/fci ^ 1/n. Hence Ui
and the proposition is proved.
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