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Abstract

Let P be a topological property. A space X is said to be star P if whenever U is an open cover of
X , there exists a subspace A ⊆ X with property P such that X = St(A, U), where St(A, U)=

⋃
{U ∈

U :U ∩ A 6= ∅}. In this paper we construct an example of a pseudocompact Tychonoff space that is not
star Lindelöf, which gives a negative answer to Alas et al. [‘Countability and star covering properties’,
Topology Appl. 158 (2011), 620–626, Question 3].
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1. Introduction

By a ‘space’ we mean a topological space. Let X be a space and U a collection of
subsets of X . For A ⊆ X , let St(A, U)=

⋃
{U ∈ U :U ∩ A 6= ∅}.

DEFINITION 1.1 [2, 9]. Let P be a topological property. A space X is said to be star
P if whenever U is an open cover of X , there exists a subspace A ⊆ X with property
P such that X = St(A, U). The set A will be called a star kernel of the cover U .

The term star P was coined in [9] and used in [1, 2], but certain star properties,
specifically those corresponding to ‘P = finite’ and ‘P = countable’, were first studied
by van Douwen et al. in [8] and later by many other authors. A survey of star covering
properties with a comprehensive bibliography can be found in [4]. Here, we use the
terminology from [2, 4]. In [8, 9] a star finite space is called starcompact and strongly
1-starcompact, and a star countable space is called star Lindelöf and strongly 1-star
Lindelöf. In [7], a star σ -compact space is called σ -starcompact. From the definitions,
we have the following diagram:

star countable−→ star σ -compact−→ star Lindelöf

In [2], Alas et al. studied the relationships of star P properties for P ∈ {Lindelöf, σ -
compact, countable} with other Lindelöf type properties and asked the following
question.
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QUESTION 1.2 [2, Question 3]. Is a pseudocompact Tychonoff space star Lindelöf?

The purpose of this note is to construct an example which gives a negative answer
to this question.

Let c denote the cardinality of the set of all real numbers. As usual, a cardinal is
an initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often
viewed as a space with the usual order topology. Other terms and symbols that we do
not define follow [3].

2. Main results

In this section we construct an example of a pseudocompact Tychonoff space that
is not star Lindelöf. For a Tychonoff space X , let β(X) denote the C̆ech–Stone
compactification of X .

THEOREM 2.1. There exists a pseudocompact Tychonoff space which is not star
Lindelöf.

PROOF. Let D = {dα : α < c} be a discrete space of cardinality c and let

X = (β(D)× (c+ 1)) \ ((β(D) \ D)× {c})

be the subspace of β(D)× (c+ 1). As was shown by Noble [5], X is pseudocompact;
in fact, it has a countably compact, dense subspace β(D)× c.

Next, we show that X is not star Lindelöf. For each α < c, let

Uα = {dα} × [0, c].

Let us consider the open cover

U = {Uα : α < c} ∪ {β(D)× c}

of X . Let A be a Lindelöf subset of X and let

3= {α : 〈dα, c〉 ∈ A}.

Then 3 is countable, since {〈dα, c〉 : α < c} is a discrete closed subset of X .
Let

A′ = A
∖⋃
{Uα : α ∈3}.

If A′ = ∅, then there exists an α0 < c such that A ∩Uα0 = ∅, hence 〈dα0, c〉 /∈

St(A, U), since Uα0 is the only element of U containing the point 〈dα0, c〉. On the other
hand, if A′ 6= ∅, then A′ is closed in A and A′ is Lindelöf and A′ ⊆ β(D)× c, hence
π(A′) is a Lindelöf subset of a countably compact space c, where π : β(D)× c→ c is
the projection. Hence, there exists α1 < c such that π(A′) ∩ (α1, c)= ∅. Choose α < c

such that α > α1 and α /∈3. Then 〈dα, c〉 /∈ St(A, U), since Uα is the only element of
U containing 〈dα, c〉 and Uα ∩ A = ∅, which shows that X is not star Lindelöf, which
completes the proof. 2
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REMARK 2.2. Alas et al. [1] show there is an example of such a space by using the
example due to Shakhmatov [6]. Shakhmatov’s example is very complicated, but it
has a point-countable base. The construction of Theorem 2.1 is simpler than theirs.
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