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Abstract

In this paper we study the properties of total time on test transforms of order n and examine
their applications in reliability analysis. It is shown that the successive transforms produce
either distributions with increasing or bathtub-shaped failure rates or distributions with
decreasing or upside bathtub-shaped failure rates. The ageing properties of the baseline
distribution is compared with those of transformed distributions, and a partial order based
on nth-order transforms and their implications are discussed.
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1. Introduction

The concept of total time on test (TTT) transforms is well known for its applications in
different fields of study such as reliability analysis (Lai and Xie (2006, p. 42)), econometrics
(Pham and Turkkan (1994)), stochastic modeling (Vera and Lynch (2005)), tail orderings
(Bartoszewicz (1996)), and ordering distributions (Kochar et al. (2002)). A major share of the
literature on TTT is concerned with reliability problems that include characterization of ageing
properties, model identification, tests of hypotheses, age replacement policies in maintenance,
ordering life distributions, and defining new classes of life distributions. We refer the reader
to Bergman and Klefsjö (1984), Bartoszewicz (1995), Haupt and Schabe (1997), Kochar et al.
(2002), Li and Zou (2004), Ahmed et al. (2005), Li and Shaked (2007), Nanda and Shaked
(2008), and the references therein for further details. For a random variable representing a
lifetime, with distribution function F(x) and survival function F̄ (x), the function defined on
[0, 1] by

H−1
F (u) =

∫ F−1(u)

0
F̄ (x) dx (1.1)

is called the TTT transform of F . Recently, Vera and Lynch (2005) introduced higher-order TTT
transforms by applying definition (1.1) recursively to the transformed distributions. They used
the dominance of the transformed models over the baseline distribution to develop a martingale-
type structure between the population and the baseline model. The present paper aims to study
the properties of these iterated TTT transforms in the context of reliability analysis. Our
objective in attempting this generalization is twofold. Firstly, it is expected that the hierarchy
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of distributions generated by the iterative process will reveal more clearly the behavior of
the reliability characteristics of the transformed models than in a single trial. Secondly, the
results obtained in this approach that subsumes the results for TTT transforms of order one will
contribute to new models and properties that could be useful in the analysis of lifetime data.

Most of the properties of (1.1) are studied in the literature in terms of the distribution function
F(x) and other reliability characteristics derived from it. An alternative but equivalent approach
is to use the quantile function, defined for a right-continuous distribution function F(x) as

Q(u) = inf[x : F(x) ≥ u], 0 ≤ u ≤ 1,

and the reliability properties based onQ(u). The quantile-based definitions of the basic concepts
such as the failure (reversed failure) rate, the mean and variance of residual life, etc., their
properties, the identities connecting them, and their characterizations are discussed in Nair
and Sankaran (2008). In the context of TTT transforms, a quantile-based approach is more
tractable analytically and simpler than using the distribution function and related concepts.
There exist many distributions with simple quantile functions, but whose distribution functions
cannot be expressed in closed forms (e.g. lambda distributions). These can be brought into
consideration as reliability models in the present form of analysis. Quantile-based measures
are less influenced by extreme observations due to the presence of long-term survivors, which
are quite likely when heavy-tailed distributions are used as models of lifetime data.

The work carried out in the rest of this paper consists of four sections. In Section 2 we present
a quantile-based definition of TTT transforms of order n and derive some identities connecting
the reliability functions of the baseline and transformed distributions. Characterizations of
some quantile functions by properties of the nth-order transforms are discussed in Section 3.
Comparison of the ageing properties of the original and transformed distributions are made
in Section 4, and, finally, Section 5 contains a discussion of various order relations, their
applications, and some concluding remarks.

2. Preliminary results

Let X be a nonnegative random variable with quantile function Q(u), as defined in Section 1.
We assume that the distribution function F(x) of X is absolutely continuous and strictly
increasing. Furthermore, following Parzen (1979), we define the density quantile function
as f (Q(u)), where f (x) is the density function of X, and we define the quantile density
function as q(u) = Q′(u), where the prime notation denotes differentiation. Obviously,

q(u)f (Q(u)) = 1.

Of particular interest to the present study is the hazard quantile function (equivalent to the
failure rate)

H(u) = f (Q(u))

1 − u
= ((1 − u)q(u))−1

and the mean residual quantile function (equivalent to the mean residual life function)

M(u) = (1 − u)−1
∫ 1

u

(Q(p) − Q(u)) dp. (2.1)
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The interpretations of H(u) and Q(u), and the proofs of the following identities are available
in Nair and Sankaran (2008):

Q(u) =
∫ u

0
((1 − p)H(p))−1 dp

= µ − M(u) +
∫ u

0
(1 − p)−1M(p) dp, µ = E(X),

(2.2)

M(u) = (1 − u)−1
∫ 1

u

(H(p))−1 dp, and (H(u))−1 = − d

du
((1 − u)M(u)).

The definition of the TTT transform in (1.1) transforms to T1(u) = ∫ u

0 (1 − p)q(p) dp, which
satisfies the relationships t1(u) = T ′

1(u) = (H(u))−1 and

T1(u) = µ − (1 − u)M(u). (2.3)

The above equations show that, given any of the functions Q(u), H(u), or M(u), the other two
can be determined uniquely. Since T1(0) = 0, T1(1) = µ, and T1(u) is an increasing function
of u, T1(u) is a quantile function with support [0, µ]. Hence, T1(u) defines a proper distribution
function on [0, µ], which is HF defined in (1.1). Thus, there exists a transform of T1 and its
successive transforms, enabling us to define the TTT transform recursively starting from Q(u).

Definition 2.1. The TTT transform of order n of a random variable X is defined recursively as

Tn(u) =
∫ u

0
(1 − p)tn−1(p) dp, n = 1, 2, . . . , (2.4)

with T0(u) = Q(u) and tn(u) = T ′
n(u) provided that µn−1 = ∫ 1

0 Tn−1(p) dp < ∞.
We denote by Xn the random variable with quantile function Tn(u), mean µn, hazard quantile

function Hn(u), and mean residual quantile function Mn(u). Differentiating (2.4) we have

tn(u) = (1 − u)tn−1(u) = (Hn−1(u))−1 (2.5)

and
tn(u) = (1 − u)nt0(u) = (1 − u)nq(u) = (1 − u)n−1(H(u))−1. (2.6)

From (2.5) and (2.6), we have the identity connecting the hazard quantile functions of X and
Xn as

H(u) = (1 − u)nHn(u), n = 0, 1, 2, . . . , (2.7)

with H0(u) = H(u) representing X0 = X.

Using (2.3), Tn(u) and Mn(u) are related by

Tn+1(u) = µn − (1 − u)Mn(u), (2.8)

from which
tn+1(u) = Mn(u) − (1 − u)M ′

n(u). (2.9)

This along with tn+1(u) = (1 − u)nt1(u) and (2.9) specified for n = 0 give the following
relationship between the mean residual quantile functions of X and Xn:

Mn(u) − (1 − u)M ′
n(u) = (1 − u)n(M(u) − (1 − u)M ′(u)). (2.10)

Some important life distributions along with the expressions for Q(u), H(u), and tn(u) are
exhibited in Table 1 to enable calculation of the above functions for these distributions. These
distributions, where discussed in the sequel, will have the same form as in Table 1.
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Remark 2.1. Definition 2.1 extends to negative integers as well. For example, Q(u) can be
considered as the transform of T−1(u), etc. In this backward recurrence,

t−n(u) = (1 − u)−nq(u)

and
H(u) = (1 − u)−nHn(u), n = 1, 2, 3 . . . .

Equivalently, we can assume a given distributional form for Xn and revert to the distribution
of X.

Remark 2.2. As seen from (2.6), the sequence 〈Hn(u)〉 increases for all positive n and
decreases for negative n. Thus, the random variable Xn (or the nth-order transform) generates
a distribution whose failure rate is larger or smaller than that of Xn−1 according to whether n

is positive or, respectively, negative.

3. Characterizations

Relationships (2.6)–(2.8) encourage us to seek mutual characterizations of the distributions
of X and Xn by exploiting the functional forms of Q(u), H(u), M(u), and their counterparts
for Xn.

First we note that Tn(u) characterizes the distribution of X. This follows from

tn(u) = (1 − u)nq(u)

and

Q(u) =
∫ u

0
(1 − p)−ntn(p) dp.

Theorem 3.1. The random variable Xn, n = 1, 2, 3, . . . , has rescaled beta distribution if and
only if X is distributed as either exponential, Lomax, or rescaled beta.

Proof. From the expressions for the quantile density functions tn(u) of Xn in Table 1, the
quantile function in the exponential case is

Tn(u) =
∫ u

0
tn(p) dp = (λn)−1(1 − (1 − u)n),

which is rescaled beta with parameters ((λn)−1, n−1) in the support of [0, (nλ)−1]. Similar
calculations show that, when X is Lomax, Xn is rescaled beta with parameters [α(nc −
1)−1, c(nc − 1)−1] in the support of (0, α(nc − 1)−1), and, finally, when X is rescaled beta
with parameters (R, c), Xn has the same distribution in [0, R(1 + nc)−1] with parameters
[R(1 + nc)−1, c(1 + nc)−1]. This proves the ‘if’ part.

To prove the converse, we assume that Xn is distributed as rescaled beta so that we can write

Tn(u) = Rn(1 − (1 − u)1/cn)

for some constants Rn, cn > 0. Thus,

tn(u) = Rn

cn

(1 − u)1/cn−1
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or
Rn

cn

(1 − u)1/cn−1 = (1 − u)nq(u) for all u.

This means that (1 − u)n is a factor on the left-hand side and, therefore,

c−1
n = kn + n for some real kn.

Hence,
q(u) = (kn + n)Rn(1 − u)kn−1.

Since the left-hand side is independent of n, taking n = 1 we have

Q(u) = k−1
1 R1(k1 + 1)(1 − (1 − u)k1).

Hence, X follows the rescaled beta distribution in (0, R1k
−1
1 (k1 +1)) for k1 > 0 and the Lomax

distribution for −1 < k1 < 0. Finally, as k1 → 0, applying L’Hôpital’s rule,

Q(u) → R1(− log(1 − u)),

which represents the exponential law. This completes the proof.

Our next characterization is by a relationship between the mean residual quantile functions
of X and Xn.

Theorem 3.2. The random variable X follows the generalized Pareto distribution with quantile
function

Q(u) = AB−1((1 − u)−B(B+1)−1 − 1), B > −1, A > 0, (3.1)

if and only if, for all n = 0, 1, 2, . . . and 0 < u < 1,

Mn(u) = (nB + n + 1)−1(1 − u)nM(u). (3.2)

Proof. Assuming that (3.2) holds, we have, on using (2.10) and simplifying,

BM(u) = (B + 1)(1 − u)M ′(u)

or
M ′(u)

M(u)
= B

(B + 1)(1 − u)
.

Integrating we have
M(u) = K(1 − u)−B/(B+1). (3.3)

Substituting (3.3) into (2.2) and noting that µ = M(0) = K , we have the quantile function (3.1)
with K = A. This proves the ‘if’ part. Next we assume that X has the distribution specified by
(3.1). Then we have

q(u) = A(B + 1)−1(1 − u)−B(B+1)−1−1.

Using (2.5), we obtain tn(u) and, hence,

Tn(u) = A((B + 1)n − B)−1(1 − (1 − u)n−B(B+1)−1
).
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From (2.1), replacing Q(u) with Tn(u) and simplifying,

Mn(u) = A(nB + n + 1)−1(1 − u)n−B(B+1)−1
.

The quantile function of X in (3.1) verifies

M(u) = A(1 − u)−B(B+1)−1
,

so that (3.2) holds and the proof is completed.

Remark 3.1. The random variable Xn, n = −1, −2, . . . , has Lomax distribution if and only
if X is distributed as either exponential of beta or Lomax. The negative transforms are as
mentioned in Remark 2.1. The proof, being similar to that of Theorem 3.1, is not given here.

4. Ageing properties

It was seen in the last section that with each iteration of the TTT transform, the hazard
quantile function increases for positive n and decreases for negative n. Another important
aspect is to ascertain the ageing behavior in a particular iteration. We prove some general
results about the ageing patterns of Xn in relation to X in this section.

Theorem 4.1. (i) If X is IFR (increasing failure rate) then Xn is IFR for all n.

(ii) If X is DFR (decreasing failure rate) then Xn is DFR if Q(u) ≥ L(k, 1/n), is IFR if
Q(u) ≤ L(k, 1/n), and is BS (bathtub shaped) if there exists a u0 for which Q(u) ≥ L(k, 1/n)

in [0, u0] and Q(u) ≤ L(k, 1/n) in [u0, 1]. Here L(α, c) denotes the quantile function of the
Lomax distribution in Table 1.

Proof. Since tn+1(u) = (1 − u)nt1(u),

t ′n+1(u) = (1 − u)n−1((1 − u)t ′1(u) − nt1(u)), (4.1)

where the prime notation denotes differentiation with respect to u.
From Barlow and Campo (1975), X is IFR or DFR if T1 is concave or, respectively, convex.

Hence, from (4.1),
X is IFR 	⇒ t1(u) is decreasing

	⇒ t ′n+1(u) < 0

	⇒ Tn+1(u) is concave

	⇒ Xn is IFR.

Similarly, when X is DFR, T1(u) is convex and accordingly

Xn is DFR 	⇒ (1 − u)t ′1(u) ≥ nt1(u)

	⇒ t1(u) ≥ k(1 − u)−n

	⇒ Q(u) ≥ L

(
k,

1

n

)
,

Xn is IFR 	⇒ (1 − u)t ′1(u) ≤ nt1(u)

	⇒ t1(u) ≤ k(1 − u)−n

	⇒ Q(u) ≤ L

(
k,

1

n

)
.

The last part of (ii) follows from the above result and Theorem 4.1 of Haupt and Schabe (1997).
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In a similar manner, by considering the backward iteration we have the following result.

Theorem 4.2. (i) If Xn is DFR then X is DFR.

(ii) If Xn is IFR then X is IFR if Tn(u) ≤ B(k(n + 1)−1, (n + 1)−1), is DFR if Tn(u) ≥
B(k(n + 1)−1, (n + 1)−1), and is UBS (upside bathtub shaped) if there exists a u0 for which
Tn(u) ≤ B(k(n+1)−1, (n+1)−1) in [0, u0] and Tn(u) ≥ B(k(n+1)−1, (n+1)−1) in [u0, 1].
Here B(R, c) denotes the rescaled beta with parameters (R, c).

The proof runs along the same lines as in Theorem 4.1 once we note that

t ′1(u) = (1 − u)−n(n(1 − u)−1tn+1(u) + t ′n+1(u)),

and, therefore, the details are omitted.

Remark 4.1. The importance of Theorems 4.1 and 4.2 is that they help the construction of BS
and UBS distributions by a simple mechanism. To obtain BS distributions, we need look only
at DFR distributions for which tn+1(u) has a point of inflexion. Similarly, for obtaining UBS
distributions, we look for IFR distributions of X and perform backward recurrence (n < 0) to
reach a quantile density function that has an inflexion point. The procedure is illustrated in the
following examples.

Example 4.1. The Weibull distribution (Table 1) has

t ′n(u) =
(

1

λ
− 1

)
+ (n − 1) log(1 − u),

so that, when λ ≤ 1, Tn+1 is convex on [0, u0] and concave on [u0, 1], where u0 = 1−exp[(λ−
1)/nλ]. Hence, Xn has BS failure rate for n ≥ 1. With increasing values of n, the change point
in the failure rate becomes larger so that the range for which Xn is IFR increases. Note also
that, for λ ≥ 1 and every n, Xn continues to be IFR.

Similarly, when n is a negative integer, Tn+1(u) is convex for λ ≥ 1 in [u0, 1] and concave
for λ ≥ 1 in [0, u0], where u0 = 1 − exp[(1 − λ)/(n + 2)λ]. Thus, Xn is UBS for n < 2.

Example 4.2. The Burr distribution (Table 1) is DFR for α ≥ 1. In this case,

t ′n+1(u) = αuα−2(1 − u)n−α−1((α − 1) − u(n − 1)),

showing that u = (α − 1)/(n − 1) is a point of inflexion when α ≥ 1. Thus, Xn is BS when
α ≥ 1 and n > 1.

Example 4.3. The lambda distribution verifies

t ′n+1(u) = Cuλ1−1(1 − u)n−λ2−1

× [{(λ1 − λ2)
2 + (2 − n)λ2 + (n − 2)λ1}u2

+ {−2λ2
1 + 2λ1λ2 + (3 − n)λ1 − 2λ2}u + λ1(λ1 − 1)]

= 0.

Hence, Xn is UBS for λ1 = 1, λ2 = 3, and n = 3 with change point u0 = 1
4 .
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Remark 4.2. Haupt and Schabe (1997) proposed a method of constructing a BS distribution by
choosing a twice differentiable function φ(u) satisfying φ(0) = 1, φ(1) = 1, and 0 ≤ φ(u) ≤ 1
with φ(u) having only one inflexion point u0 such that it is convex on [0, u0] and concave on
[u0, 1]. Then the solution F(t) of

θφ′(F (t)) dF(t)

1 − F(t)
= dt, θ = H−1

F > 0, (4.2)

is a BS distribution. Converting (4.2) in terms of quantile functions, the solution of (4.2) is a
twice differentiable Tn(u) for some n for which there is an inflexion point.

Theorem 4.3. (i) X is DMRL (decreasing mean residual lifetime) implies that Xn is DMRL.

(ii) Xn is IMRL (increasing mean residual lifetime) implies that X is IMRL.

Proof. We prove only (i), as the proof of (ii) is similar with negative n. Recall that X

is DMRL if and only if (1 − u)−1(1 − µ−1T1(u)) is decreasing in u (Klefsjö (1982)) or,
alternatively, (1 − u)−1(µ − T1(u)) is decreasing, or

µ − T1(u) − (1 − u)t1(u) ≤ 0.

Furthermore,

Tn+1(u) =
∫ u

0
(1 − p)nt1(p) dp = (1 − u)nT1(u) + A(u),

where

A(u) = n

∫ u

0
(1 − p)n−1T1(p) dp > 0 for all u ∈ [0, 1].

Now,

µn − Tn+1(u) − (1 − u)tn+1(u) = µn − (1 − u)nT1(u) − A(u) − (1 − u)n+1tn+1(u)

≤ µn − (1 − u)nT1(u) − (1 − u)n+1tn+1(u)

≤ µ1 − T1(u) − (1 − u)t1(u)

≤ 0 (since X is DMRL).

Thus, Xn is DMRL.

Theorem 4.4. (i) X is IFRA (increasing failure rate in average) implies that Xn is IFRA.

(ii) Xn is DFRA (decreasing failure rate in average) implies that X is DFRA.

Proof. From Barlow and Campo (1975), X is IFRA if and only if u−1T1(u) is decreasing
for all u. This means that t1(u) ≤ u−1T1(u). We then have

tn+1(u) − u−1Tn+1(u) = (1 − u)nt1(u) − u−1(1 − u)nT1(u) − u−1A(u)

≤ (1 − u)n(t1(u) − u−1T1(u))

≤ (t1 − u−1T1(u))

≤ 0,

which implies that Xn is IFRA.
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Theorem 4.5. (i) X is NBUE (new better than used in expectation) implies that Xn is NBUE.

(ii) Xn is NWUE (new worse than used in expectation) implies that X is NWUE.

Proof. The random variable X is NBUE if and only if µ−1T (u) > u for u ∈ [0, 1] (Bergman
(1977)). Hence,

u−1Tn(u) − µn = u−1((1 − u)nT1(u) + A(u)) − µn

≥ u−1(1 − u)nT1(u) − µ1

= (1 − u)n(u−1T1(u) − µ1)

≥ 0,

which implies that Xn is NBUE.

Remark 4.3. The converse of the implications given in the above theorems does not hold in
view of the characterizations given in Theorem 3.1 and Remark 3.1.

Comparison of other ageing concepts can also be facilitated in a like manner and some of
these become evident from the order relations examined in the next section.

5. Order relations

In this section we discuss the implications of the results obtained so far in developing some
order relations connecting the baseline and transformed distributions. Furthermore, a new
partial order based on transforms of order n, which extends some of the existing results, is
introduced.

Let X and Y be two nonnegative random variables with finite expectations, distribution
functions F(·) and G(·), quantile functions Q(u) and R(u), and TTT transforms, T (u) and
S(u), respectively. From (2.7),

H(u) = (1 − u)nHn(u) ≤ Hn(u),

and, therefore, we have Xn ≤hr X, where ‘≤hr’ denotes the hazard rate order.
It is said that X is smaller than Y in the dispersive order, X ≤disp Y , if and only if

F−1(u2) − F−1(u1) ≤ G−1(u2) − G−1(u1) for 0 ≤ u1 ≤ u2 ≤ 1,

which means that in our notation∫ u2

u1

q(p) dp ≤
∫ u2

u1

r(p) dp, r(u) = R′(u).

Setting Y = Xn and r(u) = tn(u) = (1 − u)nq(u), we have Xn ≤disp X.
It is said that X is smaller than Y in the convex transform order, X ≤cx Y , if G−1F(x) is

convex in the support of F . In terms of quantile density functions, this condition is equivalent
to r(u)/q(u) increasing in u. As before, with Y = Xn, the above ratio is decreasing in u and,
hence, Xn ≤cx X.

Using the definitions and implications of the hazard rate order, usual stochastic order,
X ≤st Y , mean residual life order, X ≤MRL Y , variance residual life order, X ≤VRL Y ,
harmonic mean residual life order, X ≤HMRL Y , dilation order, X ≤dil Y , increasing convex
order, X ≤icv Y , star order, X ≤∗ Y , superadditive order, X ≤su Y , excess wealth order,
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X ≤EW Y , decreasing mean residual life order, X ≤DMRL Y , NBUE order, X ≤NBUE Y ,
and Lorenz order, X ≤Lorenz Y , discussed in Shaked and Shanthikumar (2007), we have the
following chain of relationships:

Xn ≤dil X

⇑
Xn ≤hr X 	⇒ Xn ≤MRL X 	⇒ Xn ≤VRL X

⇓ ⇓
Xn ≤disp X 	⇒ Xn ≤st X 	⇒ Xn ≤HMRL X

⇓ ⇓
Xn ≤EW X Xn ≤icv X

and

Xn ≤cx X 	⇒ Xn ≤∗ X 	⇒ Xn ≤su X

⇓
Xn ≤DMRL X 	⇒ Xn ≤NBUE X 	⇒ Xn ≤Lorenz X.

Definition 5.1. It is said that X is smaller than Y in the TTT transform of order n, written as
X ≤TTT-n Y (or, equivalently, Xn ≤TTT Yn), if Tn+1(u) ≤ Sn+1(u) for all u in [0, 1], where
Tn(u) and Sn(u) denote the TTT transforms of order n of X and Y , respectively.

First we note that, from the above definition,

X ≤TTT-n Y ⇐⇒ Tn+1(u) ≤ Sn+1(u) ⇐⇒ Xn+1 ≤st Yn+1. (5.1)

Hence, all the implications starting from the stochastic order in the chain presented above are
implications of the TTT-n order. Furthermore, the usual TTT order between X and Y satisfies

X ≤TTT Y 	⇒ X ≤TTT-n Y,

as an extension of the result in Shaked and Shanthikumar (2007, Theorem 4B.29).
Another order of interest is the NBUE order defined as X is smaller than Y in the NBUE

order, X ≤NBUE Y , if
m(F−1(u))

l(G−1(u))
≤ E(X)

E(Y )
for u ∈ (0, 1), (5.2)

where m(·) and l(·) are the mean residual life functions of X and Y , respectively. An equivalent
statement of (5.2) is

T1(u)

E(X)
≥ S1(u)

E(Y )
. (5.3)

Since T1(u)/ E(X) and S1(u)/ E(Y ) are quantile functions of X1/ E(X) and Y1/ E(Y ), succes-
sive application of (5.3) for X2, X3, . . . in the definition of the NBUE order gives

X ≤NBUE Y ⇐⇒ X1

E(X)
≥st

Y1

E(Y )
⇐⇒ X

E(X)
≥TTT

Y

E(Y )

and

Xn−1 ≤NBUE Yn−1 ⇐⇒ Xn−1

E(Xn−1)
≥TTT

Yn−1

E(Yn−1)
⇐⇒ Xn

E(Xn−1)
≥st

Yn

E(Yn−1)
.
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These results extend Theorem 4B.26 of Shaked and Shanthikumar (2007). When Xn−1 and
Yn−1 have finite means and 0 as common left endpoints of their supports, then, for any φ(x)

with φ(0) = 0,
X ≤TTT-n Y 	⇒ φ(X) ≤TTT-n φ(Y ).

From (5.1) and (5.3),

X

E(X)
≥TTT

Y

E(Y )
	⇒ X

E(X)
≥TTT-n

Y

E(Y )
.

Note that the TTT transform of X/ E(X) is the scaled TTT transform that is extensively used
in many practical applications, including characterization of ageing classes.

An interesting property of the TTT order is that it is preserved under the minima of indepen-
dent and identically distributed random variables (Kochar et al. (2002)). Following the lines of
proof of this result, we prove a similar result for the TTT-n order.

Theorem 5.1. Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be independent copies of two non-
negative random variables X and Y that are identically distributed. Then, if X ≤TTT−n Y ,
Vn ≤TTT−n Wn, where Vn = min(X1, X2, . . . Xn) and Wn = min(Y1, Y2, . . . , Yn).

Proof. The survival functions of Vn and Wn are

F̄Vn(x) = (F̄X(x))n and F̄Wn(x) = (F̄Y (x))n.

To revert to quantile functions, we write un = FVn(x) and u = FX(x) to obtain

u = 1 − (1 − un)
1/n and un = 1 − (1 − u)n.

If Qn(un) is the quantile function of Vn, the quantile function Q(u) of F is related to it as

Q(u) = Qn(1 − (1 − u)n)

or
q(u) = nqn(1 − (1 − u)n)(1 − u)n−1.

Similarly, using the symbols rn and r for the quantile density functions of Wn and Y ,

r(u) = nrn(1 − (1 − v)n)(1 − v)n−1, v = FY (x).

Since X ≤TTT-n Y , we have, using the earlier notation,

Tn+1(u) ≤ Sn+1(u),

and, hence, ∫ u

0
(1 − p)n+1q(p) dp ≤

∫ u

0
(1 − p)n+1r(p) dp.

Applying Lemma A.2(b) of Kochar et al. (2002), we have∫ u

0
(1 − p)2nq(p) dp ≤

∫ u

0
(1 − p)2nr(p) dp.

Setting y = 1 − (1 − p)n, we have∫ un

0
(1 − y)n+1qn(y) dy ≤

∫ un

0
(1 − y)n+1qn(y) dy,

which proves the result.
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Another application of the TTT-n order concerns the proportional hazard models that extend
the results of Li and Shaked (2007). Let X(θ) be a random variable of a proportional hazard
model with survival function [F̄ (x)]θ , θ > 0, corresponding to X with survival function F̄ (x).
Assume that the quantile functions of two models associated with X(θ) and Y (θ) are Qθ(u)

and Rθ(u) with respective quantile density functions qθ (u) and rθ (u). Retaining the previous
notation, we can write

Q(u) = Qθ(1 − (1 − u)θ ) and Qθ(u) = Q(1 − (1 − u)1/θ ).

Theorem 5.2. We have

X ≤TTT−n Y 	⇒ X(θ) ≤TTT−n Y (θ), θ > 1,

X(θ) ≤TTT−n Y (θ) 	⇒ X ≤TTT−n Y, θ < 1.

Proof. Taking θ > 1, X(θ) ≤TTT-n Y (θ) is the same as

∫ v

0
(1 − p)n+1qθ (p) dp ≤

∫ v

0
(1 − p)n+1rθ (p) dp, (5.4)

where v = 1 − (1 − u)θ . The last inequality reduces to

∫ 1−(1−u)1/θ

0
q(1 − (1 − p)1/θ )(1 − (1 − p)1/θ )n+1θ−1(1 − p)θ

−1−1 dp

≤
∫ 1−(1−u)1/θ

0
r(1 − (1 − p)1/θ )(1 − (1 − p)1/θ )n+1θ−1(1 − p)θ

−1−1 dp,

which is ∫ u

0
(1 − p)n+1q(p) dp ≤

∫ u

0
(1 − p)n+1r(p) dp. (5.5)

Thus, if (5.5) holds then (5.4) applies, which is the first part of the theorem. The case in which
θ < 1 is similar.

To conclude, we note that the nth-order TTT transform presented here has helped to achieve
a more explicit understanding of the effect of transforms on the properties of the baseline
distribution. It generates new models that are more IFR or DFR and also BS or UBS from
models in common use, and adds more flexibility to model choice by adopting quantile functions
that do not convert into simple forms of distribution functions. The reliability properties and
order relations extend the existing results and leave scope for new ageing classes. Sample
counterparts viz. the nth-order TTT statistics along with their relationships with the TTT statistic
of the original distribution, which is being investigated, can further strengthen the adaptability
of the theoretical results in the present work.
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