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Abstract

Let 1 < M < N — 1 be integers and K be a convex, symmetric set in Euclidean N-space.
Associated with K and M, Mahler identified the M'h compound body of K, {K)M, in Euclidean
(^)-space. The compound body (K)M is describable as the convex hull of a certain subset of the
Grassmann manifold in Euclidean (j^)-space determined by K and M. The sets K and (K)M are
related by a number of well-known inequalities due to Mahler.

Here we generalize this theory to the geometry of numbers over the adele ring of a number
field and prove theorems which compare an adelic set with its adelic compound body. In addition,
we include a comparison of the adelic compound body with the adelic polar body and prove
an adelic general transfer principle which has implications to Diophantine approximation over
number fields.

1991 Mathematics subject classification (Amer. Math. Soc): primary 11 H 06,11 R 56; secondary
11 J 1 3 . l l J61.

1. Introduction

In 1955, Mahler [6] illustrated the relationship between compound matrices and
geometry of numbers by developing the theory of compound convex bodies in
Euclidean N-space. Specifically, Mahler compared a convex, symmetric set
with its compound body by exhibiting inequalities involving their volumes and
inequalities involving their successive minima. These results enabled Mahler
to deduce a general transfer principle which has applications to Diophantine
approximation. More recently, the theory of compound bodies was used in
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184 Edward B. Burger [2]

proving the very deep subspace theorem of Schmidt (see [9, 11, 8]).
In the present paper we address the issue of generalizing Mahler's original

work to the setting of an arbitrary number field. We accomplish this by replacing
the role of Euclidean space with the adele ring of the number field.

The subject of geometry of numbers over the adele ring of a number field
was developed independently by McFeat [7] and Bombieri and Vaaler [2] who
proved the analog of Minkowski's successive minima theorem. We state this
theorem in Section 2. Recently in [3] we further expanded the subject by
introducing the adelic polar body. We recall the basic results in Section 6.

In Section 2 we describe the relevant objects which will occur and define our
notation. Briefly, let k be a number field and for each place v of k let kv be the
completion of k with respect to v. For each place v we write Rv for a nonempty
subset of (kv)

N satisfying the following conditions. If v is an infinite place of k,
then Rv is a bounded, convex, symmetric set with nonempty interior. If v is a
finite place of k, then Rv is a compact, open & „-module, where 6 „ is the ring
of u-adic integers. For almost all finite places v we require that Rv = {G V)N. If
we let (k\)N be the iV-fold product of the adele ring of k, then we say a subset
£% of (^A)" is admissible if it has the form

The set $ is the adelic analog of the convex, symmetric set in the classical
geometry of numbers, and the r61e of the lattice ZN in RN is replaced by the
discrete subgroup isomorphic to (k)N in (k\)N. For each place v we normalize a
Haar measure ^ on (kv)

N and write VN for the Haar measure on (k\)N induced
by the product measure Y[v P" • The Haar measure VN on (k\)N is the analog of
volume in RN. Just as in the classical geometry of numbers, one can define the
successive minima of an admissible adelic set with respect to the lattice (k)N.
This requires a notion of dilation. Let a > 0 be a real number. Dilation of an
admissible adelic set $ by o is defined by

aSt = Y\aR* x
uloo L

V] OO

For each integer n, 1 < n < N, the n'h successive minimum of & with respect
to (k)N is defined by

kn = inf {a > 0 : (a& )r\(k)N contains n linearly independent vectors over k].
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[3] On Mahler's compound bodies 185

Given integers 1 < M < N — 1 and £& c (k\)N an admissible set, we shall
define in Section 4, the M'h adelic compound of & , denoted by (R) M c ^
We begin by proving

THEOREM 1.1. Let & c {k\)N be an admissible set. Then

-(-=•) < Y

Here d is the degree of k over Q, r and s are the number of real and complex
places ofk, respectively, and y = y (k, M, N) is a constant explicitly defined in
Section 4.

Next let kuk2,... ,XN and [i\, /JL2, • ••, /JL(»\ be the successive minima of
& and {& )M, respectively. Let Ai, A 2 , . . . , ^-(N) be the (^) products of M
distinct kn's and ordered so that Aj < A2 < • • • < ASN\. We then show:

THEOREM 1.2. Letfiu n2, • • •, V-(N\ and Ai, A 2 , . . . , A(»\ beasabove. Then

for all I = 1 , 2 , . . . , (£),

where the constant Yi — Y\(k, M, N) is defined in Section 5.

We then compare the (N — I)'* adelic compound of & with the adelic polar
body of Si . This requires us to introduce the concept of idelic dilations of
admissible sets. Finally we prove an adelic general transfer principle and as
an application, prove a transference result in Diophantine approximation over
number fields in the context of the ring of 5-integers.

2. Notation and normalizations

Let k be an algebraic number field of degree d over Q. We write Vk for the
collection of all nontrivial places of k. Suppose v e Vk. If v is an archimedean
place, we say v lies over infinity, denoted by v\oo. If v is a nonarchimedean
place then there exists a finite rational prime p such that v extends the place of
p to Vk. In this case we say v lies over the finite rational prime p, written as
ujoo or v\p.

https://doi.org/10.1017/S144678870003202X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003202X


186 Edward B. Burger [4]

For each v e Vk we write kv for the completion of k with respect to the place
v. We define the local degree as

dv = [kv : Q J .

We now normalize two absolute values. For each place v of k, we normalize
the absolute value || \\v as follows:

(i) ifv\p then ||p||B = p~\
(ii) if t>|oo then for x € kv, \\x\\v = \x\ where | | is the usual Euclidean

absolute value on R or C.
Thus || ||„ extends the usual p-adic absolute value if v\p and the Euclidean
absolute value if u|oo. Our second normalized absolute value | \v is defined by

| r | _ nx\\djd

This normalization gives to the product formula:

veVt

for all x e k, x ^ 0.
We extend our absolute value to vectors as follows. Let

X =

\

x2

denote a column vector in (kv)
N. We define

\x\v = max{\xn\v}.
l<n<N

We extend the absolute value || ||,, by declaring

if u|oo

if v\oo.

Assume now that v is a finite place of k. We write & „ for the maximal
compact (open) subring of &„,

v: \x\v < 1}.
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[5] On Mahler's compound bodies 187

A subset Rv in (kv)
N is called a kv-lattice if it is a compact open G „-module in

(kv)
N. Clearly (^ V)N is a *B-lattice in (kv)

N.
Let A: A denote the adele ring of k. Elements of k\ shall be written as x = (xv)

where xv is the v-component of x for all v € Vk. We write (k\)N for the JV-fold
product of the adeles.

The additive group k& is locally compact and thus there exists a Haar measure
on &A which is unique up to a multiplicative constant. We normalize this as
follows.

(i) If u | oo and kv = R we let fiv denote ordinary Lebesgue measure on R.
(ii) If u | oo and kv = C we let fiv denote Lebesgue measure on the complex

plane multiplied by 2.
(iii) If v \p we let fiv denote Haar measure on kv normalized so that

where & „ is the local different of k at v.
We now define a Haar measure p on k& to be the product measure of the

previously normalized local Haar measures:

Technically, fi determines a Haar measure on all open subgroups of the form

where S is a finite collection of places of k containing all infinite places. There-
fore the Haar measure on k\ is the unique measure which agrees with the product
measure on these open subgroups. For each place v of k we let ^ denote the
product measure on {kv)

N. Similarly we define VN to be the product measure
PN on (*A)" (see [13]).

We may view k as a subset &A by the natural diagonal map. The set k c &A

is referred to as the set of principal addles and is a discrete subgroup of &A with
k\/k compact.

Let x — {xv) be an element of &A and a be a positive real number. We define
scalar multiplication, ax, to be the point y — (yv) in k\ determined by

- I
" 1

axv ifu|oo
xv ifujoo.
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We shall view elements of (^A)" as column vectors x and extend our notion of
scalar multiplication to vectors x e (k\)N by

axx \
ax2

ax =

axN

If X c (k/C)N then aX <z (k\)N is obtained by applying scalar multiplication
by a to each x G X.

For i>|oo we say a subset Rv c (kv)
N is symmetric if Rv =aRv for all a e kv

with ||a||u = 1. Let v be any place of k. We call a nonempty subset Rv c {kv)
N

a regular set if it has the following form.
(i) If v |oo then /?„ is a bounded, convex, symmetric subset with non- empty

interior.
(ii) If v |oo then /?v is a &„-lattice in (kv)

N.
For each u e Vk let ?̂u be a regular set in (kv)

N. Assume that for almost all
places v,

We now define

From our above assumption it is clear that £% c (k\)N. We call a subset ^
of (k\)N admissible if it has the form described above. The set!% is the adelic
analog of the convex, symmetric set K in the classical geometry of numbers,
and the r61e of the lattice ZN in RN is replaced by the discrete subgroup (k)N in

Let ^ be an admissible set in (k\)N. For each integer n, 1 < n < N, we
define the nlh successive minimum Xn of 3% with respect to (k)N by

A.n = inf [o > 0 : {o$ )D(k)N contains n linearly independent vectors overfc}.

By our assumptions on & ,

0 < A.! < k2 < • • • < kN < oo

(see [2]). We now recall the adelic successive minima theorem of Bombieri and
Vaaler ([2, Theorem 3]).
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[7] On Mahler's compound bodies 189

THEOREM 2.1. Letffl be an admissible subset of(kx)N andlet\x,\2, .. •, A.w
be the successive minima of & with respect to (k)N. Then

where Ak is the discriminant ofk and r and s are the number of real and complex
places ofk, respectively.

3. Grassmann co-ordinates and local compound bodies

We begin this section by defining some notation which will facilitate our
computations. Let N and M be integers such that 1 < M < N — 1. Define

J = {J c {1, 2 , . . . , N} : J contains |7 | = M elements}.

Clearly ^ has \^ \ = (^) elements. For each / e / , we write / =
[ji,ji, •••JM) where

1 < ji < h < • • • < JM < N.

We order the elements of ^ using the lexicographical ordering:

Next, suppose A — (anm) is an Â  x M matrix over kv. For / e ^ we define
the M x M matrix jA by:

jA = (anm), n € J, 1 < m < M.

For an N x N matrix B = (bnm) and for /; e ^ , Jh e ^ we define the
M x M matrix j, Bh by

hBh - (bnm), n e //, me Jh.

For X\, x2,. • •, xM G {kv)
N, we write X for the N x M matrix given by:

X = (xiX2---xM).
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190 Edward B. Burger [8]

We define X = X(X) e (*„)(») by

K(X) =

where X,(X) = det (JtX) for / = 1, 2 , . . . , Q .
Let Bbean N x N nonsingular matrix over kv. We define the Mth compound

of B, (B)M to be the (^) x Q matrix given by:

{B)M = &

where £„,(£) = det (j,BJh). It is well-known that (see [1]):

(3.1) det((5)M) = {det(fi)}(«:'.).

Let Rv be a regular subset of (kv)
N. Below we define the M'h local compound

v)O : x = (x ,x 2 ...xM)

with xm € /?„ for m = 1, 2 , . . . , M}.

(RV)M = [X(X)

For v\oo define (/?t,)M to be the convex hull of (RV)M in (£„)(").
For u|oo define (RV)M to be the G ^-module in (kv)(^ generated by (RV)M-

It is clear that for all v, {RV)M is a regular subset of (&„)(«). We remark that
rather than introducing additional notation, we write ( )M to indicate both the
compound of a matrix and the compound of a set. Of course the meaning of
()M will be clear from the context in which it occurs. We now demonstrate the
relationship between the M'h compound of a matrix and the M'h compound of
a subset.

LEMMA 3.1. Let Bv be an N x N nonsingular matrix over kv. Let Rv be a
regular subset of (kv)

N. Then

(BVRV)M = (BV}M(RV)M-

PROOF. Let yu y2,..., JM be elements of Rv. Set

xm - Bvym for m = 1, 2 , . . . , M.
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Write X = (xix2 • • • xM) and Y — (yiy2

matrices over kv. As before, let

On Mahler's compound bodies 191

for the corresponding N x M

K(X) =
K2(X)

and

where K,(X) = det (j,X) for / = 1, 2 , . . . , Q. We now compute:

(2)
= det(JtX) =

n=\

n=\

(M)

n=\

Therefore we have just shown that

(3.2)

and thus (BVRV)M = {BV)M(RV)M. It now follows in both the archimedean and
nonarchimedean cases that

(BVRV)M = (BV)M(RV)M.

Identity (3.2) is useful and immediately implies the following

COROLLARY 3.2. Let Xv be an N x M matrix over kv and Bv be an N x N
nonsingular matrix over kv. Then

X(BVXV) = (BV)M%(XV).

REMARK. Suppose v|oo. If i?^ is any kv-lattice in (kv)
N then there exists an

N x N nonsingular matrix Bv over kv such that
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192 Edward B. Burger [10]

(see [13, Chapter II, Section 2]). Hence by Lemma 3.1,

It is a straightforward calculation to verify that

Therefore we may conclude that

(3.3) {RV)H

4. The adelic compound body

Given an admissible subset & — \\v Rv of (k\)N, we define the M'h adelic
compound body of Si , (& )M, by

From our previous remarks in Section 3 we conclude that ({% }M is an admissible
subset of (k\)(»\

For u|oo we define Sv c (kv)
N to be the u-adic unit L2-ball

Sv = {x € (kv)
N : ||Jc|L < 1}.

We define the positive constant y — y(k, M, N) by

where Ak is the discriminant of k. We remark that

V + I)-1 for v real
(2n)Nf(N + I)-1 for v complex.

The following theorem provides a relationship between the volume of & and
its M'h compound body.

THEOREM 4.1. Let & C (k\)N be an admissible set. Then

where r and s are the number of real and complex places ofk, respectively.
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[11] On Mahler's compound bodies 193

In the classical situation, Mahler [6] proved this result by appealing to a the-
orem of Jordan (see John [5] or Schmidt [10]) which, in essence, states that every
convex symmetric set in RN can be approximated by an ellipsoid. We prove
Theorem 4.1 by utilizing this approximation technique at each archimedean
place. Thus we need a version of Jordan's theorem over CN. By a complex
ellipsoid we mean a nonsingular linear transformation of the unit L2-ball in
CN. The proof of a generalized Jordan theorem in an N -dimensional vector
space over any archimedean field is very similar to the classical one and thus
we merely outline the argument below.

LEMMA 4.2. Let v be an archimedean place ofk and Rv C (kv)
N a regular

subset. Then there exists an ellipsoid Ev centered about the origin satisfying

SKETCH OF PROOF. If £„ = R then this is Jordan's result, thus we need only
prove the lemma for kv = C. Since Rv is compact in k%, there exists an ellipsoid
Ev with maximal volume satisfying

Ev C Rv.

Without loss of generality we may assume that Ev = Sv, the unit L2-ball in k".
We claim that Ev is the ellipsoid which the lemma asserts exists. If not, then
there must exist a vector w G RV with w £ \/NEv, that is

l|u»||B > VN.

Let X be the subspace of k" spanned by w and X be the orthogonal complement
with respect to the Hermitian inner product. We define the orthogonal projection
matrices P^ and P± onto X and X , respectively, by:

Pa — w(w*w)~xw*

and

where w* is the complex conjugate transpose of w and lN is the N x N identity
matrix. Let

( 4 1 ) r = ""tf i i ; - r
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194 Edward B. Burger [12]

and define the cone

" INI, r

For positive real numbers a and b consider the ellipsoid

E(a, b) = {ze kN
v : a2\\P^z\\2

v + b2\\P£z\\l

We note that

/• \\w\\va rb

<(_L_ + _2_
1/2

Hence if

then
E(a,b) Qtf.

Furthermore, if b > a then the previous identity implies that

and thus P±(E(a, b)) c Ev. As £(<z, i>) is an ellipsoid contained in ^ with the
property that

it follows that E{a,b) is contained in the convex hull of Ev and aw with
||of !!„ = 1. That is, E(a, b) is contained in the smallest convex, symmetric set
containing Ev and w, and therefore we conclude

E(a,b) C Rv.

Thus we wish to maximize the volume of E(a, b) given the constraints

(4-2) 1 7 ^ ^ + ^ = 1 a n d b>a-
\\\\22 2 b 2
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[13] On Mahler's compound bodies 195

A short calculation reveals

(4.3) P"(E(a, b)) = (ab(N-l)yd°P"(Sv).

So we wish to minimize a2b2(N~l) given the constraints of (4.2). This minimum
occurs when

a = —— and b =
llwllv

By (4.1) and (4.3) we have

pv (£•(<*, b)) l p v y t v ) = (a b ' ) "

l -
The function f(x) — xN(x — l)l~N is increasing for real x > N. Since

and thus

This contradicts the maximality of Ev.

PROOF OF THEOREM 4.1. We write

V

where Rv is a regular subset of (kv)
N for each v. For vjoo select an N x N

nonsingular matrix Bv over kv such that

Rv = Bv{0v)
N.

For each place v\oo, let Ev c (kv)
N be the u-adic ellipsoid of Lemma 4.2. That

is,
Ev C Rv C JNEV.

For v\oo let Bv be an N x N nonsingular matrix over kv so that

F — R "f

where Sv c (kv)
N is the u-adic unit L2-ball. Next define
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by

r —
BV(0V)N for Woo.

Clearly £ is an admissible set and

(4.4) S c @ c -/NS.

By Lemma 3.1 and the remarks which follow it we have

(BV)M(SV)M foTv\oo
_

{ v)M~\ (B)(0v)(S> for ,
We now compute the volume of {TV)M.

M) fo rv |oo

\tet(Bv)M\d
v\9v\l

Ku) for Woo.

Thus,

and

By (3.1) we may write

(

Hence
(4.5) V(: )«<?)*) • VN(^)-(«:'.) = y.

We may also report the compound body analog of (4.4):

(4.6)

From (4.4) and (4.6) we conclude
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[15] On Mahler's compound bodies 197

Clearly

and

Vloo /

The theorem now follows from (4.5).

5. Successive minima

Let A.i, A.2,..., A.jv be the successive minima of Si and let /xi, \ii,..., /z/«\

be the successive minima associated with ( ^ )M in ( & A ) ^ - For / e J? ,

/ = {1 < i i < i 2 < • • • < / « < N},

define

" ; = = " i i -̂12 • • • ^-'M •

Let

We now select a permuta t ion a : { 1 , 2 , . . . , ( ^ ) ) ->• { 1 , 2 , . . . , ( ^ )} such that if
we write

A/ = Pj.m

for/ = l , 2 , . . . , Q , t h e n

0 < Ai < A2 < • • • < A(«\ < oo.

We remark that a simple counting argument shows

(5.1) (A .^ 2 . . . AN)(«:'.) = AjA2 . . . A ( S ) .

Next we define the positive constant y\ — Y\ (k, M, N) by

Y\ =

where r and s are the number of real and complex places of k, respectively and
y is the constant from Section 4.

We now show that the /x,'s and A,'s are compatible.

https://doi.org/10.1017/S144678870003202X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003202X
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THEOREM 5.1. Let/zi, /z2, • • •, H>(N\ andAi, A 2 , . . . , A/*\ beasabove. Then

foralll = 1,2,..., Q

PROOF. Let «i , M2, • • •. uN be linearly independent vectors in (k)N asso-
ciated with the successive minima kuX2,. • • ,kN of ffl . That is, for each
n = 1,2,..., N and A > kn,

Write U for the N x N nonsingular matrix over k given by

U = (uiu2---uN).

For each / = 1, 2, . . . , ( £ ) , define i t , 6 (*)(») by

where UA(i/y,) = det(Af/y / ) for /i = 1, 2 , . . . , (^) . We remark that since
A.,"1!/,,, k~2

lUj2,..., kj^uiu are all in g% , it follows that

Also, (3.1) reveals that Hi, H 2 , . . . , H ^ \ are linearly independent vectors in

(£)(*). Next we define real numbers r\, T' ..., F'^ by:
KM)

Trivially, for all / = 1,2, . . . , ( £ ) ,

(5.2) r ; < />,,.

Let Pi , F 2 , . . . , F/«\ be a permutation of the numbers F',, V2,.

that
0 < Fi < F2 < • • • < F(jv) < oo.

.., F ^ n such
KM)
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[17] On Mahler's compound bodies 199

Fix an /, 1 < / < (^), then for any collection of integers 1 < j l < j2 < • • • <

ji < (M) w e n a v e

Select integers j \ , j 2 , • . . , ji so that

max{Pj ,PJ.,...,PJ.} = A,.

Thus by (5.2) we have

r, < A,.

Since Hl7 VL2,..., 11/ are linearly independent and contained in TtIJ% )M, we
must have
(5.3) ii, < A,

which is our upper bound.
For the lower bound, we recall the adelic successive minima theorem:

This together with (5.1) yields

0*lM2 • • • M(2))" V

(M)f
Theorem 4.1 along with (5.3) and the previous inequality show

which is the required lower bound.

6. The compound body (^ )(n_D and the polar body M *

The set (0Z )w-\) is readily seen to be a subset of {k^)N, and thus has the
same dimension as & . In [6], Mahler demonstrated a relationship between
{& )(N-i) and $ . In fact, just as in the classical setting, the adelic compound
body {S% )(N-\) is compatible with the adelic polar body. We begin by briefly
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200 Edward B. Burger [18]

recalling the adelic polar body as described in [3] and then considering the local
situation.

Let Si = Y\v Rv be an admissible subset of (k\)N. For each place v of k,
define the local polar body /?*, of Rv by:

R*=\xe(kv)
N : < 1 for all y e Rv \ .

If Rv is a regular subset of (kv)
N then the same is true for R^ and

Also if A v is an N x N nonsingular matrix over kv then

(AvRvy = (A^)-1/?;,

where A^ is the transpose of Av. We define the adelic polar body S£ * by:

The sets Si and Si * possess two fundamental reciprocal properties. The first
is that

and the second is if A.i, k2,..., kN and A.*, X^,..., X*N are the successive minima
of Si and Si *, respectively, then for each n = 1,2,. . . , N,

1 < (KK+l-n)" « I-

Here the constants implied the Vinogradov symbol depend only upon the number
field k and N, and are explicitly given in [3].

In what follows, v is an archimedean place of k. Again, we write Sv c (kv)
N

for the unit L2-ball:
Sv = {x e (kv)

N : ||JcL < 1}.

Below we prove that 5* = (SV)(N-D = Sv. It is a well-known fact that S* = Sv,
thus we need only prove the second equality.

It will be useful to define the N x N matrix (±1)N = (emn) where

_ I (-1)"+1 if" =m
Cmn ~ I 0 ifn #iw.
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Alternatively, (±1)N has the following shape:

201

(±DiV =

1 \

-1 O
1

o -i

Finally, recall that for yu y2,..., y~M € (kv)
N we write Y for the associated

N x M matrix defined by:

and write

= (yih-.-yM)

\

(*.)<»

where y,(Y) = det(y,y)for/ = 1, 2 , . . . , Q . We note that by the Cauchy-Binet
formula (see [2]) we have

(6.1) HV/(Jr)ll» = l|det(ry)||i/2,

where Y* is the complex conjugate transpose of Y. We now prove the following:

LEMMA 6.1. Given Sv c (kv)
N as above,

PROOF. Mahler proved this in the case when kv = R fsee [6, Section 16]),
so we need only consider the case kv = C First suppose x € Sv. Let c e kv

with || c l̂  = 1 be a constant to be chosen later. Select orthogonal (with respect
to the Hermitian inner product) vectors cyu y2,... yN_i in (kv)

N such that the
following hold:

(i) x is orthogonal to (±1)N% for n = 1, 2 , . . . , N — 1;

(ii) H?iL = l l*L;
(iii) H ÎU = 1 for/i = 2, 3 // — 1.

Let Y be the N x (TV — 1) matrix over kv defined by

Y = (cyiy2...yN-i).
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It is simple to verify that y>(Y) e (kv)
N is orthogonal to (±l)Nyn for each

n — 1,2,..., N — 1. Also, by orthogonality and (6.1) we have

N-\

l|B = ||det(y*y)ny2 = f]ll^ll»-

From (ii) and (iii) this implies

\\V(Y)h = \\x\\v

Therefore we see that ¥(Y) and x are dependent vectors with the same L2-
norm. Select c e kv with ||c||v = 1 so that ¥(Y) — x. Since x e Sv,
{cyu y2,..., yN-i) c Sv. Thus

and ov ^ (ij^/^—ij.

Next, let {xux2,.. •, x^-i} c Sv. We claim that X(X) e Sv. It follows from
the Cauchy-Binet formula (6.1), and an application of Hadamard's inequality
for directly from an inequality of Fisher [4]), that

N-l

\\k(X)\\v = ||det(X*X)||'/2 < ff II^L-

Since each L2-norm in the product is bounded above by 1, we have K(X) e Sv.
Thus

(Sv)(N-l) ^ Sv

Since (Sv)(jv-i) is the convex hull of (Sv)^-i) and being that Sv is convex we
conclude (5'u)(W_i) c Sv. Hence

We are now in a position to analyze arbitrary regular subset Rv c (kv)
N

for D archimedean. We begin by observing that the (N — 1) compound of a
nonsingular matrix is similar to its adjugate matrix. Specifically,

(6.2) (AT
vr

l = (±l)N detG^r1 {Av)(N.l}(±l)N
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where Av is an N x N nonsingular matrix over kv, for any place v of k. Next
we define the constant TV(N) by:

7t-N/2F(\N + 1) for v real
(2n)-Nr(N + 1) for v complex,

where F is the gamma function. We note that for all v\oo,

THEOREM 6.2. Let v be an archimedeanplace ofk and Rv c (kv)
N a regular

subset. Then

N-^N(rv(N)^(Rv))
l/d"R: c (^I))(A,_1) c N^(Tv(N)^(Rv))

l/d"R*v.

PROOF. By Lemma 4.2, there exists an ellipsoid Ev centered about the origin
satisfying
(6.3) Ev c Rv C

Clearly there exists an orthogonal (unitary, in the case when v is complex) N xN
matrix U over kv such that

(±l)N(UEv) = UEV.

If we were to multiply each set of (6.3) by U we would merely rotate the sets
in space. Thus without loss of generality, we may assume that Ev is already
invariant under the action of (±1)^. That is,

(6.4) (±1)NEV = Ev.

Next we write the ellipsoid as

F — A <\

where Av is an N x N nonsingular matrix over kv. Without loss of generality,
Av may be chosen so that

From Lemma 3.1 and Lemma 6.1 we have

(Ev)(N-l) = {AvSv)(N-l) = (Av)(N-\)(Sv)(N-l) = (Av)(N-l)Sv
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By the containments of (6.3) the above implies

(6.5) (A1))(A,_i)Su c (*„)(„_!, c ^ " " " ( A ^ A T - D S , , .

Next we observe that

E; = (Avsvy = (AT
vy

ls; = (AT
vy

lsv.

Alternatively, by (6.2), this may be expressed as

(6.6) E*v = (±\)N
 1

Clearly,
^ = Sv

and by (6.4)

E; = ((±i)NEvy = (±i)NE*.

In view of these remarks, (6.6) becomes

(6.7) E^detiAvT^AJw-vS,,.

We remark that by the definition of the polar body, if Rv c Tv then T* c R*.
Thus from (6.3) we have

and by (6.7) this yields

V^V"1 d e K A J - ^ A , ) ^ . , ) ^ c R* c

It now follows from (6.5) that

(6.8) det(AB)/?u* c (/?„)(,,_,) c JN" det(Av)R*.

We note that

P?(Ev)/tf(Sv) = lldetCAJH* = (det(Av))
d\

Also from (6.3),
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Therefore (6.8) implies:

which is the conclusion of the theorem.

We now turn our attention to the nonarchimedean places of k. It is a straight-
forward calculation to show that

{{0V)N)* = «?V)N and ((ff v)\N-t) = (ff V)N.

Next we wish to consider arbitrary kv-lattices in (kv)
N. We pause momentarily

to give an outline of our plan of attack. We wish to prove a result similar to
Theorem 6.2. Here in the nonarchimedean case, the set (6 V)N will play the
role of the L2-ball, Sv, in the archimedean setting. Recall that any /^-lattice, Rv

may be expressed as
Rv = Bv(0v)

N,

where Bv is an N x N nonsingular matrix over kv. Thus at the finite places,
very regular set is an "ellipsoid." Hence there is no need for a nonarchimedean
form of Lemma 4.2. This suggests that the sets (/?u)(Af_i) and R* differ only by
a constant multiple.

Clearly (6 V)N is invariant under the action of multiplication of (±1)
N.

However the kv -lattice Rv might not have this strong symmetry property which
would then prevent us from utilizing the identity of (6.2). This issue was quickly
dispensed with in the archimedean case by the basic fact that we may always find
an orthogonal (unitary) matrix which rotates the ellipsoid into the appropriate
position. Thus we need to insure that for any given Rv c (kv)

N, there exists an
N x N nonsingular matrix U over kv such that:

(i) the transformation of (kv)
N by U is, in some sense, a "rotation"

and
(ii) (±l)NURv = URv.
Issues of orthogonality in a general nonarchimedean setting are discussed in

[13, Chapter II, Section 1] and in this particular situation in [12].
Below we review the basics of orthogonality in (kv)

N, for v a nonarchimedean
place. Let x and y be vectors in (kv)

N. We say that x is orthogonal to y if

We say that anN xN matrix U is orthogonal if \\Uw\\v — \\w\\vfora\lw e (kv)
N
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LEMMA 6.3. Let U be an N x N nonsingular matrix over kv, vfoo. IfU is
an orthogonal matrix and x is orthogonal to y then Ux is orthogonal to Uy.

PROOF. From the hypothesis we have

\\Uw\\v = \\w\\v for all we(kv)
N.

Assume that x is orthogonal to y, that is,

Thus we see

\\Ux + Uy\\v = \\U(x + 31)11,, = \\x + yL

= max[\\x\\v,\\y\\v}
= max{\\Ux\\v,\\Uy\\v).

Therefore Ux is orthogonal to Uy.

Clearly if D is an N x N nonsingular diagonal matrix over kv and Rv =
D(0V)N then

(±1)NRV = Rv.

So given an arbitrary kv -lattice

we wish to find an orthogonal matrix U which, in some sense, diagonalizes Bv.
This is accomplished via a proposition of Weil [13, Chapter II, Proposition 4].
We state it here in our present notation:

LEMMA 6.4. Let A\ and A^ be two N x N nonsingular matrices over kv,
v\oo. Then there exists an N x N nonsingular matrix, W = {wyw2 • • • wN),
over kv with columns w\, w2,. • •, wN such that:

(i) \\wjv = lforalln = 1,2,..., N,
(ii) for all x e (kv)

N,

l<n<N

and
\\A2Wx\\v = max

\<n<N
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We now show that every kv -lattice may be rotated in order to achieve certain
symmetry properties.

LEMMA 6.5. Let v be a finite place ofk, and let Rv be a kv-lattice in (kv)
N.

Let 4> be any diagonal N x N matrix whose diagonal entries are units in kv.
Then there exists an N x N orthogonal matrix U over kv such that

<S>{URV) = URV.

PROOF. Let Bv be an N x TV nonsingular matrix over kv such that

We now apply Lemma 6.4 with A i = lN (N x N identity matrix) and A2 — Bv
l.

Thus there exists a matrix W = (ihiw2. •. % ) satisfying:

\\wn\\v = l f o r « = 1 , 2 , . . . , N ,

and for each x

(6.9) || V

and
(6.10)

e (kv)
N,

vn. -

\\B

{
\<n<N

\\B;'Wx\\v = max{\\B;lwn\\v\\xn\\v}.

Lemma 6.3 and equality (6.9) show that W is an orthogonal matrix. By making
the change of variables in (6.9), x ->• W~ly, we immediately conclude that
W~l is also an orthogonal matrix. We claim that U = W"1. To see this, select
{81,S2,...,8N} c ^\{0}sothat \\SJv = HB^'wJU for each n = 1,2, ...,N.
Define the N x N diagonal matrix D by:

D =

\

o

o

Next we recall
(kv)

N : \\B;lx\\v < 1}.
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Therefore by (6.10) we see that

URV = {x € (kv)
N : \\B?U-lx\\u < 1}

= {x € (kvf : WB^WxUv < 1}
= {xe(kv)

N :

However, since D is diagonal, from our previous remarks we have

<b(D(0 V)N) =

and hence

V) = URV.

We are finally prepared to prove the nonarchimedean version of Theorem 6.2.

THEOREM 6.6. Let v be a nonarchimedean place of k and Rv C (kv)
N a

regular subset. Let Bv be the N x N nonsingular matrix over kv such that
Rv = Bv(0v)

N. Then

PROOF. By Lemma 6.5 we may find an N x N orthogonal matrix U so that

(±1)N(URV) = URV.

Thus without loss of generality, we may assume that

It now follows from (6.2) and Lemma 3.1 that

R*V =
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Let (av) be an idele in /c\. The volume of the idele, V((av)), is defined to be:

= \\v Rv be an admissible subset of (kx)N. We define the idelic dilation
of Si by (av), (av)M , by:

This is clearly a generalization of the usual real dilation at the infinite places
which we recall here. If a is a real number then a Si = fl^oo a ^ « x Ylv\oc ^v~
Of course, for ease of notation, one could dilate in both manners simultaneously:

uloo L
uf oo

At last we compare {Si )(N-\) with Si *. Again write Si =\\v Rv- For each
ujoo write Rv = BV(G V)N, where Bv is an N x N nonsingular matrix over kv.
Define the idele («„) by:

det(Bv) for

The following is now immediate from Theorem 6.2 and Theorem 6.6.

THEOREM 6.7. Let S£ and (av) be as above. Then

N-*N(fxv)& * c {01 )(N_X) c N^N(fxv)Se *.

Moreover,

V((av)) = 2-sN/dn~N/2r(\N + l)r/dr(N + iy/d\Ak\
N/2VN(& ) y d .

REMARK. One can prove theorems in geometry of numbers over the adele
space using the idelic dilation outlined here, and it is of some independent
interest.
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7. A general transfer principle over number fields

Below we present an application of Theorem 5.1 in Diophantine approxima-

tion over number fields. For each place v of k, let CV{L) be the u-adic cube in

V \ L , ) — [X fc ( K v ) . \X\V < 1 ) .

We remark that given our normalizations on the absolute values | !„ and || ||u we
may also write CV(L) as

CV(L) = \x e (kv)
L : max{||jc,||B} < 11 .

We begin by demonstrating that the sets {CV(N)}M and Cv((^)) are similar.

LEMMA 7.1. Let N and M be integers such that 1 < M < N - 1. Then
(i) ifv is an archimedean place ofk then

-LM ff^W f^\

and
(ii) ifv is a nonarchimedean place ofk then

(CV(N))M =

PROOF. We first consider the case when t> is archimedean. Let{yu %,...,
c Cv and write Y = (jiyi... J M ) for the associated N x M matrix over kv. We
write

f (Y) e (Cv(N))m c (kv)O

for the M'h compound of Y. By Hadamard's inequality we have

soi>(Y)eM'>MCv(Q). Thus

(CV(N))M c
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and since Cv((^)) is convex, it follows that

«•(©)•
which is the required first containment.

For the second containment, we first assume that v is a real place of k. By
considering all possible permutations of rows and permutations of columns of
the N x M matrix

1M

O
one may quickly show that et e {CV(N))M for / = 1,2, . . . , (^), where ?; is
the /'* column of the (^) x (^) identity matrix 1 Q . Therefore by convexity,

(CV(N))M contains the unit L'-ball in (£„)©:

1
It now follows that

which is even stronger than required.
For v complex, one may use a similar argument to show that every vector in

(&„)(«) having {(^) — 1} components zero and one component a unit is contained
in {CV(N))M. By the complex convexity of (Cv(N))M,it follows that {CV(N)}M

contains the unit L'-ball in R2(") = (kv)("\ Therefore,

which is the required containment of (i). Part (ii) is immediate from our remarks
following Corollary 3.2.

We now fix some further notation. For each place v of k, let A „ be an
N x N nonsingular matrix over kv. Define sets Rv and Tv in {kv)

N and (kv)("\
respectively, by:

Rv = {x e (kv)
N : \Avx\dJd" < 1}
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and
:\(Av)MX\dJd« < \ ) .

We assume that for almost all v, Rv = (G V)N. Let^1 = []„ K and & = f]v ^ -
From our above assumption we have that £% and 2? are admissible subsets of
(k\)N and ( & A ) ^ , respectively.

COROLLARY 7.2. L^ ^ ami S? be as above. Then

l/M

PROOF. Clearly for each place v, AVRV = CV(N) and (AV)MTV = Cv((^)).
By Lemma 3.1,

(AVRV)M = (AV)M(RV)M.

The corollary now follows from Lemma 7.1.

We now state and prove Mahler's general transfer principle in this setting.
We define the constants y2 = yi(k, M, N) and y3 — y^ik, M, N) by

and

where the constant yx is defined in Section 5.

THEOREM 7.3. Let !% and ST be as described above. Let k\ and ox be the
first successive minima of £% and £?, respectively. Then

bizl

A.i < yi°\IM and a, < y3 (FT I det(AJ|u) A p .

PROOF. Let kuk2,... ,kN and HI, n2, ••-,&(%) be the successive minima
of f% and ( ^ ) M , respectively. Write Ai, A 2 , . . •, A/w\ for the corresponding
M-products as in Section 5. From Lemma 7.2 we have

i i i\ \ i
(7.1)
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Trivially we have

Therefore by Theorem 5.1 and (7.1) we conclude

A-i < Yia\ •

For the second inequality, we begin by noting

(7.2) (X2X3... AJV)'/(W-1>

From the upper bound in the adelic successive minima theorem and (7.2) we
conclude

A? = (A.iA.2... XM)d < {XM+xXM+2 ... XN)~d2dNVN(& r l

By the lower bound in the successive minima theorem, the previous inequality
yields:

The theorem now follows from Theorem 5.1, (7.1) and the identity

VN(& ) = 2dN ( -

Let S be a finite set of places of k containing all the archimedean places.
Write G s for the ring of 5-integers in k. That is,

6S = {x ek : \\x\\v < 1 for all v£ S).

Define the function
_ | dv/d if u|oo

v~ \ 0 if vjoo.

Then as an immediate consequence of Theorem 7.3 we have the following result:
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COROLLARY 7.4. Let Av be an N x N nonsingular matrix over kvfor each
v G S. For each v € S, select ev e &,,\{0} so that

veS

If there exists anx e {(? s)N, x ^ 0, such that

\Avx\v < \ev\v for each v G 5,

then there exists an X e (G s)("\ X ^ 6, such that

\{AV)MX\V < y ^ l e j ^ for each v € 5.

Similarly, if there exists an X & (G s)™', X ^ 0, satisfying

\(Av)MX\v<\evtf for each veS,

then there exists an x G (G S)
N, x ^ 0, satisfying

\Avx\v < Y2°\ev\v for each v € S.

References

[I] A. C. Aitken, Determinants and Matrices (Greenwood Press, Westport, 1938).
[2] E. Bombieri and J. Vaaler, 'On Siegel's lemma', Invent. Math. 73 (1983), 11-32.
[3] E. B. Burger, 'Homogeneous Diophantine approximation in 5-integers', Pacific J. Math.

152 (1992), 211-253.
[4] E. Fisher, 'liber den Hadamardschen Determinantensatz', Arch. Math. (Basel) 13 (1908),

32^0 .
[5] F. John, 'Extremum problems with inequalities as subsidiary conditions', in: Studies and

essays presented to R. Courant (Interscience, New York, 1948).
[6] K. Mahler, 'On compound convex bodies I', Proc. London Math. Soc. 5 (3) (1955), 358-

379.
[7] R. B. McFeat, Geometry of numbers in Adele spaces, Dissertationes Math. 88 (Rozprawy

Mat., 1971).
[8] H. P. Schlickewei, "The number of solutions occurring in the /?-adic subspace theorem in

diophantine approximation', / . Reine Angew. Math 406 (1990), 44-108.
[9] W. M. Schmidt, 'Norm form equations', Ann. of Math. 96 (1972), 526-551.
[10] , Diophantine Approximation, Lecture Notes in Math. 785 (Springer, Berlin, 1980).
[II] , "The subspace theorem in diophantine approximation', CompositioMath. 69 (1989),

121-173.

https://doi.org/10.1017/S144678870003202X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003202X


[33] On Mahler's compound bodies 215

[12] J. D. Vaaler, 'Small zeros of quadric forms over number fields', Trans. Amer. Math. Soc.
302 (1987), 281-296.

[13] A. Weil, Basic Number Theory (Springer, Berlin, 1974).

Williams College
Williamstown
Massachusetts 01267
USA

https://doi.org/10.1017/S144678870003202X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003202X

