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Abstract

It is known that many optimization problems can be reformulated as composite optimization
problems. In this paper error analyses are provided for two kinds of smoothing approx-
imation methods of a unconstrained composite nondifferentiable optimization problem.
Computational results are presented for nondifferentiable optimization problems by using
these smoothing approximation methods. Comparisons are made among these methods.

1. Introduction

Consider the following composite nondifferentiable optimization problem:

minG(x) subject to x e K", (P)

where G ( x ) : = h(x, \gi(x)\, ••• , \gm(x)\) : W —> K, h : W x W —> 0& is a

continuously differentiable function and gx, • • • , gm : R" —> K are continuously
differentiable functions.

Several optimization problems such as exact penalty problems, minimax prob-
lems and li-norm minimization problems, can be reformulated as problem P. Similar
composite models have been considered by Bertsekas [3], Ben-Tal and Teboulle [1]
and Yang [9]. Bertsekas [3] considered a composite nondifferentiable optimization
problem where the nondifferentiable feature is brought in by max{0, g(x)} (so-called
kinks). In Ben-Tal and Teboulle [1] a nondifferentiable convex function is smoothed
by a differentiable recession function. In Yang [9] a composite nondifferentiable op-
timization problem is considered using a two-parameter approximation where nondif-
ferentiable functions can be smoothed by adding a power greater than or equal to
2. Teo and Goh [7] studied constrained optimization problems with nonsmooth ob-
jective functions (Lx functionals) by smoothing the objective function with a single
parameter approximation. This method has been extended for solving more general
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nondifferentiable optimization problems in, for example, Jennings and Teo [6] and
Teo et al. [8].

In this paper we restrict our study to two kinds of smoothing approximation meth-
ods for P, given in Teo and Goh [7] and in [2,4,9], respectively. We show comparisons
between these two methods. Error analyses between P and smoothing approxima-
tion problems are presented under certain assumptions. These results are illustrated
by giving computational results for nondifferentiable optimization problems via the
computer package MATLAB.

2. Error analyses

In this section various error bounds are presented for the function values of the
objective function of P at an approximate optimal solution and at the optimal solution.

A smoothing approximation method is given in [7] to approximate absolute value
functions. For a given e > 0, each nondifferentiable function |g,0OI in P is replaced
by a differentiable function g'(x) which is defined by

+ e2/4] /e, if |g,-(*)l < e/2.

The resulting differentiable optimization problem is denoted by Pi (e) with the object-
ive function Ge(x) := h{x, g\{x),... , ge

m(x)).
In [2,4,9], a least-square based method (LSBM) is presented. If this method is

applied to P, then the nondifferentiable function |g,O)l is replaced by

The resulting differentiable optimization problem is denoted by P2(e).
Assume that x* is a minimum of P and that L is the Lipschitz constant of h.

THEOREM 2.1. Letx*u be a minimum ofPt(€). Then

0<G(x*u)-G(x*)<-LVm~e. (2.1)

PROOF. It is easy to see that

From the Lipschitz property of h, we have
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Thus

G « ) - G(x*) < Ge«) - G(x*) + U

Then

0<G(xl)-G(x*)

< G((x*) - G{x*) + -Ljm e
4

< -Ly/m€ + -Lyfme = -

Thus (2.1) holds.

THEOREM 2.2. Let x^ be a minimum ofP2(e). Then

0<G(*JE)-G(je*)<2LVmc. (2.2)

PROOF. We have

Thus by using a similar argument as in the proof of Theorem 2.1, the error estimate
(2.2) follows.

From (2.1) and (2.2), the convergence rate of the method of [7] is faster (4 times)
than the least-square based method corresponding to a decreasing of the smoothing
parameter e. However, as shown in [9], the following generalized least-square method
is more flexible than Teo and Goh's method and can be used to solve optimization
problems with higher degree nondifferentiability.

Consider the following problem

min<2(;t) subject to x € W, (P3)

where Q(x) := q(x, <?,(x), . . . ,qm(x)) : K" —> R, q : K" x OS"1 —> K is a
differentiable function. The functions qt : W —> R,i = 1 , . . . ,m are not, in
general, differentiable, but for some a > 2, the functions q°,i = 1, . . . ,m are
differentiable. Thus in P3, qi(x) is replaced by

The resulting differentiable optimization problem is denoted by P3(e). Assume that
jtj is a minimum of P3 and that L\ is the Lipschitz constant of q.
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THEOREM 2.3. Let x*( be a minimum ofP3(e). Then

0 < G ( J £ ) - GU3*) < 2 L , v ^ e . (2.3)

PROOF. We have

0 < # ( * ) - ? , - ( * ) < € .

Thus, by using a similar argument as in Theorem 2.1, the error estimate (2.3) follows.

Note the error bound (2.3) does not depend on the parameter a.

3. Numerical examples

In this section we present some numerical results by using the two smoothing
approximation methods discussed in Section 2. The computations here are carried
out by using the computer package MATLAB with analytical gradients supplied. The
FUNCTION fminu is used which is based on a quasi-Newton method with the BFGS
formula for updating the approximation of the Hessian matrix, see [5].

EXAMPLE 3.1. Consider the problem

/ - \ 2

min I 1 + ^2 i I*/1 I subject to x € R".

(See reference [3].)
We use / and nf to denote the value of the function at the last evaluation point and

the number of function evaluations made, respectively, when the generalized least-
square method is used. We use / ' and n'f to denote the value of the function at the last
evaluation point and the number of function evaluations made, respectively, when the
method in [7] is used. For a given error e > 0, with the least-square based method
this problem is approximated by a smooth problem

min I 1 + 2_^ iy/xf + €2 I subject to x e (R\
\ '=' /

By using Teo and Goh's methods, each term |JC,- | is approximated by

i f | * , |>e /2 ,
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Thus we obtain a differentiable problem

2

[5]

min subject to x e W.

The initial guess for this problem is a vector x0 with component xf = — 1, i =
1, . . . , n. Computational results for n — 5 and n = 50 are summarized in Table 1 and
Table 2, respectively.

TABLE 1. Iterations with n = 5.

e
5"1

5"2

5-3

5-4

5"5

5"6

5"7

5"8

5"9

/
16.0000
2.5600
1.2544
1.0486
1.0096
1.0019
1.00O4
1.0001
1.0000

nf

29
5
2
9
5
9
6
9
2

/ '
1.5625
1.1025
1.0201
1.0040
1.0000

n'f
10
5
2
2
2

TABLE 2. Iterations with « = 50.

€

5-1

5"2

5-3

5-4

5"5

5-6

5-7

5-8

5~9

/
6.5536e+04
2.7040e+03

125.4400
9.2416
1.9825
1.1699
1.0329
1.0065
1.0013

nf

175
65
2
2
15
5

24
16
6

/ '
12.2500
2.2500
1.2100
1.0404
1.0080
1.0016
1.0003
1.0001
1.0000

n'f
10
2
2
2
6
2
2
2
2

The following example shows that the method given in Yang [9] is flexible and can
be used to solve optimization problems with higher degree nondifferentiability.
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EXAMPLE 3.2. Consider the problem

min 1 + |JC|1/3, subject t o ^ e R .

(See [9].) For a = 6 this problem is approximated by

min 1 + (x2 + e6)1/6, subject to x e K,

and for a = 12 by

min 1 + O4 + e12)l/12, subject to x e K,

respectively. The starting point x0 = 1. The results for the generalized least-square
method with a = 6 and a = 12 are given in Table 3. It is noted from Table 3 that
the function values of each iteration for a = 6 and a = 12 are the same and that
the number of function evaluations of each iteration does not change much with the
value of a. Hence it is suggested that a is chosen relatively large when the degree of
nondifferentiability of the optimization problem is not known.

TABLE 3. Iterations with a = 6 and a = 12.

e
5-1

5~2

5~3

5-4

/
1.2000
1.0400
1.0080
1.0016

n)
20
10
22
33

nf
16
13
22
38

As a conclusion, we see that the convergence rate of the method introduced by Teo
and Goh [7] is faster than that of the least-square based method given in [2,4,9],
corresponding to a decreasing of the smoothing parameter c. It is clear that the
method of [7] also needs fewer function evaluations. However the method given in
[9] is flexible and can be applied for optimization problems whenever higher degree
nondifferentiability appears.
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