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1. Introduction

Let X be a class and 8P a property of groups. We say that 8P is a bigenetic
property of 3£-groups (or more simply, 8P is bigenetic in ^-groups) if an 3E-group
G has the property 0* whenever all two-generator subgroups of G have 0*.

As an example we recall the well known fact that the property of being
nilpotent is a bigenetic property both of the class of all finite groups and of the
class of all finitely generated soluble groups. At one time it was hoped that nilpo-
tency would turn out to be bigenetic in the class of all finitely generated groups or,
failing that, at least in classes of finitely generated groups which in some sense were
not too far from being finite or soluble. However Newman, using work of Golod
and Safarevic, constructed an example [11] of a three-generator infinite p-group
(p a prime) with all of its two-generator subgroups nilpotent. His example was
residually finite-p so that nilpotency is not even bigenetic in the class of all finitely
generated p-groups which are residually finite-p.

On the other hand it is not difficult to show, as we shall see, that nilpotency
is bigenetic in the class of all finitely generated hyper-(Abelian-by-finite) groups.
Our main object in this paper is to show further that a number of other properties
are bigenetic in this class. Specifically we have as our principal result

THEOREM A. The properties of being poly cyclic, nilpotent-by-finite, super-
soluble, finite-by-nilpotent, nilpotent and finite are all bigenetic properties of
the class of all finitely generated hyper-(Abelian-by-finite) groups.

We recall that if X is a class of groups then a group is hyper- X if it has an
ascending invariant series each factor of which is an J£-group.

We observe that Newman's example shows that none of the properties
mentioned in Theorem A are bigenetic in the class of all finitely generated p-groups
which are residually finite-p.
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Part of Theorem A provides a generalisation of the following known results
about finite groups

LEMMA 1. Nilpotency, supersolubility and polycyclicity are bigenetic
properties of the class of all finite groups.

If the two-generator subgroups of a group G are nilpotent then G is an Engel
group. Since finite Engel groups are nilpotent, nilpotency is bigenetic in finite
groups.

The fact that supersolubility is bigenetic in finite groups is a theorem of
Carter, Fischer and Hawkes [3, Theorem 4.8] (for another proof see [18, Lemma
3.5]).

In order to see that polycyclicity is bigenetic in finite groups we recall that
for finite groups polycyclicity and solubility are equivalent and we let G be a
counterexample to the assertion of least order. Then G is a finite simple insoluble
group with every proper subgroup and every two-generator subgroup soluble.
Therefore G is a minimal simple group and it follows from the work of Thompson
[15] that G is a two-generator group. Hence G is soluble by hypothesis, a
contradiction.

In [17] and [18] Wehrfritz has studied certain two-generator conditions in
linear groups. For example in [17, Theorem 1] he proves that the property of
being soluble-by-finite is bigenetic in the class of all subgroups of GL(n, R), where
R is a finitely generated integral domain. However I have been unable to decide
whether the property of being soluble-by-finite is also bigenetic in finitely generated
hyper-(Abelian-by-finite) groups.

Segal in [14] has shown independently and by a different method that the
properties of being nilpotent-by-finite and supersoluble are bigenetic in the class
of all finitely generated soluble groups. In addition he has considered two-
generator conditions in groups of automorphisms of certain classes of soluble
groups.

2. Proofs

We denote the class of all finitely generated hyper-(Abelian-by-finite) groups
by §. We first of all establish the fact that polycyclicity is bigenetic in the class
of all ^-groups (Theorem B). In order to do this we shall use the following
argument which is due to Baer [2, §2 Lemma 4] and which yields

LEMMA 2. / / X is a quotient closed class of groups such that finitely
generated X-groups are finitely presented then in order to prove that a finitely
generated group G is an X-group it is sufficient to establish this fact in the case
where every proper homomorphic image of G is an X-group.

PROOF. Suppose G is a finitely generated group which is not an 3£-group. Let
Nx (A e A) be a chain of normal subgroups of G with the property that G /Nx is

https://doi.org/10.1017/S1446788700015093 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015093


[3] Properties of finitely generated groups 311

not in X for all A £ A. Let N be the union of the Nx, X e A. If G /N is in X then,
since G is finitely generated, GJN is finitely presented and therefore N is the
normal closure in G of finitely many elements au---,an say, of N. Hence N = Nx

for some A e A which is impossible. Hence G /N is not an 3E-group. We may now
apply Zorn's Lemma to give the existence of a normal subgroup H of G maximal
with respect to GjH not in X. We may assume that H = 1, and therefore that
every proper homomorphic image of G is in X. The proof is complete.

We now prove

THEOREM B. Polycyclicity is a bigenetic property of ^/-groups.

PROOF. Suppose G is an §-group such that every two-generator subgroup
of G is polycyclic. Since polycyclic groups are finitely presented (see [6, Lemma 1])
it follows by lemma 2 that we may assume that every proper homomorphic image
of G is polycyclic but that G itself is not polycyclic.

Since G is an <rj-group it is easy to see that there is a non-trivial normal
subgroup H of G such that H is finite or Abelian. If// is finite it is polycyclic since,
by lemma 1, polycyclicity is bigenetic in finite groups. Moreover GjH is polycyclic
and therefore G is itself polycyclic, a contradiction. Therefore H is Abelian. Let
1 # a eH and set A = <aG>, the normal closure of a in G. Then A is Abelian and
GjA is polycyclic by hypothesis. There is therefore a series

A = CJQ *<1 CJI "<3 ••* •<] Cj n _j "<1 Kjn = (j

of finite length such that GjG^x is cyclic for i — 1, -•-,«. We may therefore set
G; = <Gi_1,grf> for some g^G^ i = 1, •••,«. Let Br = <aCr>. We prove by
induction on r that Br is finitely generated.

Now Bt = <a<ffx>> ^ <a,#i>, clearly, and <a,#i> is polycyclic by hypothesis.
Hence <a,#i)> satisfies the maximal condition on subgroups and so Bx is finitely
generated. Suppose Br is finitely generated for some r 2: 1. Say Br = <fc1} •••,fes>.
Since Gr<t Gr+1 it follows that Br+1 = Br

<9r+1>. Whence

Moreover each <bj9"+I>> is finitely generated since it is a subgroup of the
polycyclic group (bj,gr+ly j = l,--,s. Hence Br+1 is finitely generated. By
induction Br is finitely generated for r = l,---,n and so A (=B n ) is finitely
generated. However finitely generated Abelian groups are polycyclic and hence G
is polycyclic, a contradiction. The proof of Theorem B is now complete.

COROLLARY Bl. The property of being nilpotent-by-finite is bigenetic in
^-groups.

PROOF. Suppose G is an §-group such that every two-generator subgroup of G is
nilpotent-by-finite but G is not nilpotent-by-finite. Since finitely generated nilpotent-
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by-finite groups' are finitely presented it follows from lemma 2 that we may assume
that every proper homomorphic image of G is nilpotent-by-finite. Since G is in <f>
there is a non-trivial normal subgroup H of G which is either Abelian or finite.
By hyp thesis G jH is nilpotent-by-finite. By coming down to a subgroup of
finite index in G if necessary, we may assume that G jH is nilpotent. If H is finite
then G is finite-by-nilpotent and it follows by a result of Hall [7, Theorem 2] that
G is nilpotent-by-finite, a contradiction. Therefore H is Abelian and so G is
Abelian-by-nilpotent and therefore soluble. Since every two-generator subgroup
of G is nilpotent-by-finite, it is polycyclic and so G is polycyclic by Theorem B.
The final contradiction which completes the proof of Corollary Bl now follows
from

LEMMA 3. The property of being nilpotent-by-finite is bigenetic in poly-
cyclic groups.

PROOF. Suppose G is a polycyclic group with each of its two-generator
subgroups nilpotent-by-finite. By induction on the length of a cyclic series for
G we may assume that G = (H,x}, where H is a nilpotent-by-finite normal
subgroup of G and G jH is infinite cyclic. It follows that there exists a nilpotent
characteristic subgroup K of finite index in H. Thus GjK is finite-by-infinite-cyclic
and therefore is also infinite-cyclic-by-finite. Hence by coming down to a subgroup
of finite index in G we may assume that G jK is infinite cyclic and so G = (K, y}
for some y in G. We may also assume that every proper homomorphic image of G
is nilpotent-by-finite.

Let N = Ci(K), the centre of K. Since G is polycyclic A is finitely generated,
say A = <al5••-,«„>. By hypothesis the subgroups (ahy} are nilpotent-by-finite
for i = 1, •••,/!. It follows that (a™,---,a™,ym} is nilpotent for some positive
integer m. In other words L = (Am,ym} is nilpotent. If Am = 1 then A is finite
and therefore K is finite, since a finitely generated nilpotent group with finite
centre is finite by [8, Lemma 7]. Hence G is nilpotent-by-finite as required. So we
may assume that Am ^ 1. It follows that Am O Ci(L) ^ 1. SetM = <K,ym}. Then
we clearly have B - d (M) # 1. Now B o G and GjB is nilpotent-by-finite.
Hence M is nilpotent-by-finite and therefore G is nilpotent-by-finite since M is of
finite index in G.

REMARKS, (i) It is not difficult to deduce from Corollary Bl that the property
of being Abelian-by-finite is also bigenetic in §-groups.

(ii) It is possible to prove Corollary Bl directly and then to deduce Theorem B
from it. The proof proceeds by first reducing via lemma 2 to the case where the
group G in question is a finitely generated Abelian-by-nilpotent group with each
of its two-generator subgroups nilpotent-by-finite. The fact that in this case G is
nilpotent-by-finite may be deduced from a parallel result for Noetherian modules
for finitely generated nilpotent groups, namely: if T is a finitely generated nilpotent
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group and A is a Noetherian F-module with the property that the subgroup
<a,x> of the split extension A • F is nilpotent-by-finite for all aeA, x e F then
there is a subgroup A of finite index in F which acts unipotently on A. This result
may be proved using the methods developed in [9] and [10].

COROLLARY B2. Supersolubility is bigenetic in ^-groups.

PROOF. Suppose G is an §-group such that every two-generator subgroup of
G is supersoluble. Since supersoluble groups are polycyclic it follows from Theorem
B that G is polycylic. Corollary B2 now follows from

LEMMA 4. Supersolubility is bigenetic in polycyclic groups.

PROOF. Suppose false and let G be a counterexample having a cyclic series of
least length. Since supersolubility is bigenetic in finite groups G is infinite. Also
since G satisfies the maximal condition on subgroups we may assume that every
proper homomorphic image of G is supersoluble.

We may now either note that G is a polycyclic group with every finite homo-
morphic image supersoluble and is therefore supersoluble by [18, Lemma 2.2] or
we may proceed directly as follows.

It is clearly enough to show that G has a cyclic normal subgroup in order to
obtain a contradiction. It follows that we may assume that G has trivial centre.
If G', the derived subgroup of G, is finite then by [7, Theorem 2] some term of
the upper central series of G is of finite index in G. Since G has trivial centre it
follows that G is finite, a contradiction. Hence G' is infinite.

If L is a normal subgroup of finite index in G' then K = n g 6 G L ! also has
finite index in G' [13, 7.1.6]. Hence K # 1, since G' is infinite, and so by hy-
pothesis GjK is supersoluble. Therefore G'jK is nilpotent and so in particular
G' jL is nilpotent. It now follows from a result of Hirsch (see e.g. [13, 7.1.12])
that G' is nilpotent. Again since G' is infinite we have that A = d(G') is non-
trivial. Now by the minimality hypothesis on the cyclic length of G there exists a
normal subgroup H of G such that GjH is cyclic and H is supersoluble. Then
G = (H,g} for some geG and clearly G' ^ H. Now A^\ G and since H is
supersoluble there exists 1 # a' eA such that <a>o H.lSet K = (,a,g}. Then K
is supersoluble by hypothesis and it follows that there exists 1 ^ be<aK> such
that <fc><a K. We show that <6><i H whence <b> is a cyclic normal subgroup
of G.

We may write b in the form

rh s; integers, i = 1, •••, n for some n.

Let h e H. Then we have
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1 = 1

Now
g"h = h[h,g-"W

so that since a e d(G') we obtain

Now ah = am for some integer m since <«> o H and it follows at once that
b" = bm. Therefore <ft> <i H and the proof is complete.

COROLLARY B3. The property of being finite-by-nilpotent is bigenetic in
^-groups.

PROOF. Suppose G is an $-group such that every two-generator subgroup of
G is finite-by-nilpotent. By the result of Hall cited earlier [7, Theorem 2] together
with Corollary Bl it follows that G is nilpotent-by-finite. Hence there exists a
nilpotent normal subgroup K of G with G jK finite. Since G is finitely generated
so also is K and therefore G satisfies the maximal condition on subgroups. In
particular G satisfies the maximal condition on normal subgroups and we may
therefore assume that G is not finite-by-nilpotent but that every proper homomor-
phic image of G is finite-by-nilpotent. Furthermore, since finitely generated nil-
potent groups are torsion-free-by-finite (this is easy to see directly or see [13,
7.1.11]) we may assume that K is torsion-free. Since G is not finite-by-nilpotent
K is non-trivial and therefore its centre A is non-trivial. Let a e A, xeG. By
hypothesis <a, x> is finite-by-nilpotent and so the repeated commutator [a, x, • • •, x]
is an element of A of finite order for sufficiently many x's. But A is torsion-free
and so x acts unipotently on a. Moreover A is finitely generated end it follows
easily that x acts unipotently on A. We chose x arbitrary in G and since K
centralizes A and G/K is finite we have that G acts nilpotently on A (see e.g.
[16, Lemma 8.1]). Therefore A ^ KJfi), the m-th term of the upper central
series of G, for some m ^ 1. By hypothesis H = G\A is finite-by-nilpotent and
Hall's result [7, Theorem 2] shows that H /Cr(H) is finite for some r. Therefore
GICm+r(G) is finite since A ^ £m(G). From a theorem of Baer [1, page 369] it
follows that G is a finite-by-nilpotent group. This contradiction completes the
proof.

REMARK. It is not difficult to deduce from Corollary B3 that the property
of being finite-by-Abelian is bigenetic in ^-groups.

We finish the proof of Theorem A with two short lemmas.

LEMMA 5. Nilpotency is bigenetic in ^-groups.

PROOF. Suppose G is an §-group with every two-generator subgroup nilpotent.
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Then since nilpotency is bigenetic in finite groups it is clear that every finite image
of G is nilpotent. It follows by a result of Robinson [12] that G is nilpotent.

Alternatively lemma 2 and the results of Gruenberg [4] and [5] on Engel
groups may be used to obtain the same result.

LEMMA 6. Finiteness is bigenetic in ^-groups.

PROOF. Suppose G is an £-group such that every two-generator subgroup of
G is finite. Since finite groups are finitely presented it follows from lemma 2 that
we may assume that all proper homomorphic images of G are finite. It is then
easy to deduce that G must be finite.
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