Periodic orbits of continuous mappings of the circle without fixed points

CHRIS BERNHARDT
Mathematics Department, Southern Illinois University, Carbondale, Illinois 62901, USA

(Received 7 July 1981 and revised 10 October 1981)

Abstract

Let f be a continuous map of the circle to itself. Let $P(f)$ denote the set of periods of the periodic points. In this paper the set $P(f)$ is studied for functions without fixed points, so $1 \notin P(f)$. In particular, it is shown that if s, t are the two smallest integers in $P(f)$ and s and t are relatively prime then $\alpha s+\beta t \in P(f)$ for any positive integers α and β.

1. Introduction

Let f be a continuous map of the circle and let $P(f)$ denote the set of positive integers n such that f has a periodic point of period n. Block [2] has studied the structure of $P(f)$ when $1 \in P(f)$ and $n \in P(f)$. In the particular case when n is odd it is shown that, for every integer $m>n, m \in P(f)$ (see [1]).

In this paper the case $1 \notin P(f)$ is studied. It is shown that, if s, t are the two smallest elements of $P(f)$, and s and t are coprime, then

$$
\alpha s+\beta t \in P(f)
$$

for all positive integers α and β.
It is easily seen that any continuous map of the circle that does not have a fixed point is of degree one. Newhouse-Palis-Takens [4] have shown how to assign a rotation set to such a map; this is also done in [3]. Suppose that the rotation interval is $[a, b] \subset \mathbb{R}$. Then, in [4] and in [3, theorem 3.7], it is shown that, for any rational number $m / n \in[a, b]$, with m and n coprime, n belongs to $P(f)$.

The following example illustrates the difference between this result and theorem 1.

Consider a map that has a rotation interval of $\left[\frac{1}{3}, \frac{1}{2}\right]$. By the above result, 2 and 3 are contained in $P(f)$. Theorem 1 shows that $10 \in P(f)$. However, this conclusion cannot be drawn from the above result as none of $\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$ is contained in $\left[\frac{1}{3}, \frac{1}{2}\right]$.

Theorem 1. Let $f \in C^{0}(S, S)$. Suppose $1 \notin P(f)$. Let t, s be the two smallest elements of $P(f)$. Suppose that t and s are coprime. Then for any positive integers α, β,

$$
\alpha t+\beta s \in P(f)
$$

2. Preliminary definitions and results

Let \mathbb{R} denote the real numbers, \mathbb{Z} the integers, \mathbb{N} the positive integers and $S=\mathbb{R} / \mathbb{Z}$
the circle. Let $\pi: \mathbb{R} \rightarrow S$ denote the canonical projection. Let $f \in C^{0}(S, S)$ be a map that has no fixed points.

Choose the lift $\bar{f}: \mathbb{R} \rightarrow \mathbb{R}$ such that \bar{f} is continuous, $0 \leq \bar{f}(0)<1$ and $\pi \bar{f}=f \pi$. Since f has no fixed point it is clear that

$$
x<\bar{f}(x)<x+1
$$

for any $x \in \mathbb{R}$. Thus

$$
\bar{f}(x+1)=\bar{f}(x)+1,
$$

so f is a map of degree one.
For any $n \in \mathbb{N}$ we define \bar{f}^{n} and f^{n} inductively by

$$
f^{1}=f, \quad \bar{f}^{1}=\bar{f}
$$

and

$$
f^{n}=f \circ f^{n-1}, \quad \bar{f}^{n}=\bar{f} \circ \bar{f}^{n-1}
$$

Let s, t be as in the statement of theorem 1. Choose $z_{t} \in S$ such that $f^{t}\left(z_{t}\right)=z_{t}$. Let $P=\left\{p_{i} \in \mathbb{R}\right\}$ such that

$$
0 \leq p_{0}<\cdots<p_{t-1}<1
$$

and

$$
\boldsymbol{\pi}\left(p_{i}\right) \in\left\{f^{i}\left(z_{t}\right) \mid i \in \mathbb{N}\right\} .
$$

Given $k \in \mathbb{N}$ let

$$
p_{k t+i}=p_{i}+k .
$$

Choose $z_{s} \in S$ such that $f^{s}\left(z_{s}\right)=z_{s}$. Let $Q=\left\{q_{i} \in \mathbb{R}\right\}$ such that

$$
0 \leq q_{0}<\cdots<q_{s-1}<1
$$

and

$$
\pi\left(q_{i}\right) \in\left\{f^{i}\left(z_{s}\right) \mid i \in \mathbb{N}\right\}
$$

Given $k \in \mathbb{N}$ let

$$
q_{k s+i}=q_{i}+k
$$

Definition. Let $j\left(p_{i}\right)$ be the $j u m p$ of p_{i}, defined by

$$
j\left(p_{i}\right)=k-i
$$

where $\bar{f}\left(p_{i}\right)=p_{k}$. Similarly,

$$
j\left(q_{i}\right)=k-i
$$

where $\bar{f}\left(q_{i}\right)=q_{k}$.
Notes
(1) It is easily checked that the jump is well-defined.
(2) Since $x<\bar{f}(x)<1+x$, it is clear that $j\left(p_{i}\right)$ and $j\left(q_{i}\right)$ are positive integers.
(3) For any $k \in \mathbb{N}$ one has $j\left(p_{i}\right)=j\left(p_{k t+i}\right)$ and $j\left(q_{i}\right)=j\left(q_{k s+i}\right)$.

3. Proof of theorem 1

Lemma 2. The following are true:

(1) $f^{t}\left(\pi\left[p_{i}, p_{i+1}\right]\right) \supset \pi\left(\left[p_{i}, p_{i+1}\right]\right)$.
(2) $f^{s}\left(\pi\left[q_{i}, q_{i+1}\right]\right) \supset \pi\left(\left[q_{i}, q_{i+1}\right]\right)$.

Proof. The first statement will be proved; the second can be proved in a similar manner.

As $\pi\left(p_{i}\right)$ and $\pi\left(p_{i+1}\right)$ are periodic, of period t, there exist positive integers k and l such that

$$
\bar{f}^{t}\left(p_{i}\right)=k+p_{i} \quad \text { and } \quad \bar{f}^{t}\left(p_{i+1}\right)=l+p_{i} .
$$

To prove the first statement it is enough to show that $l=k$.
Now

$$
\bar{f}^{t}\left(p_{i}\right)-p_{i}=\sum_{i=1}^{t}\left[\bar{f}\left(\bar{f}^{i-1}\left(p_{i}\right)\right)-\bar{f}^{i-1}\left(p_{i}\right)\right] .
$$

Since

$$
\bar{f}\left(p_{i t+i}\right)-p_{i t+i}=\bar{f}\left(p_{i}\right)-p_{i},
$$

one obtains

$$
\bar{f}^{t}\left(p_{i}\right)-p_{i}=\sum_{i=1}^{t}\left[\bar{f}\left(p_{i}\right)-p_{i}\right] .
$$

Similarly,

$$
\bar{f}^{t}\left(p_{i+1}\right)-p_{i+1}=\sum_{i=1}^{i}\left[\bar{f}\left(p_{i}\right)-p_{i}\right] .
$$

Thus $l=k$.
In the rest of the paper it will be assumed, without loss of generality, that $t<s$.
In the proofs that follow simple use will be made of Markov graphs; for more information see [3] or [5].

Lemma 3. For any $i \in \mathbb{N}$ the jump of p_{i} is equal to the jump of p_{0}.
Proof. For $0 \leq j<t$ let

$$
I_{j}=\pi\left(\left[p_{k t+j}, p_{k t+j+1}\right]\right) .
$$

Construct a directed graph (Markov graph), with vertices I_{i} and an edge $I_{i} \rightarrow I_{k}$ if and only if $f\left(I_{j}\right) \supset I_{k}$.

Using lemma 2 it can be seen that there is a loop starting and ending at I_{0} of length t. There cannot be a shorter loop, as this would imply the existence of a periodic point with period less than t (see [1], [2] or [3]). Thus, there exists a permutation, σ, on $\{0, \ldots, t-1\}$ such that the Markov graph contains the graph shown in figure 1.

Suppose that the lemma is not true, then some interval, I_{k}, must be mapped onto at least two intervals. This is a contradiction, as it would imply the existence of a shorter loop.

Figure 1

Lemma 4. If there exist two positive integers i, j such that $j\left(q_{i}\right) \neq j\left(q_{i}\right)$, then for any positive integers α, β the number $\alpha s+\beta$ t belongs to $P(f)$.
Proof. For $0 \leq j<t$ let

$$
I_{j}=\pi\left(\left[q_{k t+j}, q_{k t+i+1}\right]\right)
$$

As in the previous lemma, some interval, I_{j}, is mapped onto at least two intervals. This implies that there exists an interval, I_{k}, such that

$$
f^{\prime}\left(I_{k}\right) \supset I_{k}, \quad \text { where } 0<r<s .
$$

Clearly, $r=t$ since t and s are the two smallest elements of $P(f)$.
By lemma 2,

$$
f^{s}\left(I_{k}\right) \supset I_{k} .
$$

So the Markov graph has two loops starting and ending at I_{k}, one of length s and the other of length t.

Let α and β be as in the statement of the lemma. Then there exists a periodic point of period $\alpha s+\beta t$ that corresponds to travelling around the ' s length' loop α times and then travelling around the ' t length' loop β times.

The following lemma completes the proof of theorem 1.
Lemma 5. Suppose for all i that $j\left(p_{i}\right)=u$ and $j\left(q_{i}\right)=v$. Then $\alpha s+\beta t \in P(f)$, for any positive integers α and β.
Proof. Relabel the points in $P \cup Q$ by

$$
m_{0}, m_{1}, \ldots, m_{s+t-1}
$$

where

$$
0 \leq m_{0}<m_{1}<\cdots<m_{s+t-1}<1 .
$$

For $k \in \mathbb{N}$ let

$$
m_{k(s+t)+i}=m_{i}+k .
$$

Define $F: \mathbb{N} \rightarrow \mathbb{N}$ by $F(i)=k$, where $f\left(m_{i}\right)=m_{k}$.
Suppose that $m_{i} \in P$. Then

$$
\bar{f}^{t}\left(m_{i}\right)-m_{i}=u
$$

and, for any $r \in \mathbb{N}$, one has

$$
\left[\frac{r u}{t}\right] \downarrow \leq \bar{f}^{r}\left(m_{i}\right)-m_{i} \leq\left[\frac{r u}{t}\right] \uparrow,
$$

where [$] \downarrow$ means round down to the nearest integer and [] \uparrow means round up to the nearest integer. Then one obtains

$$
\begin{equation*}
r u+\left[\frac{r u}{t}\right] \downarrow s \leq F^{r}(i)-i \leq r u+\left[\frac{r u}{t}\right] \uparrow s, \tag{1}
\end{equation*}
$$

since after r iterates m_{i} has 'jumped' ru elements of P and between $[r u / t] \downarrow s$ and $[r u / t] \uparrow s$ elements of Q. Similarly, if $m_{j} \in Q$ one obtains

$$
\begin{equation*}
t v+\left[\frac{t v}{s}\right] \downarrow t \leq F^{t}(j)-j \leq t v+\left[\frac{t v}{s}\right] \uparrow t . \tag{2}
\end{equation*}
$$

Suppose that $u / t \leq v / s$. Then choose an integer k with $0 \leq k \leq t+s-1$ such that $m_{k} \in P$ and $m_{k+1} \in Q$. Inequality (1) gives

$$
F^{s}(k)-k \leq s u+\left[\frac{s u}{t}\right] \uparrow s
$$

Since $u / t \leq v / s$ one has

$$
F^{s}(k)-k \leq s u+v s \leq v(t+s)
$$

However,

$$
F^{s}(k+1)-(k+1)=v(t+s)
$$

so

$$
f^{s} \pi\left(\left[m_{k}, m_{k+1}\right]\right) \supset\left[m_{k}, m_{k+1}\right]
$$

Using the second inequality, one can show similarly that

$$
f^{t} \pi\left(\left[m_{k}, m_{k+1}\right]\right) \supset\left[m_{k}, m_{k+1}\right]
$$

For $0 \leq i<t+s$ let

$$
I_{i}=\pi\left[m_{j(t+s)+i}, m_{j(t+s)+i+1}\right],
$$

where j is any positive integer. From the above, the associated Markov graph has two loops starting at I_{k}, one of length t and the other of length s. Thus f has periodic points of the form $\alpha s+\beta t$ for any positive integers α and β.

The proof for the case $v / s<u / t$ is similar after choosing an integer $0 \leq k \leq t+s-1$ such that $m_{k} \in Q$ and $m_{k+1} \in P$.

REFERENCES

[1] L. Block. Periodic orbits of continuous mappings of the circle. Trans. Amer. Math. Soc. 260 (1980), 553-561.
[2] L. Block. Periods of periodic points of the circle which have a fixed point. Proceedings of the A.M.S. (to appear).
[3] L. Block, J. Guckenheimer, M. Misiurewicz \& L. Young. Periodic points and topological entropy of one dimensional maps. Global theory of dynamical systems. Lecture Notes in Maths. No. 819. Springer: Berlin, 1980.
[4] S. Newhouse, J. Palis \& F. Takens. Stable families of dynamical systems. I: Diffeomorphisms. Preprint: IMPA, Brazil.
[5] Z. Nitecki. Topological dynamics on the interval. Preprint: Tufts University.

