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Abstract

We investigate the reflection and transmission of SH-waves at a corrugated interface between
two different anisotropic, heterogeneous elastic solid half-spaces. Both the media are
assumed to be transversely isotropic and vertically heterogeneous. Rayleigh’s method is
followed and expressions for the reflection and transmission coefficients are obtained in
closed form for the first-order approximation of the corrugation. It is found that these
coefficients depend on corrugation and are affected by the anisotropy and heterogeneity of
the media. Numerical computations for a particular model have been performed.

1. Introduction

The study of the propagation of seismic waves and their reflection and refraction from
discontinuities are of great practical importance in seismology. The amplitudes of
seismic signals are of great help not only in investigating the internal structure of the
earth, but also in exploration of valuable materials, oils, water, chemicals etc. Seismic
waves can occur as a result of an earthquake. Mathematical study of seismic waves
consists mainly of the study of propagation, reflection, refraction and diffraction of
elastic waves from discontinuities present inside the earth.

Considerable work has been done by researchers concerning seismic wave prop-
agation at a plane boundary. Bearing in mind the fact that earthquake-generated
seismic waves encounter mountain basins, mountain roots and salt and ore bodies in
their paths, such irregularities doubtlessly affect the reflection and refraction of elastic
waves propagating through the earth. Thus the study of the reflection and refraction
of elastic waves at various types of interfaces is of great practical importance.
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In reality, boundaries involving earth as a medium can never be flat but are al-
ways irregular to some extent. Moreover, the earth is not homogeneous and isotropic
throughout. This has motivated us to consider the study of the reflection and refrac-
tion of SH-waves at a corrugated interface between two anisotropic and heterogeneous
elastic half-spaces. The aim is to investigate how the reflection and refraction coeffi-
cients of SH-waves are affected by the corrugation of the interface, taking into account
the anisotropy and heterogeneity of the two media.

Scattering of elastic waves from a corrugated surface has been studied by many
researchers and there are several methods for dealing with such problems. Sato
[14] analysed the problem of elastic wave scattering from a corrugated, traction-free
boundary of an elastic half-space using the method introduced by Lord Rayleigh in
his problem of sound and light. In Rayleigh’s method expressions in the boundary
conditions containing the function defining the corrugated boundary are expanded in
Fourier series and the unknown coefficients in the solution are determined to any given
order of approximation in terms of small parameter characteristics of the boundary.

Asano [3, 4, 5] also applied Rayleigh’s method to problems involving the reflection
and refraction of elastic waves at a corrugated interface between two half-spaces.
Abubakar [2], Dunkin and Eringen [8] among others used a perturbation technique
to study the problem of reflection of body waves from an arbitrary rough surface of
a semi-infinite elastic solid. Abubakar [1] worked out the reflection and refraction
of SH-waves at an irregular interface between two uniform elastic solid half-spaces
using a perturbation technique.

A lot of literature is available on elastic wave propagation and reflection and
refraction at a plane boundary between two anisotropic elastic half-spaces, including
that by Musgrave [11], Thapliyal [17], Daley and Hron [7], Rokhlin et al. [13], Mandal
[10], Crampin [6] and Pao [12]. Recently Tomar and Saini [18] studied the effect of
transverse anisotropy on the reflection and transmission coefficients of SH-waves at a
corrugated interface between two half-spaces.

Since anisotropy and heterogeneity are well-established phenomena within the
earth, and keeping in view their importance, we have considered the problem of the
reflection and refraction of SH-waves at a corrugated interface between two anisotropic
heterogeneous elastic solids. Rayleigh’s method is adopted and the expressions for the
reflection and transmission coefficients are obtained in closed form for the first-order
approximation of the corrugation. The results of Tomar and Saini [18] and Asano [3]
reduce to particular cases of this problem.

2. Formulation of the problem and its solution

We consider a corrugated interface between two heterogeneous, transversely iso-
tropic elastic solid half-spaces H; (i = 1, 2), with elastic constants, densities and
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FIGURE 1. Geometry of the problem.

velocities (vertical and horizontal) given by M;, N;, p; and B,,, B respectively.
The factor N;/M; denotes the anisotropy factor and we let the variations of elastic
parameters in H; be

{M,, N\, p1} = {Mq, No, po} cosh’(z/b,),

o 2.1)
(M3, N,, p2} = {M}, N;, py} cosh’(z/by),

where the quantities within braces on the right-hand sides of (2.1) are constants and
by', by! are heterogeneity factors in H, and H, respectively. The x-and y-axes are
horizontal and the z-axis is pointing vertically downward as shown in Figure 1.

Let the equation of a corrugated interface between two considered half-spaces be
z = ¢, where ¢ is assumed to be a periodic function of x and independent of y, whose
mean value is zero by assumption. The Fourier series representation of ¢ is given by

¢ =) [L.exp(inpx) + §_n exp(—inpx)]. 2.2)

n=1
Taking &, = ¢_y = ¢/2, {+. = (¢. F is,)/2, we can write the expansion in (2.2) as
¢ =ccospx +cyco82px + s;8in2px + -+ - + c,cosnpx + s, sinnpx + - -+ .

In a special case, when the interface can be expressed by one cosine term, that is,
¢ = ccos px, the wavelength of the corrugation is 27 /p.

Neglecting body forces and assuming small deformations, the equation of motion
for SH-waves in a transversely isotropic, heterogeneous medium can be written as

3/ avi\ 8 (. aV a2V,
_ N,'— - M,'_ = Pi— 23
ax( 8x)+32< az) Piar 23)
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where V denotes the y-component of the displacement and the subscript i corresponds
to the quantities in H;. Consider the time harmonic waves and let

Vi=Xi(x)Z;(z) exp(iwr), 2.4)

where w is the circular frequency. Using (2.4) in (2.3) and assuming that elastic
parameters are functions of z alone, we obtain

d’X; d’Z; dM;,dz;

—_— X, =0, Mi— + ——= w?cos’0Z; =0 2.
aez T a2 T dp dp TReeest4i=0 29
where a; is the x-component of the wave number given by (Gupta [9])
wsiné ) N;
a; = 3 h, — T
B, YD

where 6 is the angle between the wave normal and the positive direction of the z-axis.
Putting Z; = Z;/+/M, in (2.5),, we obtain

d’Z; =
— 4, 4L = Oy
dzz ql
where
1 w2 N,'
9 = A 5 (ﬁ.) cos? 4.
For a wave propagating along the positive direction of the x-axis, the solution of
(2.5) is given by
|
X:=Aexp(—iaix), Z;=—=[A¢e™% + Boe?*], (2.6)

M;

where A, Ay and By are constants.

Consider a plane SH-wave of unit amplitude and period 27 /w, incident from the
upper half-space H,. Let y be the angle between the z-axis and the incident wave
normal and let the direction of propagation of the wave be the positive x-axis. With
the help of (2.6), the solution (2.4) in the two elastic half-spaces is as follows. In
medium H,, the displacement is given by

B —-qz Be?? N :
Vi = ¢+ Soe exp(iw(t—xsmy)>.

L /Mo cosh(z/by) Bn,
In medium H,, the displacement is given by
_ Dgmre . -
V= 0 exp (iw (t _ Lo )) : @.7)
L\/ﬁ{, cosh(z/b,) | Br,
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where § is the angle made by the refracted wave normal with the z-axis and is related
to y through Snell’s law given by

wsiny  wsiné

Br, Pr,

z_i_w_zﬂ 2 2 1 szz(ﬂZ, .2)
B BM, B B M \B, '
Since the interface is corrugated, it is necessary to take into account the effect
of corrugation on the reflection and refraction of waves, in addition to the regularly

reflected and refracted waves. Thus the total displacement V; in the upper medium is
the sum of the incident, regularly reflected and irregularly reflected waves as

v [ €% + Bge? ] ( (t xsiny ))
= exp|iw|t—
: /My cosh(z/b,) P Br,
. X sin y,
+ B.e%* ex (zw (t — ))
2 Buttero B
, . xsiny’
+ ) Bje™fex (zw (t — - )) .
2o B
Similarly, the total displacement V; in the lower medium can be written as
Dge™"? ( ( xsiné ))
Vo = expliow|t—
v M; cosh(z/by) Br,
xsiné
+ ) D,e""ex (iw (t - "))
2. ’ B
, x siné’
+ D) e """ ex (iw (t - L )) , (2.8)
2 ’ B,

where y,, y,, 8, and &, are given by the Spectrum theorem (see Asano [3]),

and

q

siny, —siny = PP ) siné, — siné = __np,th’
w w
2.9
siny;—siny=_%’ Sin5,’,—sin8_—__npﬂh’,
w w
and
1 2 N 1 w? N, (ﬁz . )
2 2 2 1 2
P o cosy,  n=ay (g sty )
! b% ﬁl%, M, b% 'Bfl M, ﬂi%z
N
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Using the relations given in (2.9), the displacements V; and V, become

1 ‘ -
V. = —q2 + Be?t + Bneq..ze—mpx Bleq,,z inpx
X exp (iw (x _z S‘"”)) , (2.10)
Bh,
1 . .
V — D e—rz + Dner,.ze—mpx + D:‘ernzempx
* T J/M; cosh(z/by) [ ° Z Z ]

X exp (iw (z—xsmy». @.11)
B,

The unknowns Dy in (2.7) and D,, D, in (2.8) are related to the transmission coeffi-
cients T, T, and T, through the relation (Singh ez al. [16]),

(T.T,. T)) = (Do, D,, D} | 10 SO/ 2.12)

M|, cosh(z/by) °

3. Boundary conditions

The boundary conditions to be satisfied at the boundary surface z = ¢ are the
continuity of the displacement and stress, that is,

Vi=W, (.1

Vi v av, AV,
M (== - oM (2222 .
‘(az ax‘;> 2(82 Bxé-)’ (3.2)

where ¢’ is the derivative of ¢ with respect to x. Substituting (2.10) and (2.11) into
(3.1) and (3.2), we can obtain the amplitudes of reflected and refracted waves at a
plane interface and at a corrugated interface (see Appendix A).

We shall now consider a special case, when the boundary surface is given by
z = ccospx. In Appendix A, we have obtained the results for the corrugated
interface of the form z-= . In the special case, we have {, = ¢_, = 0, n # 1, and
& =¢-) = ¢/2. From (A.4) and (A.5) of Appendix A, we obtain the solution for B,
D, given by

-1 -1
Bo=(Q-AA%—R>(Q%+R> : Do=2Q‘/%(Q%+R) » 33
0 0 - 0 0
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FIGURE 2. Reflection variation with angle of incidence with anisotropy factors (a) No/My = 0.5,
No/My = 0.7 and (b) No/Mo = 0.7, No/M}, = 0.9.

and hence using (2.12), the transmission coefficient in this case is
My [ M, !
T=20— — +R . 34
03 (05m+#) G4

Equations (3.3) and (3.4) are expressions for the reflection and transmission coef-
ficients when SH-waves are incident at a plane interface between two transversely
isotropic and vertically heterogeneous elastic solid half-spaces.

In order to obtain the solution of the first-order approximation of corrugation for
By, D\, B} and D;, we solve (A.6)~(A.8) given in Appendix A and obtain the values

Bi=di/d, D,=dyd, B,=d/d, D,=dy/d, (3.5)

where the values of d;, d;, d and d' (i = 1, 2) are given in Appendix B. The coefficients
B,, B, are reflection coefficients and using relation (2.12) the transmission coefficients

are given by
M, cosh(c/2b,)
N, T} ={D,, D)} | — ————=. 3.6
(1, Ti} = 1Dy '}\/ M;, cosh(c/2by) 36
4. Particular cases
The heterogeneity of the half-spaces would be removed if we put ;' = b;' = Qin

all the expressions where they occur. Then the coefficients for the first approximation
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- FIGURE 3. Reflection variation with angle of incidence with anisotropy factors (a) No/M, = 1.5,
N§/Mg = 3.7 and (b) No/Mo = 1.0, No/ My = 1.0.

of the corrugation given in (3.5) and (3.6) and the coefficients at the plane boundary
given in (3.3) and (3.4) reduce to those at a corrugated interface between two homo-
geneous, transversely isotropic half-spaces. These reduced coefficients are found to
be in full agreement with those obtained by Tomar and Saini [18].

When both anisotropy and heterogeneity vanish, then N; = M; = w;, By, =
B, = Bi and the problem reduces to that of reflection and refraction of SH-waves at a
corrugated boundary between two uniform elastic half-spaces with different properties.
One can verify using simple algebra and appropriate notation that all the results in
question are the same as those obtained by Asano [3].

In order to replace the corrugated interface by a plane interface, we put { = 0, and
removing heterogeneity and anisotropy as above, the problem reduces to SH-wave
propagation at a plane interface between two uniform elastic half-spaces. In this case
B,, D,, B, and D), vanish as they are proportional to { and we obtain

mcosy — /n? —sin?y 2mcos y

= , Do= 4.1)
mcosy + /n? —sin’ y ¢ (

By

mcosy ++/n? —sin’y’

where n > siny, m = wu,/u, and n = B,/B,. These results are the same as those
given in Savarensky [15, page 284].

5. Numerical results and discussion

In order to numerically study the effect of anisotropy and heterogeneity on the
reflection and transmission coefficients we have computed these for a specific model
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FIGURE 4. Reflection variation with angle of incidence with heterogeneity factors (a) 1/b, = 0.5,
1/b; =0.7and (b) 1/b; = 1.5,1/b; = L.7.

by varying the values of the anisotropy and inhomogeneity parameters. It is found
that these coefficients are influenced by the anisotropy and inhomogeneity of the
half-spaces. First, the anisotropy and inhomogeneities of the media are kept constant
at values 1/b; = 1.5, 1/b, = 2.0, B2 /B2 = 1.5, @/pPBs, = 10 and the anisotropy
factors of the media are varied. The variations of the reflection and transmission
coefficients with angle of incidence y are presented in Figures 2-3. Setting the values
of the anisotropy factors equal to 1.0 corresponds to isotropy, that is, both media are
then inhomogeneous and isotropic elastic half-spaces.

Next, the anisotropy of both media are kept fixed at values No/Mo = 0.5, Ny/My =
0.7, Mo/My = 5.0, B; /Bi, = 1.5, w/pBs, = 10, and the heterogeneity factors are
varied. The results obtained are presented in Figures 4-5. Setting the values of the
inhomogeneity factors equal to zero corresponds to homogeneity, that is, both media
are then homogeneous and transversely isotropic elastic half-spaces.

From Figures 2-3, the graphs of B,/cp, Ti/cp, B)/cp and T/cp show that the
reflection and transmission coefficients at a corrugated interface are highly influenced
by the anisotropies of the inhomogeneous media. These coefficients are most affected
by the anisotropy at an angle of incidence of the SH-waves of y = 0 degrees. As
the angle of incidence approaches 90 degrees the effect decreases. This means that
the reflection and transmission coefficients are almost unaffected near the grazing
incidence. Since all the coefficients are zero at y = 90 degrees, no reflection and
transmission take place at the corrugated boundary. This shows that at this particular
angle of incidence, the incident wave behaves in a similar fashion to the grazing
incidence of elastic waves at the plane interface.
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FIGURE 5. Reflection variation with angle of incidence with heterogeneity factors (a) 1/b, = 2.0,
1/b, =3.4and (b) 1/b, = 0.0, 1/b, = 0.0.

It can be noticed from Figures 4 (a)—(b) that an increase in the inhomogeneity factor
results in an enhancement of the reflection coefficients, while Figures S (a)—(b) show
that an increase in inhomogeneity results in a lowering of the transmission coefficients
at the corrugated boundary of the anisotropic media. This is most dominant near
normal incidence, that is, near y = 0O degrees.

In the present paper, the effect of anisotropy and heterogeneity of the media on the
reflection and refraction of SH-waves at a corrugated interface was considered using
Rayleigh’s method. The solutions were obtained for SH-waves with an arbitrary
angle of incidence on a corrugated periodic boundary surface. The computations
were carried out for a wave obliquely incident on the mean surface of a harmonic
boundary { = ¢cos px. Animportant problem to be considered is that concerning the
reflection and refraction of waves at an arbitrary form of boundary surface, particularly
at troughs of large amplitude. If the results obtained above for various wavelengths
of corrugation are superposed, one can obtain in principle the solutions to an arbitrary
form of boundary surface, although the assumptions of small amplitude and periodicity
concerning the corrugated boundary surface cannot be dispensed with. To do this may
involve a cumbersome procedure and other methods may be applied more easily. It
would be very interesting to solve the same problem by other methods and compare
the results obtained.

Appendix A.

In this appendix, we present the boundary conditions (3.1) and (3.2) and the solu-
tions for the first-order approximation of the corrugation.
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q=iQ, r=iR, ¢,=iQ, nmn=iR, ¢q,=iQ, 71, =iR,
where
® N 1 o? N 2 . 1
B, M, b B, M2 \ By, b
o w? N, 2 1 R? @ N2 (,3,2,l sinzy) 1
n=gr s OS5 Ri=—om o —sinty ) - o5,
B M, b? B2 M, Br, b3
®? N, * N, (BE ., 1
0% = — — cos’y, — —, R,’?z——(——'—sm Vo) =12
M TR L M \ B, b3

457

into (2.10) and (2.11). Inserting these values of V; and V; into (3.1) and (3.2), we

obtain

[e—ioc + Boe'® + Z (B,e' %t eimx 4 B,’,e"‘v’n‘e‘"”"):l

_ \/E cosh(¢ /by)

M}, cosh(¢ /by)

w¢’siny
(5

wsmy
B, { On
+Z {Q ( ,Bhl
, , wsmy
B
+; n{Qn+( ﬂ’ll

1
+bl e

M, [(w;"siny B

M; Br,
+ZD [( siny
+2D,[(wsmy

1 . ) . oy
+ — I:Doe"“ + Z (D,,e"R"‘e""’”‘ + D) e Rt e'"’”‘)] [—sinh(z/b))].
b, -
(A.2)

-iQ¢ + BoeiQ;‘ + Z (Bneig,,; e—inpx + B:'eiQ;,; einpx)

B,
np) C,] IQ,,;'e inp.

- np) ;’] e"gﬂge‘"’”‘] cosh(¢ /b))

n

R) Dge™R¢

np) ;./ _ Rn} e—iR,,;‘e—inpx

np) — R;} e"'R;‘e""’”‘iI cosh(¢ /by)
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In order to obtain the solution of the first-order approximation we assume that the
amplitude of corrugation, ¢, is very small so that the terms of an order higher than ¢
are neglected. Therefore we have

e % =1-iQe. (A.3)

The solution of By and D, can be obtained by collecting the terms independent of x
and ¢ in (A.1) and (A.2),
M,
1+ By =D ‘/ : A4
+ Bo (] M, (A4)

— _rD, | Mo
QLB ~ 11=~RDy |32 (A5)

These formulae give the amplitudes of reflected and refracted waves at a plane bound-
ary between the two media in question.

If we collect together the coefficients of e~™P* in (A.1) and (A.2), then we obtain
the formulae determining the first approximation of B, and D, as

My . /Mo
B,—- D, |— =i(l —B —n—iDgRE_, | —, A.6
M i 0) OF iDoRE M; (A.6)
M, [ npwsiny s 1
B, Q. — D,R, = —_— — ¢, B
o, + M, [l ( B Q)+ 5 $_n(1 4+ By)

. npwsin y . 1 A_lé
[1 (—ﬂh. R ) + b§:| ¢-nDy, | Mo’ (A7)

Similarly the formulae concerning the first approximation of B, and D;, can be obtained
by collecting together the coefficients of ¢ in (A.1) and (A.2):

Doy (Mo _ Mo
B,- D, | 7, = 1= B 05 iDoR¢y, [~ R (A8)
M, . wsiny 2) _1_]
B,Q,+ D,R, ‘/Mo [ z(np Br + 0 +bf Zn(1 + By)
. wsiny ) /Mo
+ I:l (np B + R ) ] &nDy Mo (A9)

where we have made use of the relations given in (2.9). The coefficients By and Dy
involved in the above relations are given by (A.4) and (A.5).
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Appendix B.
We here give the formulae for the quantities d,, d;, d| and 4 that appear in (3.5):

d,

ic _ M, pwsiny )
2[QR1(1 BO)+M(’,(1+BO)( B Q)

M, (pwsiny c(1+ Bo) My  ¢Do
Do |2 (22X _R2 4 RR S Ml e B i
NAG TR T T | g

ic pwsiny 2 pwsin y 2
d, = — 1 — Dg|— —R
2 2[VM’(+B°)( P Q) °( P )
CD() C(1+Bo) Mo
RO\D 1-B f -——t— {—
+ Ql OM, QQI( 0) 0] 2b§ + 2b$ M(’)’

4= 5 | oria - By - pra+ 89 (P22 4 07)

c(1+B) My, c¢D, Mo]

M, (pwsiny
D, | — { &=2=_"2 =
+2 ( 208 M, 20

M(/) ﬂhl

. . -
dy = '5[ 00,(1 — By) — (1 + Bo) (i”“’;%qL Q’)‘/FE

pwsiny 2 cDy c(1+4+ By) [M,
R D— Dy{ ——— +R -——t— [,
HRODog * o B )] % T\ M

where d = (Mo/Mg) Q) + R, and d' = (Mo/My) Q| + R;.

+R2—RR,) +
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