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Growth in Baumslag–Solitar groups I: subgroups and rationality
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Abstract

The computation of growth series for the higher Baumslag–Solitar groups is an open problem
first posed by de la Harpe and Grigorchuk. We study the growth of the horocyclic subgroup
as the key to the overall growth of these Baumslag–Solitar groups BS(p, q), where 1< p < q. In
fact, the overall growth series can be represented as a modified convolution product with one
of the factors being based on the series for the horocyclic subgroup. We exhibit two distinct
algorithms that compute the growth of the horocyclic subgroup and discuss the time and space
complexity of these algorithms. We show that when p divides q, the horocyclic subgroup has a
geodesic combing whose words form a context-free (in fact, one-counter) language. A theorem
of Chomsky–Schützenberger allows us to compute the growth series for this subgroup, which is
rational. When p does not divide q, we show that no geodesic combing for the horocyclic subgroup
forms a context-free language, although there is a context-sensitive geodesic combing. We exhibit
a specific linearly bounded Turing machine that accepts this language (with quadratic time com-
plexity) in the case of BS(2, 3) and outline the Turing machine construction in the general case.

1. Introduction and review of growth series

Since their exhibition by Baumslag and Solitar [2], the family of groups named after them have
been a frequent source of examples and counterexamples in group theory. The purpose of this
article is to shed light on an open problem originally proposed by de la Harpe and Grigorchuk
(see [7] for example), namely, compute the growth series for the groups BS(p, q) using the
standard presentation 〈b, t | tbpt−1 = bq〉. When p= 1 or when p= q, the growth series have
been computed (see [3, 6, 9]). However, when 1< p < q, the growth computation appears to
be a difficult problem. In fact, effective algorithms for finding geodesic representatives for group
elements have only recently appeared in the solvable case [10], and more generally whenever
p divides q [8]. The latter article also exhibits a proof of our Corollary 9.2 below using different
methods.

We concentrate our efforts on the relative growth of the cyclic subgroup generated by b. The
motivation for this strategy is that BS(p, q) is a disjoint union of cosets of this subgroup, and the
growth on each coset is related to the growth of the subgroup. Rather than attempt to find and
count normal forms for each element of BS(p, q), we try to write the growth series of the group
as a modified convolution based on relative growth of each coset (cf. Sections 2 and 3 below).

There are at least two sources of complexity associated to the growth of BS(p, q). Geometry
in the form of gluing negatively curved half-sheets along positively curved horocycles is the
first issue (see Section 2 below for definitions). The second issue is number theoretic. Only the
latter is problematic in this article. Indeed, the geometry examined in this article is restricted
to negative curvature and is a useful tool (cf. Proposition 8.1). In the following [14], where
we study growth exponents, the alternation of positive and negative curvatures presents a
formidable obstacle. Number-theoretic issues arise in Sections 6 and 7 below.

We begin with a short review of generating functions. Let B(z) =
∑∞

r=0 βrz
r be a power

series. Recall that the radius of convergence is defined as the reciprocal of

ω = lim sup
r→∞

(βr)1/r.
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GROWTH IN BAUMSLAG–SOLITAR GROUPS I 35

Let G= 〈X |R〉 be a presentation for a finitely generated group and let βr (respectively σr)
be the number of elements g in G whose word length is at most (respectively equal to) r. Then
recall that the above sum B(z) (or S(z) =

∑∞
r=0 σrz

r, respectively) is called the cumulative
(respectively spherical) growth series for the presentation. For either growth series, the above
limit superior is actually an ordinary limit [7], and is called the exponent of growth. This ω is
a number in [1,+∞) and is the reciprocal of the modulus of the smallest singularity for B(z).
Recall that the formal convolution product

∞∑
r=0

crz
r =

(∑
arz

r

)( ∞∑
r=0

brz
r

)
has coefficients defined by cr =

∑r
j=0 ajbr−j . By definition, βr =

∑r
j=0 σj · 1. We see that the

cumulative growth series B(z) is the convolution product of the spherical growth series S(z)
with the geometric series

∑∞
r=0 z

r = 1
1−z . Therefore, B(z) = S(z)

1−z . The smallest singularity of
any meromorphic function B(z) is completely determined by S(z), since 1

1−z contributes a
singularity of 1. This is the largest radius of convergence possible since its reciprocal must lie
in [1,+∞). Thus, both S(z) and B(z) have the same radius of convergence, the same exponent
of growth ω, and each is a rational function if and only if the other is a rational function.

It is well known that S(z) =
∑∞

r=0 σrz
r is a rational function (that is, a quotient of two

polynomials) if and only if the coefficients satisfy a linear, recurrence relation with constant
coefficients for all sufficiently large r. In this case, the denominator of S(z) is completely
determined by the recurrence, that is,

σr = k1σr−1 + k2σr−2 + . . .+ kjσr−j

⇐⇒

S(z) =
polynomial(z)

1− k1z − k2z2 − . . .− kjzj
.

The coefficients of the numerator polynomial are determined by the values of the initial
terms σ0, σ1, . . . prior to the recursion. The exponent of growth for rational S(z) with integer
coefficients is necessarily an algebraic number.

The remainder of the article is outlined as follows. Section 2 reviews the coarse geometry
of the Cayley 2-complex for a Baumslag–Solitar group. Section 3 is a brief sketch of some of
our methodology to recompute the growth function for BS(1, 3), that was first found in [6].
Section 4 describes an algorithm discovered by Alisha McCann in 2002 to convert horocyclic
paths into so-called McCann geodesics. Section 5 comprises a derivation of the growth series
for the horocyclic subgroup of BS(2, 4) via geometry and formal language theory. Section 6
studies the horocyclic subgroup of BS(2, 3), defines another set of the normal forms (the
Schofield geodesics), and constructs a Turing machine to accept these forms along with time
and space complexity estimates. Section 7 shows that when p - q, no geodesic combing of the
horocyclic subgroup can constitute a context-free language. Section 8 generalizes Section 6
to any BS(p, q), where p - q. Section 9 modifies the Turing machine of earlier sections into a
one-counter machine in the case when p divides q, and shows that the corresponding horocyclic
subgroup has rational growth. The appendix to this article lists context-free grammars that
describe geodesic combings for the horocyclic subgroup in all cases where p|q (these grammars
are a compact method of encoding growth functions).

2. The geometry of Baumslag–Solitar groups

For the general group BS(p, q) in this genre, we call 〈b〉 the horocyclic subgroup and the defining
relator tbpt−1b−q is referred to as a ‘horobrick’ in [12]. The Cayley graph consists of ‘sheets’
each of which is endowed with a coarse euclidean geometry (when p= q) or coarse hyperbolic
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36 E. M. FREDEN ET AL.

Figure 2.1. Partial sheet for BS(2, 6) with horocyclic subgroup.

Figure 2.2. Cut-away view of Cayley 2-complex of BS(2, 6); solid lines represent cut lines, actual
generator edges are dashed. Each horocycle should have six upward and two downward branch sheets

(most are omitted from the figure for brevity).

geometry (when p < q) glued along 〈b〉-cosets referred to as ‘horocycles’. This geometry is
quasi-isometric with the upper half space model of the hyperbolic plane (and thus satisfies
the thin-triangle criterion, making each sheet a Gromov hyperbolic space). The quasi-isometry
induces a natural orientation to each sheet. Paths with labels tn, n > 0, go ‘up’, labels b±n are
‘horizontal’, while paths labeled t−n go ‘down’ (see Figure 2.1).

Recall that the Cayley 2-complex of a presentation is obtained from the Cayley graph by
filling in each basic relator and its conjugates with a topological disk. For BS(p, q), the Cayley
2-complex is homeomorphic to the product of the real line with a simplicial tree (see Figure 2.2).
This tree is in fact the Bass–Serre tree upon which the group acts.

Consider any strictly upward line (or ray) in the Bass–Serre tree. By a sheet (or half-sheet),
we mean the full lift of this path in the Cayley graph. We will often use a restricted version
of a so-called upper half-sheet: we require each such half-sheet to contain some half-coset
{wtn : n > 0}, where w is a geodesic word with suffix b or b−1. We think of w as a connecting
segment from the origin (identity vertex) to the half-sheet. Similarly, each restricted lower half-
sheet must contain a half-coset of the form {wt−n : n > 0}, where w is a geodesic word with
suffix b or b−1. There are only countably many half-sheets using these definitions. The geodesic
word w above is termed a stem associated to the (restricted version of the) half-sheet. The
notation |w| refers to the minimal word length of any word v representing the same element as
w in the group BS(p, q). By this definition, w is a geodesic if and only if the word length of w
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Figure 2.3. Partial Bass–Serre tree for BS(2, 6).

(in the free group on b, t) equals |w|. We frequently abuse notation and allow w to also refer
to the ending vertex of the edge path starting from the origin that is labeled by the word w.
In this context, |w| means the metric distance between the origin and the vertex w. We also
use the synonym radius of w to denote this distance.

Since the defining relator must be maintained in each sheet, each 〈b〉-coset of BS(p, q)
gives rise to q upper half-sheets and p lower half-sheets. If Figure 2.2 is rotated so that the
horocycles extend along the reader’s line of sight, the Cayley graph projects to the simplicial
tree mentioned earlier. For example, Figure 2.3 illustrates part of the tree for BS(2, 6) with
each dot representing a horocycle.

We frequently adopt monoid notation and denote b−1 and t−1 by B and T , respectively.
This is useful for representing strings in Perl and Java code and also for annotating graphics.

The family BS(q, q) has euclidean sheets joined along geodesic 〈b〉-cosets. The upper and
lower half-sheets merge together into copies of the integer lattice (with some vertical edges
missing). Each of these groups is automatic and has rational growth explicitly computed in [9].
The next simplest family are the solvable groups BS(1, q). These also have rational growth, as
shown in [3, 6]. The methodology used to prove these results is standard combinatorial group
theory: find a geodesic normal form for each group element and count these forms. This idea
has been unsuccessful so far when applied to BS(p, q), where 1< p < q.

We propose the use of geometry to compute the growth series for the horocyclic subgroups 〈b〉
(as suggested by L. Bartholdi), as well as the entire growth series for certain groups. Even when
a growth series cannot be exactly computed, our methods allow us to determine or estimate
the exponents of growth (as suggested by A. Talambutsa). The latter strategy is based on the
following key idea: estimate the growth of each horocycle and count the various horocycles.
Counting the branching of horocycles is equivalent to counting the different geodesic stems w
used to define the horocycles. The growth on the horocycles we consider depends directly on
the growth of the corresponding horocyclic subgroup 〈b〉. As a reality check, both aspects of our
program can be applied to the automatic and solvable groups and compared with the already
known growth functions.

3. Motivation: the solvable case

The subfamily BS(1, q) are solvable groups. The subgroup 〈b〉 is a horocycle that divides the
main sheet into one lower and q many upper half-sheets. The growth function (either spherical
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Figure 3.1. Part of the main sheet for BS(1, 3) showing absolute distances from the origin.

or cumulative) on any of these grows exponentially with respect to radius. It is not difficult to
see that the spherical growth of ‘Quadrant I’ on the upper main half-sheet (see Figure 3.1) is
exactly the cumulative growth of half the horocycle {bn : n > 0} (in fact, this holds for all the
Baumslag–Solitar groups). This is because the cosets t〈b〉, t2〈b〉, t3〈b〉, . . . comprising the main
upper half-sheet have spherical growth counts that are exactly offset by 1, 2, 3, . . . from that
of 〈b〉.

The lower half-sheet consists of horocycles that eventually follow the growth pattern of 〈b〉,
but different behavior is exhibited near the origin (we discuss this in terms of level in the next
paragraph). The growth on the lower half-sheet always outpaces that of any upper half-sheet
(consider a circle in the hyperbolic plane divided through its center by a horocycle — the
convex piece of this disk has smaller area).

The growth function of any horocycle depends recursively on that of an adjacent horocycle.
Here the notion of ‘coset level’ comes into play. Recall that the generator t defines a vertical
direction in the Cayley graph. We define the horocyclic subgroup to have level zero. Any
horocycle adjacent to and immediately higher than a horocycle of level zero also has level zero.
Any horocycle adjacent to and immediately lower than a horocycle of level −n6 0 is defined
to have level −n− 1. Any horocycle adjacent to and immediately higher than a horocycle of
level −n < 0 is defined to have level −n+ 1. Thus, the horocycles t4bt〈b〉, bt−3bt〈b〉 have levels
0 and −2, respectively. It is clear that each level is merely an equivalence class of horocycles.

The first step in computing the overall growth function is to determine a recursion for the
horocyclic subgroup and then find the growth recursion along any 〈b〉-coset as a function of
level. We then count how many horocycles there are at a given level, form a convolution product
with the recursion along such a coset, and finally sum over all levels.

As an example, consider the case of BS(1, 3). Define b(0, r) to be the number of bk such that
|bk|= r. This defines the spherical growth series for the horocyclic subgroup, which satisfies

b(0, 0) = 1, b(0, 1) = b(0, 2) = b(0, 3) = 2, b(0, 4) = 4

and

b(0, r) = b(0, r − 2) + 2b(0, r − 3)

for all r > 5. The reader is invited to derive the recursion or borrow it from [6], where it is
captured in the denominator of the growth series for BS(1, 3). Multiplying both sides of the
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recursion by zr and summing over all r > 5 gives
∞∑

r=5

b(0, r)zr = z2
∞∑

r=5

b(0, r − 2)zr−2 + 2z3
∞∑

r=5

b(0, r − 3)zr−3.

Now use the definition B0(z) =
∑∞

r=0 b(0, r)z
r and initial conditions to rewrite the equation

above:

B0(z)− 1− 2z − 2z2 − 2z3 − 4z4 = z2(B0(z)− 1− 2z − 2z2) + 2z3(B0(z)− 1− 2z)

and solve to get the generating function for the horocyclic subgroup

B0(z) =
1 + 2z + z2 − 2z3 − 2z4

1− z2 − 2z3
=

(1− z)(1 + z)(1 + 2z + 2z2)
1− z2 − 2z3

. (3.1)

Given any other horocycle K of level zero, there is a (unique) element w of K with minimal
geodesic length such that K = w〈b〉. Treat w as a relative origin for K, in the sense that it
has relative distance zero. Then it is true that b(0, i) also counts the number of elements g
of K satisfying |g| − |w|= i. A straightforward induction argument shows that the growth
coefficients for any such level zero coset K are the same as those of the horocyclic subgroup
except for a shift of the indices by |w| (the details can be found in [15]).

A relation between spherical counts on horocycles is b(−n, i) = b(−n+ 1, i) + 2b(−n+ 1,
i− 1), where the arguments −n and −n+ 1 refer to level and the other argument refers to the
difference of distances as explained in the previous paragraph. (Again, the reader may derive
this as an exercise or see [15, Section 1].) This recursion is valid for all n, i> 1. Again, multiply
each side by zi, sum over all i> 1, and use the initial condition b(−n, 0) = 1 to derive

B−n(z) = (1 + 2z)B−n+1(z).

This equation is valid for all n> 1 and immediately implies

B−n(z) = (1 + 2z)nB0(z) =
(1− z)(1 + z)(1 + 2z + 2z2)(1 + 2z)n

1− z2 − 2z3
, (3.2)

which is valid for all n> 0.
Now define χ(−n, r) as the number of cosets at level −n whose closest point projection to

the identity element is r. In other words, χ(−n, r) counts all of the cosets w〈b〉 with |w|= r.
A glance at Figure 3.2 will confirm that χ(0, 0) = 1, χ(0, 1) = 1, χ(0, 2) = 3 and, more generally,
χ(−n, r) = 0 for all 0 6 r < n and χ(−n, n) = 1, χ(−n, n+ 1) = 0 = χ(−n, n+ 2), χ(−n,
n+ 3) = 2. Furthermore, Figure 3.2 illustrates the branching recursion

χ(−n, r) = χ(−n+ 1, r − 1) for all n > 1 and r > n+ 3. (3.3)

Define the coset generating functions X−n(z) =
∑∞

r=0 χ(−n, r)zr. Multiply each side of the
recursion by zr, for all r > n+ 3, and use the initial conditions to derive

X−n(z) = zX−n+1(z) = zn−1X−1(z) valid for all n> 1. (3.4)

In order to determine X−1(z), Figure 3.2 again shows how horocycles propagate from a
horocycle directly underneath:

χ(−n, r) = χ(−n− 1, r − 1) + 2χ(−n− 1, r − 2) for all n > 0 and r > n+ 3. (3.5)

Put n= 1 and use relation (3.3) to obtain

χ(−1, r) = χ(−1, r − 2) + 2χ(−1, r − 3) for all r > 4, (3.6)

which is the same recursion as that of the horocyclic subgroup, albeit with different initial
conditions. The (by now) familiar method yields the generating function

X−1(z) =
z(1− z)(1 + z)

1− z2 − 2z3
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Figure 3.2. Branching for BS(1, 3) illustrating absolute distances and levels.

and hence

X−n(z) =
zn(1− z)(1 + z)

1− z2 − 2z3
for all n > 0. (3.7)

In order to find X0(z), we examine how new level-zero horocycles arise from already counted
horocycles of level zero and from level minus one. In fact,

χ(0, r) = χ(0, r − 1) + 2χ(0, r − 2) + χ(−1, r − 1) + 2χ(−1, r − 2) for all r > 3.

Substitute the branching recursion χ(−1, r − 1) + 2χ(−1, r − 2) = χ(−1, r + 1) stated earlier
and solve for

X0(z) =
1

z(1 + z)(1− 2z)
X−1(z) =

1− z
(1− 2z)(1− z2 − 2z3)

. (3.8)

Define σ(−n, r) as the number of vertices in the Cayley graph at level −n whose radius from
the identity is r. For fixed n> 0, we count σ(−n, r) via the convolution

σ(−n, r) =
r∑

i=0

χ(−n, i)b(−n, r − i).

This is easily visualized: if g is an element at level −n and has geodesic length r, then g lies
on some horocycle w〈b〉, where w is a geodesic stem of length i. There is always a geodesic
path for g having prefix w. The number b(−n, r − i) counts the number of elements on the
horocycle w〈b〉 at distance r − i from w. There are exactly χ(−n, i) such cosets.

Let S−n(z) denote the generating function for this sequence. Combining (3.1) and (3.8), we
see

S0(z) =X0(z)B0(z) =
(1− z)2(1 + z)(1 + 2z + 2z2)

(1− 2z)(1− z2 − 2z3)2

and, for n > 0, combining (3.2) with (3.7) yields

S−n(z) =X−n(z)B−n(z) =
(1− z)2(1 + z)2(1 + 2z + 2z2)zn(1 + 2z)n

(1− z2 − 2z3)2
.
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The entire spherical count for the group is σr =
∑r

n=0 σ(−n, r), which implies that the overall
generating function is

S(z) =
∞∑

n=0

S−n(z) = S0(z) +
∞∑

n=1

S−n(z)

= S0(z) +
(1− z)2(1 + z)2(1 + 2z + 2z2)

(1− z2 − 2z3)2

∞∑
n=1

zn(1 + 2z)n

= S0(z) +
(1− z)2(1 + z)2(1 + 2z + 2z2)

(1− z2 − 2z3)2

(
1

1− z(1 + 2z)
− 1
)

=
(1− z)2(1 + z)(1 + z + 2z2)(1 + 2z + 2z2)

(1− 2z)(1− z2 − 2z3)2
.

This is in agreement with [6]. Note that the exponent of growth is 2, coming from the (1− 2z)
factor in the denominator. This factor arises from the branching process of horocycles at level
zero. We see that the exponent of growth depends only on the branching of the coset tree.
Our method extends with only minor modification to BS(1, q), for any odd q. For even q, the
branching of cosets is somewhat more involved, but this geometric/convolution method is still
far simpler than the traditional means used in [6]. Another benefit of the geometric method
is that the exponent of growth can be explicitly computed even when the horocyclic subgroup
growth function cannot be explicitly computed. In fact, for BS(1, q) it is not difficult to show
that ω→ 1 +

√
2 as q→∞ because the branching of the coset tree obeys a linear recursion.

Finally, our method was successfully employed in [15] to compute a non-rational growth series.

4. The horocyclic subgroup: common aspects

As remarked above, the growth series for the horocyclic subgroup in either the solvable or
automatic cases is rational and known. The remaining groups can be partitioned into two cases
depending on whether p divides q or not. Before examining these cases, we discuss an algorithm
written by Alisha McCann and revised by Jennifer Schofield that can (in principle) find the
geodesic length of any word bk in any Baumslag–Solitar group. The original McCann reduction
algorithm written in Perl accepts an input string of the form bk ∈ BS(2, 3) and outputs a
corresponding geodesic representative string. In principle, this algorithm constructs a geodesic
combing for the horocyclic subgroup which we denote as the language of McCann geodesicsM.
The numeric generalization of the algorithm accepts as input p, q and the exponent k and
returns the numeric geodesic length for bk ∈ BS(p, q). We give a pseudo-code description of
this idea in Figure 4.1. (The author Schofield has radically improved the execution of the
algorithm at the expense of a more complicated description; the reader is invited to download
this code at [18].)

The validity of the McCann algorithm is based on geometric ideas and is proved by induction.
As basis step, b1 through bp are already geodesic words. Now we make two observations: first,
assuming that w is a geodesic representation for bdp, then twT is a geodesic representation for
bdq = tbdpT (and, conversely, if twT is geodesic for some bk, then k has factorization dp and w
is geodesic for bdp). Second, any (sufficiently large) power of b has a geodesic representative
lying on the main upper half-sheet with the form of a ‘mesa’ described below. With these ideas
at hand, suppose that the geodesic length of each bk ∈ BS(p, q), 1 6 k < L, has been computed.

Let us examine bL. If L is congruent to zero modulo q, then bL can be written as the conjugate
tbpL/qT . The geodesic length of bpL/q is already known by hypothesis and thus |bL| measures
two units more. On the other hand, if L is not congruent to zero mod q, we do two computations
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Figure 4.1. The McCann reduction algorithm.

and choose the smaller length: concatenate (delete, respectively) occurrences of b, in order to
produce bmq (respectively b(m−1)q), where mq is the nearest multiple of q that is larger than L.
As noted earlier, we can rewrite bmq as tbmpT , and the geodesic length of bmp is known by the
induction hypothesis. We add two units to this length to account for the conjugation and then
add mq − L more units. Now perform the analogous length computation on tb(m−1)pT and
add L− (m− 1)q units and compare with the sum of the previous sentence. The numerical
McCann algorithm picks the smaller of these alternatives as the geodesic length for bL. If both
alternatives yield the same length, a choice is made (choose the first option, for example). If we
restrict ourselves solely to the main upper half-sheet, the McCann algorithm produces shortest
paths.

Perhaps there are even shorter paths when we relax the restriction about staying in the
main upper half-sheet? First recall that the basic relation tbp = bqT, 1< p < q implies that no
geodesic for bk (large k) will go down, across, and back up around a horobrick. Furthermore,
every geodesic for bk lies in some upper half-sheet (as per the definition of sheets in Section 2).

Let L > 0 be the smallest integer for which bL has a representative word w that does not
lie on the main upper half-sheet and such that w is strictly shorter than the McCann word
γ representing bL. Note that L is at least as large as the maximal cap length for the given
BS(p, q). Since w leaves the main sheet, it has the form w = butWTbv, where u is the initial
offset, v is the terminal offset, and W is a geodesic for the second stratum s of w (see Figure 4.2)
immediately above bL in the new sheet. By the minimality hypothesis on L, we may assume
that W is in fact a McCann geodesic for s.

The supposed geodesic w has an initial horizontal offset of |u|> 0 units and a terminal
horizontal offset of |v|> 0. Consider the conjugate b−uwbu, which can be freely reduced to the
word tWTbvbu which has the same word length as w. This word still represents bL but now
resides completely in the main upper half-sheet, and even has the appearance of a McCann
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2nd stratum

cap (highest stratum)

55
b    represents the lowest stratum

Origin

Figure 4.2. A Schofield geodesic in BS(2, 7) and its strata.

path. However, the actual McCann path γ for bL has minimal length (on the main upper
half-sheet), as shown earlier. We obtain the inequalities

|γ|6 |tWTbvbu|6 |tWTbv|+ |u|= |w|< |γ|,

which comprise a contradiction. We conclude that no such w is possible and we have proved
the following proposition.

Proposition 4.1. The McCann algorithm calculates geodesic lengths for each bk, k > 0.

We note that the algorithm taking input k creates an array of radii with k indices in order
to compute the geodesic length of bk. It appears at first glance that the overall space usage
is of linear magnitude. However, the input is not in unary and requires on the order of log k
bits, while the array storage is on the order of k log k bits. Still, with several GB of RAM,
Schofield’s optimized version of the code runs very quickly [18].

As remarked earlier, the original McCann word reduction algorithm for BS(2, 3) goes through
the same sequence of steps but stores the actual string of generator letters in order to output a
geodesic word representing bL. We call the output word the McCann geodesic for bL. The proof
that the original McCann word reduction algorithm outputs geodesics is entirely analogous to
the argument given above and is left to the interested reader.

The set of all McCann geodesicsM have the following common aspects. Each member has a
vertical prefix t∗ followed by a horizontal cap bn, where n depends on the values of p and q; for
example, we can take n= 4 in the case of BS(2, 3) and n ∈ {2, 4} for BS(2, 7). The suffix of any
geodesic in M is a word in the letters b, B, T . Each step of the McCann reduction algorithm
takes place in the main upper half-sheet; thus, every γ ∈M sits inside the main upper half-
sheet and has the visual appearance of going straight up, across the cap, and then going down
interspersed with horizontal shifts. (Benson Farb coined the term mesa for such a path, as it is
the profile of a typical Utah redrock landform.) It is clear that any horizontal shifts in the suffix
of γ must occur as (multiples of) b±p in order to avoid branching off the main sheet. Also, when
p|q, a partial suffix for γ can continue to go straight down without horizontal shifts and be
guaranteed to stay on the main sheet (necessary and sufficient criteria for the suffix of γ when
p - q will be discussed in Section 6). Although it is not true that every possible geodesic for bk

belongs to the setM, it is true that for k sufficiently large, every geodesic representing bk must
belong to an upper half-sheet and travel up with limited horizontal shifts, have a horizontal
cap, and then go down with limited horizontal shifts. In the upper half-sheet housing such a
geodesic we define a stratum as the maximal (non-empty) segment of a horocycle in this sheet
bounded by vertices of the geodesic. In particular, the cap of a geodesic is its highest stratum
(see Figure 4.2) and in general every stratum is a path labeled bl for some l > 0. In fact, all
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strata associated to a geodesic representing bk (except possibly the lowest stratum) must be
paths labeled by a word of the form bpl.

Using the McCann algorithm, one can tally the number of geodesics of fixed length r = |bk|
as k is varied. In this way, the growth series for the horocyclic subgroup of BS(p, q) can be
partially constructed. The time complexity to compute |bk| is polynomial in k; however, the
exponential growth of elements in the subgroup with respect to geodesic radius makes the tally
of geodesics an unfeasible computation. Furthermore, when p does not divide q we have been
unable to find a useful upper bound on the size of those exponents k in terms of the given
geodesic length r = |bk|. Thus, to compute the first 100 terms (say) of the growth series for 〈b〉
via the McCann algorithm, one runs the program several times with various large exponent
upper bounds and hopes that the 100th term stabilizes on the correct value. This unsatisfactory
situation is ameliorated in Section 6 below.

It is visually obvious that the mesa shape of any γ ∈M representing bk ∈ 〈b〉, k > 0 can be
horizontally reversed. Indeed, the word γ−1 is such a reversal and represents b−k. Tracing the
path labeled by γ−1 from left to right represents a mirror image γ of the original mesa γ, yet
is still a geodesic path for bk. Equivalently, as a word γ is γ−1 except that the letters b, B are
interchanged throughout the word. In this way, we obtain a second geodesic combing M for
the horocyclic subgroup. The prefix of γ ∈M is a geodesic stem for the horocycle containing
the cap of γ. A major difference between M and M is that geodesics from the latter set do
not generally lie in the main upper half-sheet, but respectively reside in various different upper
half-sheets. Observe that the combingM satisfies a fellow-traveller property, the reason being
that the main upper half-sheet is quasi-isometric to a half-space in the hyperbolic plane. On
the other hand, geodesics from the combing M with close end points can lie in distinct sheets
and radically diverge before getting close again.

The most basic method found for building sheets and computing distances in sheets has
been termed the ‘brick-laying’ algorithm by Elder, who uses it to create upper half-sheets [10]
(although we used the method as early as 2003, sans the very apt name coined by Elder).
The idea is related to the McCann algorithm. The latter starts with a base stratum of bL and
fills in horobricks to create ascending strata, whereas brick laying starts with a base of several
horobricks, places copies of these horobricks above the originals, and fills in the gaps underneath
the upper horobricks. We use brick laying in Lemmas 5.2 and 5.3 and more extensively in the
following [14].

5. The horocyclic subgroup: p= 2, q = 4

For the balance of this section, we assume that p > 1 and p|q. In Section 9 below, we show
that the horocyclic subgroup has an unambiguous context-free geodesic combing, and in fact
rational growth series. A more direct method is possible to create context-free grammars to
generate the geodesics of the horocyclic subgroup. There are several distinct cases depending on
the form of the quotient q

p . We illustrate some specifics in the case p= 2, q = 4 and summarize
the results of the other cases in the appendix. (The derivations there were obtained using the
much less transparent methods of Section 6 below.) Consider the combing M by McCann
geodesics. Observe that all these geodesics can move sideways only by paths b2 or B2. As a
consequence, any McCann geodesic that ends with T will have even length. An even-length
geodesic will always represent some b2r, while on the other hand if b2r is represented by γ ∈M
then γ has even length and ends in T, b2 or B2. The start of each suffix (the subword after the
cap) for any length γ ∈M is necessarily T . According to Figure 4.1, the maximum cap length
for BS(2, 4) ought to be four. However the conjugate tb2T is equivalent to b4 and both have
the same length, so we use b2 as the sole geodesic cap for the case p= 2, q = 4.

Definition 5.1. Let s be a suffix of a McCann geodesic γ = tncs having even length of
eight or more (where c represents the cap). The (McCann) cone having stem at γ is the set of all
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Figure 5.1. The two McCann cone types for BS(2, 4), colored cyan and brown.

geodesic strings u such that tjγu= tj+ncsu is a valid McCann geodesic, where j is necessarily
the number of occurrences of T in the word u. Two cones C, C ′ with respective stems γ, γ′ are
defined to have the same cone type if C = C ′ as sets.

Examination of ‘Quadrant I’ of the main half-sheet for BS(2, 4) reveals two McCann cone
types (refer to Figure 5.1), which we designate q0 and q1. Type q1 starts with two downward
edges and then splits into three branches via a simple recursive pattern. The left-hand branch
moves two edges left and then initiates a new q1 cone. The center branch goes down one edge
and spawns left and right paths that move sideways two edges and spawn new q1 cones. The
right-hand branch is a mirror image of the left-hand branch. The cone type q0 looks just like
type q1 except for the addition of another q1 type subcone after the edge path Tbb. For technical
reasons, we use a slightly more complicated decomposition. Type q0 can be assembled from
two subcones of type q1 after edge paths of Tbb and TTBB, plus another type q0 after edge
path T . Type q1 is built from a single q0 after edge path T, plus a q1 after edge path TTBB.

We develop a deterministic finite automaton (DFA) that accepts geodesic paths based on
the above recursions. The start state implicitly represents a prefix of the form tnbb, where
n > 0. The cone types q0 and q1 become accept states. From the start state, we can reach q0
on letter T , and q1 on word Tbb. The recursion construction from the previous paragraph is
incorporated to define transitions between q0 and q1. The next lemma shows that with just
these three states the DFA accepts the suffixes s for all McCann geodesics of the form tnb2s
(n > 1) having even lengths. As we remarked above, such geodesics will represent the even
powers of b from four on.

Lemma 5.2. Each vertex b4r (respectively b4r+2) corresponds to the start of a McCann
cone having type q0 (respectively q1) for all r > 1.

Proof. We use induction on r. When r = 1, the vertices b4, b6 are the start points of
cones with types q0, q1 respectively by fiat. Assume that the finite sequence of vertices
b4, b6, b8, . . . , b4(k−1), b4k−2 are the start points of the corresponding alternating cone type
sequence q0, q1, q0, . . . , q0, q1 for some k > 2. Here the brick-laying idea outlined in [10] comes
into play: the cosets tn〈b〉, n > 0, are isometric copies of 〈b〉 and, in particular, the vertex
tb2k copies b2k and is therefore the start of a McCann cone of either type q0 or q1 from our
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Figure 5.2. DFA based on cone types (left) and its reversal (right).

induction hypothesis (refer to Figure 5.1 throughout). Observe that tb2k lies directly above b4k.
The previously defined transitions q0, q1

T−−→ q0 show that b4k corresponds to cone type q0. If
tb2k has cone type q0, then the existing transition q0

Tbb−−−→ q1 shows that b4k+2 corresponds
to cone type q1. Lastly, if tb2k has cone type q1, we observe that k is an odd integer by the
induction hypothesis. Therefore, 2k + 2 can be written as 4j for some j > 2 and the vertex
t2b2j has type q0 or q1 by the induction hypothesis. The existing transitions q0, q1

TTbb−−−−→ q1
show that b4k+2 corresponds to cone type q1.

To accept suffixes for McCann geodesics with odd lengths (or, equivalently, geodesics which
represent odd, positive powers of b), we add a new accept state qodd with transitions as shown
in Figure 5.2 (left).

Lemma 5.3. The DFA of Figure 5.2 (left) accepts/produces suffixes s such that the family
{tnb2s} (where n is the number of T ’s in s) represents each bk, k > 4.

Proof. Our previous argument shows that such suffixes are accepted when tnb2s represents
bk for any even integer k > 4. Let us consider the remaining cases when k > 4 is odd.

When k ≡ 1 (mod 8) or k ≡ 5 (mod 8), bk is then one unit right of the start of a type
q0 McCann cone corresponding to suffix s′ that is accepted by the DFA. Observe that the
existing transition q0

b−−→ qodd shows that s= s′b produces the desired suffix for tnb2s which
represents bk.

When k ≡ 3 (mod 8), bk then lies one unit left of the vertex b2i, where 2i≡ 4 (mod 8) and
b2i is the start of a type q0 McCann cone. Immediately above lies tbi, where i≡ 2 (mod 4);
hence, tbi is the start of a q1 type cone according to Lemma 5.2. Observe that the existing
transition q1

TB−−−→ qodd will produce the desired suffix for tnb2s which represents bk.
When k ≡ 7 (mod 8), the argument of the previous paragraph shows that bk lies one unit

below and one unit left of a type q0 vertex and the existing transition q0
TB−−−→ qodd will produce

the desired suffix for tnb2s which represents bk.

It is a tedious but elementary exercise that no two elements of the geodesic family {tnb2s} are
equivalent in BS(2, 4). We leave this exercise to the reader. Our goal is to generate a grammar
for the McCann geodesics, but directly using the machine of Figure 5.2 (left) will not work
for this. The idea is to assign a prefix tnbb to the start state (with n> 1 to be determined
later) and use the states as non-terminal symbols and the transitions as terminal symbols.
The problem is that a grammar like this parses a word by simultaneously adding symbols to
both ends. We want a grammar in which each parse step adds a contiguous block of symbols
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Figure 5.3. The minimal reversed DFA.

Figure 5.4. The resulting grammar.

in the middle of the word that is being built. To remedy this situation, we reverse the DFA
of Figure 5.2 (left). In essence, this constructs the geodesic suffix by tracing backwards in the
main half-sheet.

The standard recipe for obtaining the reversal of a DFA (see [17]) keeps the same states
but reverses the transition arrows and words (and we will replace each T with t). There is
only one accept state, namely, the original start state. A new start state is created with new ε-
transitions pointing to the original accept states. The machine is necessarily non-deterministic
and is illustrated in Figure 5.2 (right).

It is evident that state qodd can be eliminated from the reversed DFA. In fact, we can reduce
to the essentially unique minimal DFA that accepts the same reversal language [17]. The details
are tedious and we employed the JFLAP software package (www.jflap.org) to help automate
the process. The minimal DFA consists of four states, which we have named R0, R1, R2, and
(a new) Start. State R0 is really the old cone type q0. States R1 and R2 form a splitting of
the old cone type q1. The machine is shown in Figure 5.3 and can produce a grammar for a
reverse geodesic combing, at least for the words br, r > 4. The transitions from the Start state
represent a geodesic path starting at some br (there are some initial exceptions for r ∈ {1, 2, 3})
that travels up through various cones until the transitions end in an accept state. The latter
represents the cap bb followed by a strictly vertical path back to the origin. Now it becomes clear
why we need a new non-accept state R2 that is a copy of R1: we cannot accept the non-geodesic
B2t2b2T 2 when we already have the equivalent b2tb2T . The grammar is displayed in Figure 5.4.

It should be evident that this grammar is unambiguous, since the underlying DFA is
unambiguous. A theorem of Chomsky–Schützenberger (see [13] for example) implies that the
growth series for this language is algebraic, and provides a method to explicitly compute the
growth. We replace each production arrow with equality, all terminals become the variable z, ‘|’
becomes ‘+’, and juxtaposition becomes (commutative) multiplication. This yields a system of
equations where the non-terminal symbols are variables as in Figure 5.5. The system is solved
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Figure 5.5. Chomsky–Schützenberger grammar equations.

Figure 6.1. Branching of upward horocycle types; 6.1(a) (left) and 6.1(b) (right). Distances are
relative to the lowest horocycle of each sketch.

for Start, which equals a closed form for the growth series as a function of z. We obtain

Start(z) =
z(1 + z + z5 − z6 − z7)

1− z2 − 2z6

as the growth function for {br : r > 1}. The growth for the entire horocyclic subgroup is
B(z) = 1 + 2 Start(z).

6. The horocyclic subgroup: p= 2, q = 3

We first focus on the simplest concrete example where p - q, namely BS(2, 3). To construct
a geodesic combing of the horocyclic subgroup, we start with a finite-state automaton for
building geodesic stems for upper horocycles.

An up-point u is a group element represented by a geodesic word in the generators b, B, t
and ending in t such that no other geodesic that ends in T, b, or B can represent u. Define a
horocycle K to be upper if some geodesic stem for K contains no instances of the letter T .
A closest point projection or relative origin (cf. Section 3 above) for K is a vertex v such that
the metric distance between the origin and K is realized by |v|.

Every relative origin of an upper horocycle is an up-point, but not conversely. Both Bt and
bbt are up-points for the coset t〈b〉, but only the former is a relative origin. There are five
equivalence classes (see Section 8 for a formal definition) of upper horocycles, counting left–
right mirror images as distinct classes in BS(2, 3). These classes and their upward transitions
are derived in Figures 6.1(a) through 6.2(b). Observe that every relative origin for an upper
horocycle K has a geodesic stem that passes through an up-point of the nearest upper horocycle
beneath K. In fact, the up-points can be classified into exactly eight distinct types (these are
in fact upward cone types as per Corollary 8.3) depending upon what upper horocycles lie
above them. We use the eight types and the transition edges connecting them to construct
an eight-state automaton that accepts various paths. We will then eliminate several possible
transitions (for example, we omit the transition bt from q4 to q3) so as to produce unique paths.

Proposition 6.1. The finite-state automaton of Figure 6.3 constructs geodesic paths only,
and every possible up-point is the terminus of some accepted path.
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Figure 6.2. The remaining upward horocycle types; 6.2(a) (left) and 6.2(b) (right).
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Figure 6.3. The initial DFA based on up-points.

Proof. We do an induction on the number of transitions in the machine (equivalently, on
the t exponent sum of the output word). The paths t, bt, Bt, bbt, BBt are all geodesics and
end in all the possible up-points immediately above the horocyclic subgroup. Assume, for
some k > 2, that every accepted word produced by k − 1 transitions is geodesic and all up-
points at this t level are end points of this set of paths. Let w be accepted after exactly k
transitions. By construction, w will have the form w = us, where s ∈ {t, bt, Bt, bbt, BBt} and
u is a geodesic terminating in some up-point. If w is not geodesic, then there is a shorter word
from the origin with the same terminus as w. Both these paths project to the same arc in
the Bass–Serre tree (side view) of BS(2, 3), which means that both paths go through the same
penultimate horocycle beneath w〈b〉. The supposed shorter word must have the form u′s′, where
s′ ∈ {t, bt, Bt, bbt, BBt} and u′ necessarily ends in an up-point with t exponent sum of k − 1.
By the induction hypothesis, u′ has been constructed by our machine after k − 1 transitions.
This implies that the end points of (u, u′) coincide with the state pairs (q4, q1) or (q2, q3) or a
pair from {q2, q4, q7}. Examination of Figures 6.1(a) through 6.2(b) shows that the length of
u′ is at most one edge less than the length of u and that there is no combination of suffixes
s, s′ that enables both us and u′s′ to end at the same up-point with u′s′ shorter than us.

We will only be concerned with geodesic paths for br, r > 0, as horizontal symmetry will
reproduce the others. Observe in Figures 6.1(a) through 6.2(b) that the up-points q3, q4,q5, q7
are always to the left of one of q1, q2,q6 on any given upper horocycle. Adjoining a rightward
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Figure 6.4. Adding caps creates complications: the red path should be rejected in favor of the green
path.

cap of b4 to any up-point in the former group will always produce a longer path than adjoining
the same cap to one of the latter up-points. Thus, we change q3, q4,q5, q7 into non-accept states;
the machine still outputs geodesics. To each geodesic produced by the (modified) finite-state
automaton we add a cap of b4 and suffixes of the form T ∗. The actual number of T ’s will
balance the number of t’s in the stem. There are a couple of alterations needed to the finite-
state machine once we consider adding the cap b4 after reaching an accept state. For instance,
in testing the string BttbbbbTT that represents b8, the machine starts in state q0 and transitions
to state q3 and back to q0. The latter is ostensibly an accept state so the cap is added; however,
b8 is also represented by the accepted shorter path b2tb4t (see Figure 6.4).

Similarly, b20 is represented by two words bbttbbtbbbbTTT and bbttBttbbbbTTTT with
accepted up-point prefixes but only the former is geodesic. The latter has the following
transition sequence: q0→ q2→ q6→ q7→ q0 then b4 cap.

We observe in general that the addition of the cap can yield non-geodesic or duplicate
geodesic paths that will be ostensibly accepted, but only according to a certain pattern: consider
a pair of geodesics γ1, γ2 from the origin to br, r > 6, that might be constructed from our DFA
(see Figure 8.2 for a schematic of this scenario). Without loss of generality, we may assume that
γ1 is generally to the left and/or above γ2 and both lie in a common upper half-sheet. Each
of these geodesics will start as a concatenation of up-point paths as illustrated in Figures 6.1
and 6.2. Note that such up-point paths can take opposite sides of at most one horobrick at each
t-level (this also verifies that γ1 and γ2 reside in a common upper half-sheet). The elimination
of duplicate paths prior to Proposition 6.1 above shows that our DFA prevents γ1, γ2 from
reconnecting during the up-point/prefix phase of construction. Thus, Figure 8.1 is true in the
sense that the cap for γ1 must be at a higher level than the cap for γ2, in fact exactly one level
higher in the current situation.

We see that the highest up-point on γ2 and the next-to-highest up-point for γ1 sit on the same
horocycle and must, by Figures 6.1 and 6.2, comprise one of the pairs (q3, q2), (q4, q1), (q5, q6),
or a pair from {q4, q7, q2}. We begin with any pair where q4 comprises the leftmost up-point.
There are no up-point continuations from q4 to any other accept state (see Figures 6.1(b) and
6.2(b)); such a pair presents no problems. By the same reasoning, no pair having q5 as leftmost
up-point poses a problem (Figure 6.2(a)). The pairs (q3, q2) and (q7, q2) can and do present
unresolved problems as shown above with the concrete examples concerning b8 and b20.

The fix to the DFA is now described. Create a new state q8 that is a copy of q0 and replace
the t labeled transitions q3→ q0 and q7→ q0 with t transitions q3→ q8 and q7→ q8. Do not
copy to q8 the t loop q0→ q0 and, finally, change q8 to fail status. The modified machine is
illustrated in Figure 6.5.

We now have a formula to generate geodesics for elements of the horocyclic subgroup in
BS(2, 3): use the DFA of Figure 6.5 to generate an accepted prefix v of up-point paths and add
a cap b4 and a suffix T k, where k is the number of t’s in the prefix v. Most of the paths created
in this construction do not represent words of the form br. Geometrically (in the Bass–Serre
tree side view of the Cayley graph), the suffix T k diagonals away from the horocyclic subgroup.
A necessary criterion for a path of the indicated form to end on the horocyclic subgroup is
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Figure 6.5. The modified DFA.

that each stratum (except possibly the lowest) associated to the path has the form bl with l
an even integer. We test the parity of each strata length (except the lowest stratum) for each
of the constructed vb4T k and keep only those with even length.

We denote the paths generated by this procedure as the set S of Schofield geodesics. There
are similarities between the Schofield combing S and the reverse McCann combing M, but
in general they are not the same set of paths. For a given r > 6, both the Schofield and the
reverse McCann geodesics representing br trace a ‘backwards’ path and lie in a common upper
half-sheet H. However, their distinct methods of construction allow the respective paths to
take different routes around relators in H. The so-called Schofield algorithm automates the
construction and testing of the geodesics in S, numerically keeping track of path lengths. This
is a more satisfactory method to compute growth coefficients than the McCann algorithm
because the process loops over geodesic radii. (Serial and parallel versions of the Schofield
algorithm are available for download at [18].)

Proposition 6.2. There is a unique Schofield geodesic representing br ∈ BS(2, 3) for each
r > 6.

Proof. Uniqueness follows from the unique prefixes generated by the finite-state machine,
and the fact that the cap assignments were modified to eliminate duplication. Recall that the
set M of mirrored McCann geodesics forms a combing for 〈b〉, so that there is some w ∈M
that represents br, where w = vb4T k has v as an upward geodesic stem for the coset v〈b〉. The
prefix v must obviously terminate in an up-point. Proposition 6.1 shows that this up-point
is also the end point of a geodesic u accepted by the finite-state machine of Figure 6.5. This
up-point cannot correspond to any of the states q3, q4,q5, q7 since v could then be replaced
by an up-point to the right, which would shorten w. We conclude that the up-point is of type
q0, q1, q2, or q6, whence u is produced by the modified automaton of Figure 6.5. We deduce that
v and u represent the same group element, have the same length, and therefore ubnT k ∈ S is a
geodesic representative for br (in fact, v and u can be, but are not generally, the same word).

We describe a deterministic single-tape Turing machine that accepts the Schofield language
for BS(2, 3). A realization of this machine, written by Jared Adams and Chris McGahan
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using JFLAP, is available for download at [18]. The tape alphabet consists of the symbols
b, B, t, T, 0, 1 along with begin-word, end-word, and padding symbols ˆ, $, and | respectively.
We incorporate the finitely many states needed to check that a given word belongs to the
Schofield family of geodesic stems. (This is done by rewriting the DFA of Figure 6.5 so
that transitions are restricted to the reading of single symbols instead of the words shown in
Figure 6.5.) An input word is read where it is verified (if any verification step fails, the machine
fails to accept) that the word comes from {̂b, B, t, T}∗$, and has the form stem–cap–suffix,
where the stem comes from the DFA of Figure 6.5 and cap + suffix has the form bbbbT ∗$.

Upon reading the end-tape symbol $ the tape is read backwards until the cap bbbb is reached.
All steps to this point are accomplished via finitely many control states and no writing to the
tape. Starting from the right of this cap, the first symbol T is over-written by |. The tape is
read right until $ is encountered and replaced with T and $ written to its right. The machine
reads left and replaces the cap bbbb with |100 (this is the binary version of ‘four’ with a leading
padding symbol). It checks left to ensure that there is a t and goes back right and erases the
rightmost T and moves $ one cell left. The binary block is multiplied by 1.1 (this is the binary
version of 3

2 ) and the rightmost t becomes |. The machine proceeds to alternately keep track
of tT pairs and replacing these letters with padding symbols, and do arithmetic to the binary
block based on the letters of the geodesic stem. If the symbol is b (respectively B), then replace
with | and add 1 to (respectively subtract 1 from) the binary block. When the stem symbol
read is t, multiply the binary block by 1.1. As necessary, the padding symbols can be replaced
with additional binary placeholders (observe that at most one new placeholder is needed for
each letter read). Repeat reading symbols to the left of the binary block and doing binary
arithmetic as per the conditions above until multiplication by 1.1 fails to produce an integer
(reject) or $ is read (accept). Observe that the binary mathematics computes successive strata
lengths and the final number r displayed for an accepted string w is the exponent (lowest
stratum) for which w is equivalent to br.

Corollary 6.3. The Schofield language of geodesics is context sensitive and is accepted
with quadratic time complexity.

Proof. The Turing machine described above (and implemented at [18]) needs only n+ 3
tape cells (this includes the special symbols ,̂ $, |) on an input string of length n in order to
accept/reject. By [17], this language is context sensitive. The number of tape-head moves can
also be estimated. There is an initial forward read, then backwards to the cap which uses less
than 2(n+ 3) moves. The binary arithmetic uses left and right passes, each of which needs less
than n+ 3 moves. The number of these passes is bounded by the length of the input string, so
in the worst-case scenario the total number of head moves is less than 2(n+ 3) + n(n+ 3).

7. When p does not divide q: generalizations

We begin with the following number theoretic result due to Andreas Weingartner. Let
α(x) = q

px, where p and q are relatively prime integers and q > 2. Define β+(x) = x+ 1 and
β−(x) = x− 1. Let ϕ(x) be any finite composition of the three functions α, β+, and β− that
includes at least one instance of α. We write ϕn to mean the n-fold iteration of the function ϕ.

Lemma 7.1 (Weingartner). Suppose that x0 is any positive integer. The sequence xn =
ϕn(x0) is either constant or it will contain non-integer values.

Proof. We may write ϕ as

ϕ(x) =
q

p

(
. . .

(
q

p

(
q

p

(
q

p
(x+ d0) + d1

)
+ d2

)
+ d3

)
. . .

)
+ dk, (7.1)
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where k is the number of occurrences of α in ϕ, and each di is an integer for 0 6 i6 k. We
can write (7.1) more simply as ϕ(x) = ax+ d, where a= (q/p)k and d is some rational number.
Since xn+1 = ϕ(xn) = axn + d, we have

xn+1 − xn = (axn + d)− (axn−1 + d) = a(xn − xn−1). (7.2)

By iterating (7.2), we obtain

xn+1 − xn = an(x1 − x0) =
qnk(x1 − x0)

pnk
. (7.3)

If x1 = x0, then {xn} is a constant sequence. Assume x1 6= x0. If x1 is not an integer, there
is nothing to prove. If x1 is an integer, let pl be the largest power of p that divides xn+1 − xn.
Since p and q are relatively prime, (7.3) shows that xn+1 − xn is not an integer for all n such
that nk > l. For the smallest such n, we conclude that xn+1 cannot be an integer since xn is.

We observe that the hypothesis of p and q being relatively prime can be weakened to p - q,
and the conclusion of Weingartner’s lemma still holds. We think of x0 as the path length along
a cap bx0 on a mesa-type geodesic. The function α applied to x0 measures the path length
of the stratum belonging to tbx0T . The function β+ (respectively β−) corresponds to altering
path-length measurement after attaching a prefix b (respectively B) to a stratum. Recall that
each such stratum (except perhaps the lowest) from a valid mesa-type geodesic must have the
form bpk for some k > 0.

Theorem 7.2. Assume p - q. Any combing of 〈b〉 by geodesics does not comprise a
context-free language.

Proof. We use the pumping lemma for context-free languages [17]. Suppose g1 = vwxyz is
a sufficiently long geodesic word representing br (with r� 0), where v, w, x, y, z are subwords
and not both of w, y can be the empty string. If g1 belonged to a context-free language, then
gn = vwnxynz would belong to the same language for all n> 0. One of the necessary conditions
for gn to be a geodesic representative of a word in 〈b〉 is that gn have a generic mesa shape
with the net exponent sum on the stable letter t being zero. It follows that w ∈ {t, b, B}∗ and
y ∈ {T, b, B}∗ with the number of t’s in w being the same as the number of T ’s in y and this
number is necessarily positive (else wn consists of arbitrarily long strings of b’s or B’s). For
simplicity, we initially assume that x represents a cap of the form bs for some s> 0.

In this case, we can write g1 as a word of the form

v . . . (t(. . . (t(bs)T ) . . .)T ) . . . z,

where the parentheses are nested according to the various strata of g1 and can contain b’s
and/or B’s. Here (bs) represents the cap of g1, while (t(bs)T ) is a representation of a word
in the stratum immediately below the cap, etc. Since g1 is assumed to be a geodesic for br,
each of these strata is a word equivalent to a power of b with exponent divisible by p (with
the possible exception of the lowest stratum br). Consider the growth of the exponent on b as
we descend the sequence of strata, starting with the cap. Each nested pair t(. . .)T acts as the
function α on this exponent, as per Weingartner’s lemma. Occurrences of b (respectively B) act
as β+ (respectively β−). Thus, the subword wxy of g1 acts as the function ϕ on the initial cap
exponent of the mesa. As n increases, this action is identical to that of the n-fold iteration ϕn.
Weingartner’s lemma shows that there will always be some n for which the stratum b-exponent
is not an integer. Prior to this n, there is a stratum whose path length is integral but fails to
be a multiple of p. The geometric interpretation is that some gn branches away (downwards)
from any upper half-sheet containing g1 and cannot represent an element of the horocyclic
subgroup.
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In the general case, it is possible that the middle subword x contains t’s and/or T ’s, with the
exponent sum balanced by other T or t combinations in either or both of v, z. In this event,
the cap of g1 is no longer confined to x, but must include parts of w and/or y. However, the
latter two subwords must still have balanced exponent sum on the stable letter (else gn will
fail to do so for various n). The construction of ϕn and conclusion of the previous paragraph
still obtain after offsetting the cap and strata across wxy.

Note that the previous proof is much stronger than is necessary for the conclusion of
Theorem 7.2. Only a single violation of the pumping lemma is required, whereas we showed
that every sufficiently long geodesic cannot be pumped indefinitely. It is not hard to imagine
that geodesic combings of the horocyclic subgroup are far removed from the class of context-
free languages when p - q. In fact, there are several formal language classes sandwiched between
the context-free family and the context-sensitive family of the Chomsky hierarchy. One such
class are termed the tree-adjoining languages generated by the tree-adjoining grammars
(equivalently, the linearly indexed grammars or the head grammars [20]). Analogous to the
context-free situation, there is a pumping lemma for this class [19].

Lemma. Every sufficiently long word in a tree-adjoining language can be written in the form
xw1v1w2yw3v2w4z with not all w1, w2, w3, w4 being the empty string and xwn

1 v1w
n
2 yw

n
3 v2w

n
4 z

is in the same language for all n > 0.

Corollary 7.3. Assume p - q. Any combing of 〈b〉 by geodesics does not comprise a
tree-adjoining language.

Proof. Let g1 = xw1v1w2yw3v2w4z and gn = xwn
1 v1w

n
2 yw

n
3 v2w

n
4 z for each n> 0. The proof

of Theorem 7.2 implies that for all large enough n > 0 the word segment wn
2 yw

n
3 contains the

geodesic cap of g1 and as a path departs from any half-sheet containing g1. Thus, the suffix
of gn (regardless of the choice of words v2, w4, z) will follow a different downward sheet than
that of its prefix and miss the horocyclic subgroup entirely.

Recall the definition of cones on the main sheet from Section 5. There we showed that the
main upper half-sheet for BS(2, 4) had only two basic (McCann) cone types. This is not true
in general.

Corollary 7.4. Assume p - q. The main half-sheet of BS(p, q) contains infinitely many
McCann cone types.

Proof. Suppose that there are only finitely many such cone types. Then there will be at
least one cone Γ which contains a subcone Γ′ having the same type. More explicitly, there will
be a McCann geodesic word tncs, where c is the cap and s is the suffix that forms the stem
for Γ, and the stem for Γ′ will be a longer McCann geodesic having the form tn+mcsu, where
m is the number of occurrences of T in the word u. But then we can continue to ‘pump’ and
obtain an infinite nesting of cones with valid McCann geodesics tn+micsui, i > 0 as stems for
these cones, which contradicts the proof of Theorem 7.2.

Observe that this proof is also stronger than the conclusion of Corollary 7.4: it shows that
no cone of type C can contain any subcone of the same type C, but can only contain completely
different types as subcones.

8. The horocyclic subgroup for arbitrary p and q

Suppose that g ∈ BS(p, q) is a vertex on some horocycle K = w〈b〉, where w is a geodesic stem.
Recall from Section 6 the definition of up-point (which generalizes for all 1< p < q) and from
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Origin

Figure 8.1. The vertical-tending ray is uniformly quasi-geodesic.

Section 3 that |g| − |w| is the relative radius assigned to g as used in the computation of the
coset growth series for K when the terminal vertex of the stem w is a relative origin for K
(that is, has relative radius zero and coincides with a closest point projection to the origin).
Imagine taking another horocycle K ′ and rigidly superimposing it on K so that a relative
origin for K ′ is glued to a relative origin for K. As per the level idea of Section 3, we define
K and K ′ to be equivalent if there is some such rigid superposition that matches relative radii
for all vertices on the horocycles. This forms an obvious equivalence relation on horocycles,
and equivalent horocycles will have the same relative growth function. As an example, t〈b〉 and
〈b〉 are equivalent, and in fact for each n> 0 the cosets tn〈b〉 are all equivalent. We will show
that for any fixed BS(p, q) there are only finitely many equivalence classes of upper horocycles
(regardless of whether p divides or fails to divide q).

Proposition 8.1. Suppose K = w〈b〉 is an upper horocycle in BS(p, q). Then there is a
constant N > 0 depending only on p and q such that K has at most N up-points.

Proof. Let K be an upper horocycle and u ∈K any up-point. Consider the ray starting at
the origin O, passing through u, and continuing straight up. The ray consists of a geodesic
prefix (that defines u) and a geodesic suffix of the form t∞. Observe that this ray defines a
unique upper half-sheet. It is entirely likely that the ray is in fact geodesic; however, for our
purposes it is sufficient that it be uniformly quasi-geodesic.

To this end, let x, y be any points on the ray. If both x, y lie on the geodesic prefix, or
both lie on the suffix, then xy is geodesic. Thus, we may suppose that x lies in the prefix Ou
and that y = utn for some n > 0 (see Figure 8.1). Let m> 0 denote the number of vertical
edges on the subpath xu, and we have already defined n as the number of vertical edges in
uy. The path xu may have horizontal segments between vertical edges; however, the longest
such segment is less than q units across (otherwise the segment b±qt can be replaced by
the shorter tb±p, respectively). We obtain the length estimate length(xu)< qm and hence
length(xy)< qm+ n < q(m+ n).

On the other hand, the geodesic distance from x to y is at least m+ n, by ignoring any
horizontal edges. Therefore,

length(xy) > dist(x, y) >m+ n=
1
q
· q(m+ n)>

1
q
· length(xy).

Since x, y were arbitrary, this shows that the entire ray is quasi-geodesic (q).
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Now use the standard quasi-isometry to embed the entire upper half-sheet defined by our ray
into the hyperbolic plane (Poincaré upper half space model), so that the origin of the Cayley
graph is pasted to the euclidean coordinates (0, 1). The multiplicative and additive constants of
this quasi-isometry depend only on p and q. The image of our ray is a quasi-geodesic hyperbolic
ray emanating from (0, 1) and tending to the ideal boundary point at upper infinity. The
hyperbolic geodesic ray R= (0, y) : y > 1 shares the same initial point and tends towards the
same ideal point. Standard hyperbolic geometry implies that there is some ε > 0 (depending on
the new quasi-geodesic constant, which in turn depends only on p and q) such that the quasi-
geodesic ray lies within the ε-neighborhood of R. In particular, the embedded image of the
up-point u is in this neighborhood. Observe that the ray R is perpendicular to the embedded
image of horocycle K, and only that segment of the embedded K within ε of R can contain
embedded up-points. In this situation, the hyperbolic arc length of this horocycle segment is
proportional to 2ε (regardless of the height of the embedded K). Applying an inverse to the
quasi-isometry gives a uniformly bounded segment of K that contains all up-points, with the
bound N depending only on p and q.

We remark that for lower horocycles (those with geodesic stem not containing t), the above
argument fails. We observe (and leave to the reader to verify) that for every integer m there is
some lower horocycle with at least m relative origins.

Proposition 8.2. For any fixed 1< p < q, there are only finitely many equivalence classes
of upper horocycles.

Proof. Consider the uniformly bounded zones on upper horocycles established in the
previous proof. Such a zone has only finitely many possible configurations of up-points, and
since relative radii of adjacent vertices can differ by at most one unit, there are only finitely
many relative radii assignments possible for such a zone. Observe that if the upper horocycle
K ′ lies immediately above the horocycle K, then any minimal geodesic stem w′ for K ′ = w′〈b〉
(which by definition necessarily terminates in a relative origin for K ′) has the form w′ = ws,
where w is a minimal (upward) geodesic stem for K = w〈b〉. It follows that if two horocycles
K, K̃ share the same finite configuration type of relative radii over their uniformly bounded
zones, then the collection of horocycles above K will have the same configuration types (when
restricted to their uniformly bounded zones) as the collection of horocycles above K̃.

Let γ = wv be a geodesic path representing the element wbm in K = w〈b〉, where w is a
geodesic stem for K and v is a geodesic path for bm. There is a corresponding path γ̃ = w̃v
that represents w̃bm in K̃ = w̃〈b〉, where the terminus of w̃ is the relative origin on K̃ matching
the terminus of w on K. We are allowed to use v as a suffix for γ̃ for two reasons. First, the
horocycles above K̃ exactly match those above K, at least when restricted to their respective
uniformly bounded zones. Second, the cap of path v will always lie strictly inside the bounded
zone of the highest horocycle v attains. This zone type is the same, whether the horocycle lies
above K or above K̃. Now inductively add the letters of v to each side of the cap of v and in
this way the entire path v is constructed as a geodesic path connecting two vertices on K̃.

We claim that γ̃ is geodesic (certainly, the prefix w̃ is geodesic). If not, a shorter representative
for w̃bm must have the form ŵv̂, where ŵ is a geodesic stem for K̃ and v̂ is a path connecting
two vertices on K̃ that is shorter than v. But in this case we can translate v̂ to an isometric path
connecting a relative origin of K to wbm. The concatenation of v̂ onto a geodesic stem for this
new relative origin yields a path for wbm that is shorter than the original γ, a contradiction.

Corollary 8.3. For any fixed 1< p < q, there is a set of geodesic stems for all upper
horocycles that forms a regular language.
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Proof. Let U be the set of all stems for upper horocycles that represent up-points. The
collection U has an obvious groupoid structure under the operation of concatenation. Recall
the definition of McCann cones from Section 5. Upward cones can be defined similarly. For an
up-point represented by a geodesic stem u, the upward cone based at u is the set of all up-point
stem concatenations u1u2 . . . uk, where uu1u2 . . . uk itself represents an up-point. The proof
of Proposition 8.2 shows that U has only finitely many cone types (see [5, 11]) and is therefore
accepted by a (unique, minimal, deterministic) finite-state automaton.

We now generalize Proposition 6.2 to show that the Schofield geodesics form a combing for br,
r� 0. We will ignore those small values of r for which br is itself geodesic. For fixed 1< p < q,
we assume the existence of finitely many upper horocycle equivalence classes, their up-points,
and a minimal deterministic finite-state automaton that accepts (geodesic strings representing)
all the up-points, as per Corollary 8.3. Adapting the remarks prior to Proposition 6.1, we delete
any transitions that create duplicate paths for up-points. We also change to non-accept any
state that does not correspond to the rightmost up-point on an upper horocycle (see discussion
prior to Proposition 6.2). Now we need to add caps and various modifications to this DFA.
We use caps of length kp up to the maximum cap length shown in the McCann algorithm of
Figure 4.1. It is possible that two distinct geodesic prefixes can represent the same word once
various caps and suffixes are added (see Figure 8.2). This was remedied in the p= 2, q = 3
case (after Proposition 6.1 above) by an apparent ad hoc duplication of DFA states based on
examination of figures. It is not immediately apparent that this can be done in general. Is it
possible that there is an infinite regress of corrections to be made?

Lemma 8.4. Suppose that a DFA exists to accept/generate unique prefixes for a Schofield
combing of {br : r� 0} ⊆ BS(p, q). Then the DFA can be modified so as to accept only
valid prefix + cap combinations by making finitely many state additions/alterations to the
automaton.

Proof. Consider two Schofield-type paths γ1, γ2 from the origin of the Cayley graph to
vertex br as shown in Figure 8.2. Both paths are assumed to have geodesic prefixes generated
by the DFA but distinct caps. (They will share a vertical suffix and meet prior to br; this is
irrelevant to our argument.) Without loss of generality, we may assume that both paths lie in
the same upper half-sheet, which half-sheet is quasi-isometric to the hyperbolic plane. Thus,
γ1, γ2 synchronously fellow travel (cf. [11]) and the relator area between them is uniformly
thin (depending only on p, q and not on γ1 or γ2). Such a relator consists of horobricks glued
together. Since the diameter of the relator bordered by γ1 and γ2 is uniformly bounded and
there are only finitely many possible caps, there is a uniform bound on the number of side-
by-side horobricks glued horizontally. There are only finitely many possible ways to glue these
side-by-side horobrick strips on top of each other, which implies lots of repeated configurations
of these horobrick gluings. Successive up-points for γ1 and γ2 form the sides of these horobrick
gluings and must be repeated when γ1 and γ2 are long. Therefore, we need only double check
states in our automaton for duplicate string + cap combinations up to the bound on this finite
configuration size.

The argument of Proposition 6.2 can be generalized for any fixed 1< p < q. The adjustments
made to our DFA via Lemma 8.4 ensure that geodesic stem + cap combinations are unique.
To show existence, we again start with the combing M of reversed McCann geodesics. For a
given r� 0, there is a unique reversed McCann geodesic w representing br having the form
w = vcT k, where v is (a geodesic stem for) an up-point, c is a cap, and k is the number
of occurrences of t in the string v. The DFA of Corollary 8.3 generates/accepts v. Either we
accepted the prefix + cap combination vc during the checking described in Lemma 8.4 (in which
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Figure 8.2. The paths γ1 and γ2 representing br fellow travel and define a uniformly bounded
relator.

case the argument is finished), or we discarded the combination vc in favor of another
prefix + cap combination v′c′, say. In the latter case, br is represented by the Schofield geodesic
w′ = v′c′T j , where j is the number of occurrences of t in the string v′. We have proved the
following theorem.

Theorem 8.5. For fixed 1< p < q, there is a unique Schofield geodesic representing
br ∈ BS(p, q) for each r� 0.

Theorem 8.6. When p - q, the geodesic combing of the horocyclic subgroup by Schofield
geodesics forms a context-sensitive language. Furthermore, the time complexity of acceptance
is quadratic.

Proof. The Turing machine described for BS(2, 3) can be modified for the general case
p - q. The general-case Turing machine uses several tapes and has several different caps for
Schofield geodesics (we model this machine on the concrete example shown in [1]). We change
the stem recognition states and create several cap states accordingly. The balancing of tT pairs
proceeds as in [1]. The cap is then replaced by a base p number which represents the cap length
and corresponding arithmetic steps are performed in base p depending upon the symbols read.
Although more scratch space for arithmetic operations may be needed on a third tape, the total
number of tape cells necessary is bounded by a linear function of the length of the input word.

We count the number of tape-head moves required for acceptance in a worst-case scenario.
We will use the standard ‘big O’ and ‘big Theta’ terminology. Observe as in [1] that for an input
string of length n� 0 the time taken to reject an invalid word is less than the time taken to
accept a Schofield geodesic word, because the Turing machine must complete the full procedure
in the latter case but not in the former. Assume that w is a Schofield geodesic of length n.
Checking the regular language component of the prefix takes Θ(n) moves on the first tape.
Determining the balance of t, T pairs takes Θ(n2) moves on the first tape, none on the second.
The remaining binary arithmetic steps increment by +1, decrement by −1, or multiply by the
constant q

p . Any one of these three operations can be done usingO(n) tape moves on the second
tape with one move on the first tape. We can also use O(n) moves on a third tape for help with
the arithmetic (keeping track of base p carries, etc). The total number of these individual arith-
metic steps required is less than n; therefore, all the arithmetic can be done withO(n2) moves.

The class of indexed languages are all context-sensitive but properly contain the tree-
adjoining languages. We do not know if the horocyclic subgroup admits an indexed combing
by geodesics when p - q. There is no known pumping lemma for indexed languages. Gilman’s
shrinking lemma [16] gives necessary but insufficient criteria for a language to be indexed. The
geodesic combings we have discussed easily satisfy the shrinking lemma test.
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The growing context-sensitive languages form a proper subclass of the context-sensitive
languages [4]. It is also unknown if the Schofield geodesics form a growing context-sensitive
language when p - q. The observed irregularity of the geodesic cone types suggests that the
growth series for the horocyclic subgroup in these cases is not rational or even p-recursive
(that is, satisfying a linear recurrence with polynomial coefficients; synonyms are holonomic
or d-finite). Numerical experimentation using Maple and Mathematica lends credence to these
hypotheses, although no finite amount of data can disprove them. As of this printing, the
Weingartner lemma and its corollaries are the only source of information we have that can be
applied to more than finitely many terms of the growth series.

Conjecture 8.7. When p - q, the growth series of the horocyclic subgroup is not
p-recursive.

9. Further applications when p divides q

Proposition 9.1. When p|q, the geodesic combing of the horocyclic subgroup by Schofield
geodesics forms a deterministic one-counter, hence deterministic context-free, language.

Proof. Modify the Turing machine described for BS(p, q) as per Theorem 8.6 but, since
p|q, no arithmetic is necessary. The geodesic stem is recognized by finitely many control states,
while the balancing of tT pairs requires a stack with only one alphabet symbol. Observe that the
input word need be read only once from left to right without backtracking; the time complexity
of recognition is linear.

Corollary 9.2. When p|q, the growth series of the horocyclic subgroup comprises a
rational function.

Proof. Let us start with a fixed pair p, q for which there is only a single cap associated
to the Schofield combing of the horocyclic subgroup. Define a monoid homomorphism ϕ :
{b, B, t, T}∗→{b, B, t, T}∗ by mapping t to tT and fixing the other letters. The image under
ϕ of the language of geodesic up-points is still a regular language. Concatenation of each string
in this image with the cap bkp will still yield a regular language, with necessarily rational
growth [11]. There is an obvious length-preserving bijection of the cap-adjoined ϕ-image with
the Schofield geodesic combing (move all instances of T to the end of each string), and the
conclusion follows.

In the general case, there are several different caps bp, b2p, . . . , bkp for a specific Schofield
combing. Consider the one-counter machine outlined in Proposition 9.1. It is built from the
finite-state automaton whose states correspond to horocycle up-points (cf. Corollary 8.3) with
each accept state leading to one or more cap string transitions. Suppose that q is such an
accept state which leads to distinct caps bip, bjp; in other words, there are transitions labeled
by geodesic stems wi, wj which respectively lead into state q in the machine such that wib

ipTn

and wjb
jpTm are accepted geodesics for some n, m. Make a duplicate qi of state q but copy only

the existing transitions into q that can be coupled with the cap bip and allow only bip as the sole
cap transition out of qi (but copy all other non-cap transitions out of qi; cf. the details of [1,
Proposition 3]). Similarly, make a duplicate qj of state q but copy only the existing transitions
into q that can be coupled with the cap bjp and allow only bjp as the sole cap transition out of
qj (but copy all other non-cap transitions out of qj). Now erase the original state q along with
all of its in and out transitions.

The duplication process outlined in the preceding paragraph can be extended to original
accept states with three or more cap assignments. After making all necessary duplications
and erasures, we obtain a diagram with at most one cap assignment per state. Unfortunately,
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there may be multiple start states for this diagram if the original start state had several cap
assignments. For a given cap blp, allow as accept states only those that have a valid blp cap.
Now we have the diagram of a one-counter machine for a Schofield-type language with a unique
start state and a single cap. Its growth is rational by our original argument above. By varying
this idea over all allowed caps, we see that the general case Schofield language is a disjoint
union of finitely many languages with rational growth and the conclusion obtains.
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Appendix

The third author has compiled an exhaustive list of unambiguous context-free grammars that
generate the Schofield geodesic combings in the cases when p divides q. The method is based
on the following idea: for a given class of pairs (p, q), create a finite-state machine to generate
the upward geodesic stems, append the appropriate mesa caps (with possible creation of
new states/non-terminals), and balance each t in the upward stem by a T suffix. There is
a correspondence between the states of the machine and the non-terminals of the grammar.
Key words written in bold represent non-terminals; the italicized letters b, B, t, T represent
terminals. Note that unlike the explicitly worked example in Section 5, these grammars generate
the combings for all powers of b, both positive and negative.

The grammars can be converted to growth functions by the usual Chomsky–Schützenberger
method (see for example [13]). We illustrate this again in the case of BS(n, 3n), n > 1 but
exclude proofs and most of the growth functions for the sake of brevity.

Grammar productions for the 〈b〉 subgroup of BS(1, 2)

Start→ Initial|E
Initial→ ε|b|B|b2|B2

E→ tET |bt2ET 2|Bt2ET 2|C
C→ b3|b4|b5|btb3T |btb4T |B3|B4|B5|BtB3T |BtB4T

Grammar productions for the 〈b〉 subgroup of BS(1, 4)

Start→ ε|CAP

CONJ→ tCAP T |bt FRONT T

CONJ→ |b2tCAPR T |B2tCAPL T |BtBACK T

CAP→CONJ|b|B|bj |Bj

FRONT→CONJ|b|bj |Bj

BACK→CONJ|B|bj |Bj

CAPR→ tCAP T |bt FRONT T |bH

CAPL→ tCAP T |BtBACK T |BH

for j ∈ {2, 3} H ∈ {1, 2}
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Grammar productions for the 〈b〉 subgroup of BS(1, 3)

Start→ INITIAL|OFFSET|tCAP T

INITIAL→ ε|bl|Bl for l ∈ {1, 2}
OFFSET→BtBACK T |bt FRONT T

CONJ→ tCAP T |bt FRONT T |BtBACK T

CAP→CONJ|b|B|b2|B2

FRONT→CONJ|b|b2|B2

BACK→CONJ|B|b2|B2

Grammar productions for the 〈b〉 subgroup of BS(1, (2m+ 1)), m> 1

Start→ INITIAL|OFFSET|tCAP T |bktCAP T |BktCAP T

INITIAL→ ε|bl|Bl for l ∈ {1, 2, 3, . . . , (m+ 1)}
OFFSET→BmtBACK T |bmt FRONT T

CONJ→ tCAP T |bktCAP T |BktCAP T

CONJ→ bmt FRONT T |BmtBACK T

CAP→CONJ|b|B|bj |Bj

FRONT→CONJ|b|bj |Bj

BACK→CONJ|B|bj |Bj

where j ∈ {2, 3, . . . , m+ 1}, k ∈ {1, 2, 3, . . . , m− 1}, and r ∈ {1, 2, 3, . . . , m}

Grammar productions for the 〈b〉 subgroup of BS(1, 2m), m> 3

Start→ ε|CAP

CONJ→ tCAP T |bJ tCAP T |BJ tCAP T |bm−1t FRONT T

CONJ→ |bmtCAPR T |BmtCAPL T |Bm−1tBACK T

CAP→CONJ|b|B|bj |Bj

FRONT→CONJ|b|bj |Bj

BACK→CONJ|B|bj |Bj

CAPR→ tCAP T |bJ tCAP T |bm−1t FRONT T |bH

CAPL→ tCAP T |BJ tCAP T |Bm−1tBACK T |BH

for j ∈ {2, 3, . . . , m+ 1}, J ∈ {1, 2, 3, . . . , m− 2}, and H ∈ {1, 2, 3, . . . , m}
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Grammar for the 〈b〉 subgroup of BS(2, 4)

Start→ ε|bi|Bi|CONJ|bt FRONT T |BtBACK T

CONJ→ tCAP T |b2tCAPR T |B2tCAPL T

CAP→CONJ|b2|B2

FRONT→CONJ|b2

BACK→CONJ|B2

CAPR→ t FRONT T |b2

CAPL→ tBACK T |B2

for i ∈ {1, 2, 3}

Grammar for the 〈b〉 subgroup of BS(2, 8)

Start→ ε|bi|Bi|b3t FRONT T |B3tBACK T |CONJ

Start→ btCAP T |BtCAP T

CONJ→ tCAP T |b2tCAP T |B2tCAP T |b4tCAPR T

CONJ→B4tCAPL T

CAP→CONJ|b2|B2|b4|B4

FRONT→CONJ|b2|b4|B4

BACK→CONJ|B2|b4|B4

CAPR→ tCAP T |b2t FRONT T |b2H

CAPL→ tCAP T |B2tBACK T |B2H

for H ∈ {1, 2} and i ∈ {1, 2, 3, 4, 5}

Grammar for the 〈b〉 subgroup of BS(2, 4m), where m≥ 3

Start→ ε|bi|Bi|tCAP T |bJ tCAP T |BJ tCAP T

Start→ b2m−1t FRONT T |B2m−1tBACK T

Start→ b2mtCAPR T |B2mtCAPL T

CONJ→ tCAP T |b2jtCAP T |B2jtCAP T |b2mtCAPR T

CONJ→B2mtCAPL T

CAP→CONJ|b2|B2|b2j+2|B2j+2

FRONT→CONJ|b2|b2j+2|B2j+2

BACK→CONJ|B2|b2j+2|B2j+2

CAPR→ tCAP T |b2htCAP T |b2(m−1)t FRONT T |b2H

CAPL→ tCAP T |B2htCAP T |B2(m−1)tBACK T |B2H

for J ∈ {1, 2, 3, . . . , 2m− 2}, j ∈ {1, 2, 3, . . . , m− 1},
H ∈ {1, 2, 3, . . . , m}, h ∈ {1, 2, 3, . . . , m− 2}, and i ∈ {1, 2, 3, . . . , 2m+ 1}
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Grammar for the 〈b〉 subgroup of BS(3, 6)

Start→ ε|bi|Bi|tCAP T |bt FRONT T |BtBACK T

Start→ b2tRIGHT3 T |B2t LEFT3 T |B3tCAPL T |b2tCAPR T

Start→ b4tRIGHT6 T |B4t LEFT6 T

CONJ→ tCAP T |b3tCAPR T |B3tCAPL T

CAP→CONJ|b3|B3

FRONT→CONJ|b3

BACK→CONJ|B3

CAPR→ t FRONT T |b3

CAPL→ tBACK T |B3

RIGHT3→ tCAP T |b3tRIGHT4 T |b3

RIGHT4→ tRIGHT3 T |b3

RIGHT5→ t FRONT T |b3tRIGHT6 T |b3

RIGHT6→ tRIGHT5 T

LEFT3→ tCAP T |B3t LEFT4 T |B3

LEFT4→ t LEFT3 T |B3

LEFT5→ tBACK T |B3t LEFT6 T |B3

LEFT6→ t LEFT5 T

for i ∈ {1, 2, 3, 4, 5}

Grammar for the 〈b〉 subgroup of BS(3, 12)

Start→ ε|bi|Bi|tCAP T |bhtCAP T |BhtCAP T

Start→ b4t FRONT T |B4tBACK T |b5tRIGHT3 T |B5t LEFT3 T

Start→B6tCAPL T |b6tCAPR T |b7tRIGHT6 T |B7t LEFT6 T

CONJ→ tCAP T |b3tCAP T |B3tCAP T |b6tCAPR T |B6tCAPL T

CAP→CONJ|b3|B3|b6|B6

FRONT→CONJ|b3|b6|B6

BACK→CONJ|B3|b6|B6

CAPR→ tCAP T |b3t FRONT T |b3H

CAPL→ tCAP T |B3tBACK T |B3H

RIGHT3→ tCAP T |b3tCAP T |b6tRIGHT4 T |b3H

RIGHT4→ tCAP T |b3tRIGHT3 T |b3H

RIGHT5→ tCAP T |b3t FRONT T |b6tRIGHT6 T |b3H

RIGHT6→ tCAP T |b3tRIGHT5 T |b3

LEFT3→ tCAP T |B3tCAP T |B6t LEFT4 T |B3H

LEFT4→ tCAP T |B3t LEFT3 T |B3H

LEFT5→ tCAP T |B3tBACK T |B6t LEFT6 T |B3H

LEFT6→ tCAP T |B3t LEFT5 T |B3

for h ∈ {1, 2, 3}, H ∈ {1, 2}, and i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
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Grammar for the 〈b〉 subgroup of BS(3, 6m), assuming m> 2

Start→ ε|bi|Bi|tCAP T |bhtCAP T |BhtCAP T

Start→ b3m−2t FRONT T |B3m−2tBACK T |b3m−1tRIGHT3 T |B3m−1t LEFT3 T

Start→B3mtCAPL T |b3mtCAPR T |b3m+1tRIGHT6 T |B3m+1t LEFT6 T

CONJ→ tCAP T |b3jtCAP T |B3jtCAP T |b3mtCAPR T

CONJ→B3mtCAPL T

CAP→CONJ|b3|B3|b3j+3|B3j+3

FRONT→CONJ|b3|b3j+3|B3j+3

BACK→CONJ|B3|b3j+3|B3j+3

CAPR→ tCAP T |b3J tCAP T |b3(m−1)t FRONT T |b3H

CAPL→ tCAP T |B3J tCAP T |B3(m−1)tBACK T |b3H

RIGHT3→ tCAP T |b3jtCAP T |b3mtRIGHT4 T |b3H

RIGHT4→ tCAP T |b3J tCAP T |b3(m−1)tRIGHT3 T |b3H

RIGHT5→ tCAP T |b3J tCAP T |b3(m−1)t FRONT T

RIGHT5→ b3mtRIGHT6 T |b3H

RIGHT6→ tCAP T |b3J tCAP T |b3(m−1)tRIGHT5 T |b3j

LEFT3→ tCAP T |B3jtCAP T |B3mt LEFT4 T |B3H

LEFT4→ tCAP T |B3J tCAP T |B3(m−1)t LEFT3 T |B3H

LEFT5→ tCAP T |B3J tCAP T |B3(m−1)tBACK T

LEFT5→B3mt LEFT6 T |B3H

LEFT6→ tCAP T |BttCAP T |B3(m−1)t LEFT5 T |B3j

for j ∈ {1, 2, 3, . . . , m− 1}, h ∈ {1, 2, 3, . . . , 3m− 3},
J ∈ {1, 2, 3, . . . , m− 2}, H ∈ {1, 2, 3, . . . , m}, and i ∈ {1, 2, 3, . . . , 3m+ 2}

Grammar for the 〈b〉 subgroup of BS(n, 2n), where n= 2k and k > 1

Start→ ε|bi|Bi|tCAP T |bLtCAP T |BLtCAP T

Start→ bkt FRONT T |BktBACK T |bntCAPR T |BntCAPL T

Start→ bn−LtRIGHT1 T |Bn−Lt LEFT1 T |Bn+Lt LEFT T |bn+LtRIGHT T

CONJ→ tCAP T |bntCAPR T |BntCAPL T

CAP→CONJ|bn|Bn

FRONT→CONJ|bn

BACK→CONJ|Bn

CAPR→ t FRONT T |bn

CAPL→ tBACK T |Bn

RIGHT→ tRIGHT1 T

LEFT→ t LEFT1 T

RIGHT1→ tCAP T |bntRIGHT T |bn

LEFT1→ tCAP T |Bnt LEFT T |Bn

for L ∈ {1, 2, 3, . . . , k − 1} and i ∈ {1, 2, 3, . . . , n+ k}
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Grammar for the 〈b〉 subgroup of BS(n, 2n), assuming n= 2k + 1 and k > 1

Start→ ε|bi|Bi|tCAP T |bhtCAP T |BhtCAP T

Start→ bn−k−1t FRONT T |Bn−k−1tBACK T |bn−ktRIGHT3 T |Bn−kt LEFT3 T

Start→Bn−Lt LEFT1 T |bn−LtRIGHT1 T |BntCAPL T |bntCAPR T

Start→Bn+Lt LEFT2 T |bn+LtRIGHT2 T |bn+ktRIGHT6 T |Bn+kt LEFT6 T

CONJ→ tCAP T |bntCAPR T |BntCAPL T

CAP→CONJ|bn|Bn

FRONT→CONJ|bn

BACK→CONJ|Bn

CAPR→ t FRONT T |bn

CAPL→ tBACK T |Bn

RIGHT1→ tCAP T |bntRIGHT2 T |bn

RIGHT2→ tRIGHT1 T

RIGHT3→ tCAP T |bntRIGHT4 T |bn

RIGHT4→ tRIGHT3 T |bn

RIGHT5→ t FRONT T |bntRIGHT6 T |bn

RIGHT6→ tRIGHT5 T

LEFT1→ tCAP T |Bnt LEFT2 T |Bn

LEFT2→ t LEFT1 T

LEFT3→ tCAP T |Bnt LEFT4 T |Bn

LEFT4→ t LEFT3 T |Bn

LEFT5→ tBACK T |Bnt LEFT6 T |Bn

LEFT6→ t LEFT5 T

for h ∈ {1, 2, 3, . . . , n− k − 2}, L ∈ {1, 2, 3, . . . , k − 1}, and i ∈ {1, 2, 3, . . . , n+ k + 1}
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Grammar for a context-free geodesic combing of the horocyclic
subgroup of BS(n, 3n) with n > 1

Start→ INIT|OFFSET|tCAP T |bitCAP T |BitCAP T

INIT→ ε|bl|Bl

OFFSET→ bn+itRIGHT T |Bn+it LEFT T |BntBACK T |bnt FRONT T

CONJ→ tCAP T |bnt FRONT T |BntBACK T

CAP→CONJ|bn|Bn|b2n|B2n

FRONT→CONJ|bn|b2n|B2n

BACK→CONJ|Bn|b2n|B2n

RIGHT→ tCAP T |bntRIGHT T |bn

LEFT→ tCAP T |Bnt LEFT T |Bn

where i ∈ {1, 2, 3, . . . , n− 1} and l ∈ {1, 2, 3, . . . , 2n}

Chomsky–Schützenberger equations for the previous grammar:
replace each production arrow with equality, all terminals become

the variable z, ‘|’ becomes ‘+’, and juxtaposition becomes
(commutative) multiplication.

Start = INIT + OFFSET + z2 CAP + 2CAP
(n−1∑

i=1

zi+2

)
.

INIT = 1 + 2
( 2n∑

l=1

zl

)
.

OFFSET = zn+2(FRONT + BACK) +
(n−1∑

i=1

zn+i+2

)
(LEFT + RIGHT).

CONJ = z2CAP + zn+2(FRONT + BACK)

CAP = CONJ + 2zn + 2z2n

FRONT = CONJ + zn + 2z2n

BACK = FRONT

RIGHT = z2CAP + zn+2RIGHT + zn

LEFT = RIGHT

Solving this system of equations for Start yields the spherical growth function:

(1 + z)(1 + z − z2+n − z3+n − 2z1+2n + 2z3+2n − 2z2+3n + 2z3+3n)
1− z2 − 3z2+n + z4+n + 2z4+2n
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Grammar for the 〈b〉 subgroup of BS(n, 4n), assuming n= 2k + 1 and k > 1

Start→ ε|bi|Bi|tCAP T |bhtCAP T |BhtCAP T

Start→ b2n−k−1t FRONT T |B2n−k−1tBACK T

Start→ b2n−ktRIGHT3 T |B2n−kt LEFT3 T

Start→B2n−Lt LEFT1|b2n−LtRIGHT1 T

Start→B2ntCAPL T |b2ntCAPR T

Start→B2n+Lt LEFT2 T |b2n+LtRIGHT2 T

Start→ b2n+ktRIGHT6 T |B2n+kt LEFT6 T

CONJ→ tCAP T |bntCAP T |BntCAP T |b2ntCAPR T

CONJ→B2ntCAPL T

CAP→CONJ|bn|Bn|b2n|B2n

FRONT→CONJ|bn|b2n|B2n

BACK→CONJ|Bn|b2n|B2n

CAPR→ tCAP T |bnt FRONT T |bHn

CAPL→ tCAP T |BntBACK T |BHn

RIGHT1→ tCAP T |bntCAP T |b2ntRIGHT2 T |bHn

RIGHT2→ tCAP T |bntRIGHT1 T |bn

RIGHT3→ tCAP T |bntCAP T |b2ntRIGHT4 T |bHn

RIGHT4→ tCAP T |bntRIGHT3 T |bHn

RIGHT5→ tCAP T |bnt FRONT T |b2ntRIGHT6 T |bHn

RIGHT6→ tCAP T |bntRIGHT5 T |bn

LEFT1→ tCAP T |BntCAP T |B2nt LEFT2 T |BHn

LEFT2→ tCAP T |Bnt LEFT1 T |Bn

LEFT3→ tCAP T |BntCAP T |B2nt LEFT4 T |BHn

LEFT4→ tCAP T |Bnt LEFT3 T |BHn

LEFT5→ tCAP T |BntBACK T |B2nt LEFT6 T |BHn

LEFT6→ tCAP T |Bnt LEFT5 T |Bn

for h ∈ {1, 2, 3, . . . , 2n− k − 2}, H ∈ {1, 2}, L ∈ {1, 2, 3, . . . , k − 1},
and i ∈ {1, 2, 3, . . . , 2n+ k + 1}
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Grammar for the 〈b〉 subgroup of BS(n, 4n), where n= 2k and n > 1

Start→ ε|bi|Bi|tCAP T |bhtCAP T |BhtCAP T

Start→ b2n−kt FRONT T |B2n−ktBACK T

Start→ b2ntCAPR T |B2ntCAPL T

Start→ b2n−LtRIGHT1 T |B2n−Lt LEFT1 T

Start→B2n+Lt LEFT T |b2n+LtRIGHT T

CONJ→ tCAP T |bntCAP T |BntCAP T |b2ntCAPR T

CONJ→B2ntCAPL T

CAP→CONJ|bn|Bn|b2n|B2n

FRONT→CONJ|bn|b2n|B2n

BACK→CONJ|Bn|b2n|B2n

CAPR→ tCAP T |bnt FRONT T |bHn

CAPL→ tCAP T |BntBACK T |BHn

RIGHT→ tCAP T |bntRIGHT1 T |bn

LEFT→ tCAP T |Bnt LEFT1 T |Bn

RIGHT1→ tCAP T |bntCAP T |b2ntRIGHT T |bHn

LEFT1→ tCAP T |BntCAP T |B2nt LEFT T |BHn

for H ∈ {1, 2}, h ∈ {1, 2, 3, 4, . . . , 2n− k − 1}, L ∈ {1, 2, 3, . . . , k − 1},
and i ∈ {1, 2, 3, . . . , 2n+ k}

Grammar for the 〈b〉 subgroup of BS(n, (2m+ 1)n) for n > 1 and m> 1

Start→ INITIAL|OFFSET|tCAP T |bhtCAP T |BhtCAP T

INITIAL→ ε|bl|Bl for l ∈ {1, 2, 3, . . . , n(m+ 1)}
OFFSET→ bmn+itRIGHT T |Bnm+it LEFT T

OFFSET→BnmtBACK T |bmnt FRONT T

CONJ→ tCAP T |bkntCAP T |BkntCAP T

CONJ→ bmnt FRONT T |BnmtBACK T

CAP→CONJ|bn|Bn|bjn|Bjn

FRONT→CONJ|bn|bjn|Bjn

BACK→CONJ|Bn|bjn|Bjn

RIGHT→ tCAP T |bkntCAP T |bnmtRIGHT T |brn

LEFT→ tCAP T |BkntCAP T |Bnmt LEFT T |Brn

for h ∈ {1, 2, 3, mn− 1}, j ∈ {2, 3, . . . , m+ 1}, k ∈ {1, 2, 3, . . . , m− 1},
r ∈ {1, 2, 3, . . . , m}, and i ∈ {1, 2, 3, . . . , n− 1}
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Grammar for the 〈b〉 subgroup of BS(n, 2nm), where n= 2k, k > 1, m> 2

Start→ ε|bi|Bi|tCAP T |bhtCAP T |BhtCAP T

Start→ bnm−kt FRONT T |Bnm−ktBACK T

Start→ bnmtCAPR T |BnmtCAPL T

Start→ bmn−LtRIGHT1 T |Bnm−Lt LEFT1 T

Start→Bnm+Lt LEFT T |bmn+LtRIGHT T

CONJ→ tCAP T |bjntCAP T |BjntCAP T |bnmtCAPR T

CONJ→BnmtCAPL T

CAP→CONJ|bn|Bn|bjn+n|Bjn+n

FRONT→CONJ|bn|bjn+n|Bjn+n

BACK→CONJ|Bn|bjn+n|Bjn+n

CAPR→ tCAP T |bJntCAP T |bn(m−1)t FRONT T |bHn

CAPL→ tCAP T |BJntCAP T |Bn(m−1)tBACK T |BHn

RIGHT→ tCAP T |bJntCAP T |bn(m−1)tRIGHT1 T |bjn

LEFT→ tCAP T |BJntCAP T |Bn(m−1)t LEFT1 T |Bjn

RIGHT1→ tCAP T |bjntCAP T |bnmtRIGHT T |bHn

LEFT1→ tCAP T |BjntCAP T |Bnmt LEFT T |BHn

for J ∈ {1, 2, 3, . . . , m− 2},
j ∈ {1, 2, 3, . . . , m− 1},
h ∈ {1, 2, 3, . . . , mn− k − 1},
H ∈ {1, 2, 3, . . . , m},
L ∈ {1, 2, 3, . . . , k − 1},
i ∈ {1, 2, 3, . . . , nm+ k}
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Grammar for the 〈b〉 subgroup of BS(n, 2nm), assuming n= 2k + 1 and k > 1

Start→ ε|bi|Bi|tCAP T |bhtCAP T |BhtCAP T

Start→ bnm−k−1t FRONT T |Bnm−k−1tBACK T

Start→ bnm−ktRIGHT3 T |Bnm−kt LEFT3 T

Start→Bnm−Lt LEFT1 T |bmn−LtRIGHT1 T

Start→BnmtCAPL T |bnmtCAPR T

Start→Bnm+Lt LEFT2 T |bmn+LtRIGHT2 T

Start→ bnm+ktRIGHT6 T |Bnm+kt LEFT6 T

CONJ→ tCAP T |bjntCAP T |BjntCAP T |bnmtCAPR T

CONJ→BnmtCAPL T

CAP→CONJ|bn|Bn|bjn+n|Bjn+n

FRONT→CONJ|bn|bjn+n|Bjn+n

BACK→CONJ|Bn|bjn+n|Bjn+n

CAPR→ tCAP T |bJntCAP T |bn(m−1)t FRONT T |bHn

CAPL→ tCAP T |BJntCAP T |Bn(m−1)tBACK T |bHn

RIGHT1→ tCAP T |bjntCAP T |bnmtRIGHT2 T |bHn

RIGHT2→ tCAP T |bJntCAP T |bn(m−1)tRIGHT1 T |bjn

RIGHT3→ tCAP T |bjntCAP T |bnmtRIGHT4 T |bHn

RIGHT4→ tCAP T |bJntCAP T |bn(m−1)tRIGHT3 T |bHn

RIGHT5→ tCAP T |bJntCAP T |bn(m−1)t FRONT T

RIGHT5→ bnmtRIGHT6 T |bHn

RIGHT6→ tCAP T |bJntCAP T |bn(m−1)tRIGHT5 T |bjn

LEFT1→ tCAP T |BjntCAP T |Bnmt LEFT2 T |BHn

LEFT2→ tCAP T |BJntCAP T |Bn(m−1)t LEFT1 T |Bjn

LEFT3→ tCAP T |BjntCAP T |Bnmt LEFT4 T |BHn

LEFT4→ tCAP T |BJntCAP T |Bn(m−1)t LEFT3 T |BHn

LEFT5→ tCAP T |BJntCAP T |Bn(m−1)tBACK T

LEFT5→Bnmt LEFT6 T |BHn

LEFT6→ tCAP T |BJntCAP T |Bn(m−1)t LEFT5 T |Bjn

for j ∈ {1, 2, 3, . . . , m− 1}, h ∈ {1, 2, 3, . . . , nm− k − 2}, J ∈ {1, 2, 3, . . . , m− 2},
H ∈ {1, 2, 3, . . . , m}, L ∈ {1, 2, 3, . . . , k − 1}, and i ∈ {1, 2, 3, . . . , nm+ k + 1}
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