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Abstract

Kallenberg [2] introduced the concept of ̂ -exchangeable sequences of random variables and produced
some characterizations of ̂ -exchangeability in terms of stopping times. In this paper ways of extending
the concept of ̂ -exchangeability to doubly indexed arrays of random variables are explored and some
characterizations obtained for row and column exchangeable arrays, weakly exchangeable arrays and
separately exchangeable continuous processes.
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1. Introduction

A sequence of random variables X = (Xu X2 . . . ) is said to be exchangeable if (Xu

X2,...) = (Xjrd), Xn{2), • • •) for any permutation n of the positive integers that leaves
all but a finite number of integers fixed. A finite sequence (X\, X2, • •., Xn) is finitely

exchangeable if (X i, X2,.. •, Xn) = (Xnm,..., XKin)), where n is any permutation of
(1,2,... ,n). Any finite subsequence of an infinite exchangeable sequence is finitely
exchangeable but finitely exchangeable sequences cannot necessarily be embedded
into an infinite sequence of exchangeable random variables.

Kingman [3] gave a detailed account of infinite and finite exchangeability along
with a discussion of various characterizations that have been developed. Kallenberg
[2] introduced the concept of ^"-exchangeability for sequences adapted to some fil-
tration & = (^o, &\, • • •): X is said to be &-exchangeable if (Xn+U Xn+2, . . . ) is
conditionally exchangeable given &n. Kallenberg noted that all ^-exchangeable se-
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346 B. G. Ivanoff and N. C. Weber [2]

quences were exchangeable and if 6n denotes the shift operator, that is, 0noX = (Xn+i,
Xn+2,...), then the infinite sequence X is ^-exchangeable if and only if 0x o X = X
for every ^"-stopping time r. This characterization was shown to be an extension of a
characterization of Dacunha-Castelle [ 1 ] for infinite exchangeable sequences. Further,
Kallenberg [2] gave some characterizations for finitely ̂ -exchangeable sequences in
terms of stopping times and reflections.

In this note we consider ways of extending the concept of j^-exchangeability to
partially exchangeable arrays; that is, row and column exchangeable (RCE) arrays and
weakly exchangeable arrays. This is an interesting problem, for in the doubly indexed
situation we find different definitions of ^"-exchangeability are needed to deal with
the finite and infinite cases. Moreover, there does not appear to be a generalization of
Kallenberg's characterization for infinite weakly exchangeable arrays. In Section 2
we consider the infinite case and provide a characterization analogous to Theorem 2.1
in Kallenberg [2] for RCE arrays. In Section 3 we consider the case of finite arrays and
extend Kallenberg's Proposition 2.2 to obtain characterizations for RCE and weakly
exchangeable arrays, and in Section 4 we apply these characterizations to obtain
results for continuous processes.

2. Infinite arrays

An array X = {X^; i > 1, j > 1} of random elements taking values in an arbitrary
measurable space (G, y) is row and column exchangeable, RCE, if X = {Xn{i)a(j}}
where n and a are separate permutations of the positive integers which leave all but
a finite number of the integers fixed. An array X is said to be weakly exchangeable
if X — {Xn{i)iJr(y)} where n is as above. Thus all infinite RCE arrays are weakly
exchangeable.

Following Kallenberg [2] we assume X is adapted to a filtration & = {&if, i >
0, j > 0}. Let Qmn denote the shift operator: 9mn o X = {Xm+in+j; / > 1, j > 1}.
We say X is weak ^"-RCE if 8mn o X is conditionally RCE given &mn. If X is
weak ^"-RCE then X is also unconditionally a row and column exchangeable array.
Furthermore, we say X is weak ^-weakly exchangeable if 6mn o X is conditionally
weakly exchangeable given &mn. Our first result is a characterization of weak &-
RCE arrays in terms of random shifts and so can be thought of as an extension of
Theorem 2.1 of Kallenberg [2] to this partial exchangeability situation. The random
vector (S,T) taking values in Z\ is an adapted random time with respect to & if
[S = i,T = j } z f t j , i,j>L

Before stating our main theorem we give the following result on (2-parameter)
martingales.
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[3] Some characterizations of partial exchangeability 347

DEFINITION. An integrable process X = {Xu : i, j > 0} adapted to a filtration &
is an (&-) martingale if for all / , j , k, I such that i <k,j< £, E{Xu\^{j) = Xu a.s.

LEMMA 1. M is a martingale if E MSj = E MOfi, for all adapted, bounded,

random times (S, T).

PROOF. Let m < m' and n < n' be given and let A e &mn. Set (S, T) =
(m, n)I(A) + (m1, n')I(Ac) • (5, T) is an adapted random time with respect to &.
Now

E Mo,o = E MmV = E MS,T = E MmnI(A) + E Mm,nJ(Ac),

(1) so EMmWI(A) = EMmnI(A).

Thus £(Mmv \&mn) = Mmn a.s., since (1) holds for arbitrary A G ̂ mn, and so M is a
martingale.

THEOREM 1. X is a weak ^"-RCE array if and only ifOs,r oX = Xfor all adapted,
bounded, random times (S, T).

PROOF. First assume that X is weak J^-RCE and let (5, T) be a bounded, adapted
random time, S,T < m a.s. Let / : G°° x G°° - • R be a bounded function of the
first n coordinates in each direction, n e N. Then

m m

E(f(es,T oX)) = ̂ 2J2E [fWs.T ° * ) ; s = '•T = j]

(2)
v ' m m

1 = 1 7 = 1

= £ f(9m,m o X)

= E / ( J Q ,

where the third equality follows since given ^ , #,; o X is RCE. By a monotone class
argument, this extends to arbitrary bounded / .

Conversely, assume BSj o X = X for arbitrary, finite, adapted, bounded random
times (S, T). For fixed bounded / : G00 x G°° ->• R, define

], m,neN.

https://doi.org/10.1017/S1446788700000422 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000422


348 B. G. Ivanoff and N. C. Weber [4]

For any adapted, bounded, random time (S, T),

E MS,T = J2J2E[M™> S = m'T = n]

= E f{6s,T o X)

= E f(X), by assumption.

Thus from Lemma 1, M is a martingale and so for any k,£ > 0,

E [f(em+k,n+( o X)\&mn] = E [E(f(6m+k,n+e o X)\&m+t,H+l)\&mH]

(3) =E[Mm+k,n+t\&mn]
= Mmn, f o r a l l M e W .

To complete the proof, we will show that conditional on &mn the columns of 9m,„ o X
are exchangeable, as a similar argument can be used to establish that, given &mn, the
rows of 0mn o X are exchangeable.

For fixed n, the sequence /(#*,„ o X), k > 1 is stationary and bounded, so by the
pointwise ergodic theorem

lim - V f(9m+k,n oX) = E [f(X^)K] a.s.,

where X^1} = {X,;; / > 1, j > n] and "€„ denotes the a -field of X'" -measurable
sets that are invariant under column shifts. From (3), and the dominated convergence
theorem,

(4) E [E [/(X<")|^,] \&mH] = Mmn = E [f{6mn o

If g is a bounded function which is shift invariant under column shifts, then

E [f(9m,n o X)g{X^)\&mn] = E [f{9m,n o X)g(9mn o X)\&mn]

= E [E{f{X^)g{X^)\^n)\^mn\, by (4)

which means that

(5) E [f{9m,n o X)\3?mn vtfn] = E {f(X^)\%) a.s. .

https://doi.org/10.1017/S1446788700000422 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000422


[5] Some characterizations of partial exchangeability 349

Write X<" = [X,., Xj,,, X 3 n , . . . ]. Consider arbitrary u € N and Bu • • •, Bu e y°°:

(6)

k=\

= E

n
k=\

u-1

k=\

from (5) with / ( X ) = 7(X10 G B J ,

= £
*=i

*,-! .» V <%,

• £ ( / ( X l n € BH)\<en

V

V

= f\P(XkneBk\Vn),

since P(Xln e Bk\tfn) = P(Xkn e Bk\^n), by shift invariance.
Now as in Kallenberg's proof for fixed h e iVandm > O. le t^ c y°°x-

(h terms), be the class of sets A such that

X m + 1 , n , X m + 2 , n , ) e

a.s.

for all /n,« and every permutation JT of the indices 1 , . . . , h. Equation (6) implies that
every product set belongs to S> and so it follows that Q = y°° x • • • x y°°. Since h
and m were arbitrary it follows that the columns of 8m<n o X are exchangeable, given

In the above proof we only need 6SjoX = X for adapted random times taking two
distinct ordered values. Thus if A € &mn and (5, T) = (m, n)I{A) + (m1, n')I(Ac),
where rri > m, ri > n we get the equivalent condition

(7) E [f(8m,n o X)I(A)] = E [f(9m,,n, o X)I(A)]

for arbitrary A e &mn and bounded / : G°° x G°° -+ R. Thus X is weak ^ - R C E if

andonlyifg/ve«#mn,^m,,oX = 6uvoX ,for all (m, n), («, u) such that m <u,n<v.
If X is RCE then the columns form an exchangeable sequence, as do the rows. Is it

possible to characterize an RCE array via row and column conditions separately? A
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partial response to this question is given in the following lemma. Let &) = \Jj &tj

and ^f = V, &ij '» j > 0 and assume & satisfies the condition

(F4) : &] is conditionally independent of J&"? given J ^ for all i, j .

This condition is equivalent to the property of commutation of the conditional ex-
pectation operators. Note that if (5, T) is an adapted random time then S is an &x

stopping time and T is an j ^ " 2 stopping time.

LEMMA 2. If ^ satisfies the condition (F4), and X is ̂ x -exchangeable as a column
process and &2-exchangeable as a row process, then X is a weak j^-RCE array.

PROOF. For permutations n and a, and any measurable set A,

= E(P {(Xm+xVU+aU)) 6 A\&m) \&l), by (F4)

= E(P {(Xm+Ln+a{j)) e A\Pl
m)\&l), by^1-exchangeability

= E(P ((Xm+i,n+aU)) e A\^)\^)

= E(P ((Xm+i<n+j) e A\S?t) \&x
m), by ̂ -exchangeability

= P {(Xm+itn+j) G A\&mn), by (F4)

so X is weak

The converse to Lemma 2 is not true, even under (F4). The following example is
an array which is weak ^"-RCE but not ^'-exchangeable.

EXAMPLE. Let {§,}, {/?,} and {A.,-y-} be independent f/(0, 1) random variables. Let
X,j = t-trijXjj and ^ = o(%k, k < i; r)t, khi, t < j , h > 1) for /, j > 1. Given &ih

9ij o X is RCE. Now &} = o(S-k, k < i; r)t, Xhe, h,l> 1), / > 1. Also

and so given &l_x, the columns X^\ X*1^,.. . are not identically distributed and so
are not exchangeable. However &j = o(%k, r)t, XM, I < j , h, k > 1) and so &
satisfies (F4).

Is there a characterization of weak j^-weak exchangeability in terms of random
shifts? To maintain symmetry we need any such shifts to be along the diagonal. If T
is a stopping time with respect to ( ^ , ) , then a necessary condition for weak
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exchangeability is 9TT o X = X; but this condition is not sufficient. To see this,
consider X = (Xi;), defined by

j > i,

j < i,

where £], £2> • • • > »?i> *?2, • • • are independent f/(0, 1) random variables. If & is the

induced filtration, then 9T T o X = X; but X is not weakly exchangeable.

3. Finite arrays

An array X = {X,;; 1 < / < m, 1 < j < r] of random elements taking values in an
arbitrary measurable space (G, S^) is finitely RCE if X = {X^(l) CT(;)}, where n is any
permutation of (1, 2 , . . . , m) and a is any permutation of ( 1 , 2 , . . . , r ) . If m = r, then
X is finitely weakly exchangeable if X = (X^,),*(;>}. For finite arrays the shifted array
does not even have the same dimensions as the original one, and so characterizations
like those developed for infinite arrays are not possible. Following Kallenberg we
look for characterizations in the finite case based on reflection properties. The extra
complication in the case of finite arrays is that reflecting the upper rows of the array
while holding the first / rows fixed, and similarly reflecting the upper columns of the
array while holding the first j columns fixed, not only affects the upper quadrant of
the array, but also impacts on the shoulder regions; that is, the set of variables in the
first / rows that are not in the first j , columns or in the first j columns but not in the
first i rows. For this reason we introduce a stronger version of ^"-exchangeability
based on shells.

DEFINITIONS. 1. A finite array X is J*"-RCE if for all / < m - 1, j <r — \ the
conditional distribution of the shell, {Xuv; i < u < m or j < v < r], given ^tj, is
invariant under finite permutations of rows that leave the first j rows invariant and/or
permutations of the columns that leave the first / columns invariant.

2. A finite square array X is ^-weakly exchangeable if for all i the conditional
distribution of the shell, {Xuv; i<u<mori<v< m], given &it, is invariant under
the same finite permutation of the rows and columns of the shell that leave the first /
rows and columns invariant.

3. A finite array is weak ^"-RCE if for all i < m — 1, j < r — 1 the array
{Xuv : i < u < m, j < v < r} is conditionally RCE given ^ ; .

4. A finite square array X is weak ^-weakly exchangeable if the array {Xuv : i <
« < w , / < u < m } i s conditionally weakly exchangeable given ^ , .
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Note that in the first two cases, although the first i columns are fixed, the elements
within the columns may be permuted. For example, under Definition 1 the elements
in the first column in rows j + 1 , . . . , r may be permuted by row interchanges and
similarly the elements of the first row in columns i + 1 , . . . , m may be interchanged
by column permutations. Clearly, if X is J?-RCE, then X is weak J^-RCE.

For finite arrays we define the shift operator r,7 by

Ttj o X = {Xuv; i < u < m or j < v < r}.

Further define the reflection operator Rtj , where Rtj o X produces the shell [X'uv;
i<u<moTJ<v<r} where

y — •
Auv —

Xm+i+l—u,r+j+l-vi

Xu,r+j+\—vi

Xm+j+\-u,v,

u > i
u < i,

u > i

V > J

V> J

v < j

DEFINITION. The mxr array X has the strong reflection property if for any adapted

random time (S, T), rs,T ° X = RST oX, (0<S<m~\, 0 < T < r - 1).

THEOREM 2. Let X be a finite array. X is ^"-RCE if and only if X has the strong
reflection property.

PROOF. Let X be j£"-RCE and let (S, T) be an adapted random time. Let G,y denote
the space of the shells {Xuv; i < u < m or j < v < r}. Let / : Ur=o' U^o ^0 ~~* R
be bounded. Then

m - l r - 1

Ef(Ts.T oX) = Y,HE[f (r-v ° x ) ; (5- r> = («';")]
i=0 j=0

m-l r-\

m-l r -1

= E f(Rs,T o X).

Thus X satisfies r 5 r o X = RST o X.
Conversely, suppose X has the strong reflection property. Let A e J^y and set

(5, T) = (i, j)I(A) + (m- \,r- 1)/(AC), for some / < m - 1, j < r - 1.

E / ( r s , r o X) = E(f(Tij o X)I(A)) + (Etf f lV, , , . , o X)1(AC))

= E(f(Ru o X)I(A)) + (£(/(/?„_,,,_, o X)I(AC)),
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as TSj o X = RS,T ° X. Thus

Ef(Tij o X)I(A) = Ef(Ru o X)I(A) for A e &ih

353

so ( £ ( / ( F y o X ) | ^ , 7 ) = E(f(Ru o
Let 7rt denote the permutation mapping ( 1 , 2 , . . . , m) to (1,2,... ,k,m,m — 1,

...,k+ 1) and let o^ denote the permutation mapping ( 1 , 2 , . . . , r) to ( 1 , 2 , . . . ,
I, r, r — 1 , . . . , t + 1). For fixed (M, D) < {m, r) and B,7 e 5?, i > u or j > v, and
any A: > M, £ > v consider

ij e

{X,, e B0

(i,;)6Au,

ul J , w h e r e AU1) = {(/, j):u<i<morv<j< r}.
/

=£ f]
\\u<i<k

= E

ij £ By}-

6 By

E ( n n w v e BU
\u<i<kv<j<£

\

J

Any pair of permutations {n, a) leaving ( 1 , . . . , u) and ( 1 , . . . , v) fixed, respect-
ively, can be obtained by compositions of n'ks and a'ts for k > u, I > v. Thus it
follows that Fuv o X is finitely, conditionally RCE given &uv.

DEFINITION. The n x n array X has the weak reflection property if, for any {^,,}

stopping time S, 0 < S < n - 1, Ts,s o X = Rs s o X.

THEOREM 3. Let X be an n x n array. X is ^-weakly exchangeable if and only if
X satisfies the weak reflection property.

PROOF. The proof proceeds precisely as the proof of Theorem 2 above. Let S be an
[&u] stopping time and assume X is ^"-weakly exchangeable. L e t / : |JJ=o ^ » ~* R
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be a bounded function. Then

n-\

£/(F5,5 oX) = J2E t/(r« ° X); S = i]
i = \

n-\

= E [f(Rs,s o X)],

so FS 5 o X = Rss o X .

Next suppose X has the weak reflection property. Let A e &i{ and set S =
i I (A) + (« — 1) I (Ac). As before we deduce

E /(F,, o X)I(A) = E /(/?,, o X)I(A);

and so £(/(F, , o X)\&ti) = E(f(Ru o X) | ^ , ) .
For fixed u < n, Btj e 5?, i > u or j > u, and any k > u, if nk denotes the

permutation mapping (1, 2 , . . . , n) to (1, 2 , . . . , k, n, n — 1 , . . . , k + 1),

f]

J~[ /{X(/-e

/{X,7 G Bjrjco.juty

/

and so we can conclude F,, o X is conditionally weakly exchangeable given ^it.

As in the infinite case, we have the following result.

LEMMA 3. For a finite array X adapted to a filtration J5" satisfying (F4), if the
columns of X are ^-exchangeable and the rows are ^-exchangeable, then X is

PROOF. Given (/, j ) , let n be a permutation of ( 1 , 2 , . . . , m) that leaves ( 1 , . . . , / ' )
fixed and let a be a permutation of (1 , 2 , . . . , r) that leaves ( 1 , . . . , j) fixed. Recall
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[11] Some characterizations of partial exchangeability 355

Aij = {{u, v) : i < u < m or j < v < r}. For sets Buv e 5? and (u, v) € A,7,

J \iu,v)eA,,

\u» J

= E

For general & the converse does not hold. However if X is an ^ - R C E array
generated by random, independent, uniform permutations of the rows and columns of
an array of fixed constants, that is, X is an ergodic array, and ^tj = a{7z(l),..., n(i);
CT(1), . . . , o-(y')} then the columns of X are J£"'-exchangeable and the rows are J?"2-
exchangeable.

We continue to consider finite ergodic arrays. Let & be a filtration such that
CT{CT(1), . . . , (i(j)} c &Oj and a{n(l), ..., n(i)} c &i0, for i = 1, . . . , m; j =
1, . . . , r . For this structure Theorem 4 provides a simple characterization of weak
^"-RCE exchangeability analogous to Proposition 2.3 in Kallenberg [2].

DEFINITION. The random time (5, T) is &-predictable if {5 = i,T = j} e

ft-u-ui > hj > 1.

THEOREM 4. G/wn X â  above, X is weak ^"-RCE if and only ifXSJ = Xn,for
every J?-predictable random time (S,T).

PROOF. Assume X is ^ -weak RCE. Then for any bounded function / : G

E f{xSJ) = Y,HE (/(xu); (s> T) = 0". D)

R,
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E (E

i j

= E f{Xm,r)

= Ef(Xn)

and so XS,T = Xn-

Conversely, assume XSj = ^n for all ^"-predictable times (5, T). From the
proof of Theorem 1, if

,v], 0 < « < m - l , 0 < u < r - l ,

then (M, &) is a martingale and

(8) E (f{Xuv)\&ij) = Mu, for all 0 < / < u < m, 0 < j < v < r.

If we condition on ̂ , then the first / rows and j columns are known, so the values
of X in the set {Xuv : i < u < m and j < v < r] are known. Thus, if we can show
(8) implies X is RCE, then a similar argument shows X is weak «^-RCE.

Let p and q be fixed permutations of (1, . . . , m) and (1, . . . , r), respectively. We
need to show P(n = p,o = q) = \/(jn\r\).

First note (it(rn) = p(m), a(r) = q(r)) is ^m_1>r_! measurable and

P(7t(m) = p(m), a{r) =q(r)\n(i) = p(i), a{j) =q(j); i < m - 1, j < r - 1) = 1.

Now

= 1/2.

This can be seen by applying (8) with f(Xuv) = I(XUV = a,y), where a,; is a value
in the array X, since E(f{Xmr)\&m_2tr_x) = £(/(Xm_,,r)|^7,_2,r_1). Continuing in
this way, P(n = p,o(r) — q(r)\a(j), j < r — 1) = I/ml.

NOWP(CT(I—1) =q(r-l)\a(j)J < r-2) = l/2,from(8),as£(/(X,r)|^b,r_2)

= E(f{Xx,r-i)|^o,r-2)- So working down the first column of the array we find
P(a = q,n = p) = (rlml)~\ as required.

I fXisasquaremxw array then a = n a.s. ifthe diagonal set {Xn, X22,..., Xmm)
is deterministic. Under such a condition the following result gives a condition which
ensures that the permutation is uniform o n ( l , 2 , . . . , / w ) .

THEOREM 5. Suppose {Xu,..., Xmm} is deterministic. Then X is weak ^-weakly

exchangeable if and only if Xs,s = -^n for every stopping time S predictable with

respect to {^ ,} .
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PROOF. The permutation n is determined in this case by the diagonal. Thus the
result follows by applying Proposition 2.3 of Kallenberg [2] to the diagonal.

4. Continuous parameter processes

Exchangeability may be defined for a 2-parameter process {XSJ : s,t e K], where
K is R2

+ or [0, I]2. For any function f(s, t) and any rectangle B = (s\, s2] x (tu t2],
let / ( f i ) denote the increment of / over B:

f{B) = f(s2, h) - f(sut2) - f(s2, h) + f(su t{).

For fixed 8 > 0, let Bi} = ((i-I)8,i8]x ((j -1)8, jS]. We shall say that the process
X is separately exchangeable if the array of increments of X is RCE with respect
to any square grid (BLj), and X is jointly exchangeable if the array of increments is
weakly exchangeable.

In order to generalize the results of Sections 2 and 3, we shall assume henceforth
that X is 'continuous from above with limits from below' adapted to a filtration
& = {&sA, which is continuous from above. By this, we mean that

« ŝ,» = I I < û,u> Xs+it+, Xs-tl+, A j + r _ , AJ_ T ,_
u>s,v>t

all exist, and Xs+J+ = Xst, V(s, t). It is also assumed that X is 0 on the axes (that
is, Xs,o = Xo,, = 0, VJ, t), and if X is defined on [0, I]2 , that X is 'continuous from
below'on the upper and right boundaries ofthe square (that is, Xji = Xs_ A_ = Xs+1_
and X\t = X]_,,_ = Xt_,,+, for all 0 < s, t < 1, and Xi,i = Xi_,i_). We may define
(weak) ^"-exchangeability in the natural way: we say that X is (weak) &-separately
(jointly) exchangeable if the corresponding array of increments over any square grid
is (weak) ^ - R C E (weakly exchangeable).

We begin with the continuous-parameter version of Theorem 1 for processes on
R2

+. Define 6S, , by (0 s , r o X)u,v = XS+UJ+V - XSil+v - XS+UJ + Xsl. A random
vector (5, T) taking values in R2

+ is an adapted random time with respect to & if
{S < s, T < t] e J ^ , Ws, t > 0. (Note: This definition is equivalent to the previous
one in the case that the random time takes on at most countably many values.) It is
easily shown that arbitrary adapted random times may be approximated from above
by adapted random times taking on countably many values.

THEOREM 6. Let X be a process defined on R2
+. X is weak ^-separately exchange-

able if and only if&SjoX= X for all adapted bounded random times (S, T).
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PROOF. Firstly assume that X is weak ^-separately exchangeable and let (S, T) be
a bounded adapted random time. For adapted random times taking on dyadic values
of the form {(i2~", j2~"),i, j < m}, we may apply Theorem 1. For general stopping
times, we approximate from above and use the fact that X is continuous from above.

The converse is an easy corollary of Theorem 1.

It is easily seen that there is a continuous-parameter version of Lemma 2.
We now consider processes defined on [0, I]2. The shift operator Tsl is defined as

follows: r j ( o X = {X'uv, u > s or v > t}, where X'uv = Xuv - XUAJUA,, if u > s
or v > t. Note X'uv denotes the increment over the possibly L-shaped region that we
need to consider for processes defined on [0, I]2.

The reflection operator Rs, is defined as follows: Rs, o X = {Xuv, u > s or v > t},
where

' ~:u - x(1+J_M)_>(1+/_u)_, u > s, v > t,

X,.,, = X\,v — A'd+s-M)-,^ U > S,V < t,

Xu,x - X u , ( 1 + r _ v ) _ , v > t, u < s.

X is said to have the strong reflection property if F s r o X = RST ° X for all adapted
random times (S, T). Xissa.idtohavethewealcreflectionpropertyifrSs°X = RSs°X
for all (1-dimensional) stopping times with respect to the filtration {J£"s,s, 0 < s < 1}.

The analogue of Theorem 2 is:

THEOREM 7. Let X be a process defined on [0, I]2. X is ^-separately exchange-
able if and only ifX has the strong reflection property.

PROOF. Assume first that X has the strong reflection property. Apply Theorem 2
to the increments over any square grid, using discrete stopping times.

Now assume that X is J^-separately exchangeable. Apply Theorem 2 to increments
of t h e fo rm Xi-^-i)h,i-u-i)h ~ -^ l - tA. i -o ' - i )* — ^i-(*-i)/r.i-y7i + ^i—*A.I—yft' w h e r e X

is continuous a.s. at (1 — kh, 1 — jh), k, j > 1. Noting that the set of such h is dense
in [0, 1], we may approximate arbitrary random times from above to obtain the same
conditional finite dimensional distributions for TST o X and RST o X.

The analogue of Theorem 3 is shown in exactly the same way:

THEOREM 8. Let X be a process defined on [0, I]2. X is & -jointly exchangeable if
and only if X has the weak reflection property.

https://doi.org/10.1017/S1446788700000422 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000422


[15] Some characterizations of partial exchangeability 359

References

[1] D. Dacunha-Castelle, 'Indiscernability and exchangeability in Lp spaces', in: Proc. Seminar on
Random Series, Convex Sets and Geometry ofBanach Spaces (Aarhus, 1974) pp. 50-56.

[2] O. Kallenberg, 'Characterizations and embedding properties in exchangeability', Z. Wahrsch. Verw.
Gebiete 60 (1982), 249-281.

[3] J. F. C. Kingman, 'Uses of exchangeability', Ann. Probab. 6 (1978), 183-197.

Department of Mathematics School of Mathematics and Statistics
University of Ottawa University of Sydney
Ottawa, Ontario NSW 2006
Canada KIN 6N5 Australia

https://doi.org/10.1017/S1446788700000422 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000422

