EXTREME OPERATORS ON H_{∞}

by JOHN N. McDONALD

(Received 5 May, 1975)
Let A_{1} and A_{2} be sup-norm algebras, each containing the constant functions. Let $P\left(A_{1}, A_{2}\right)$ denote the set of bounded linear operators from A_{1} to A_{2} which carry 1 into 1 and have norm 1. Several authors have considered the problem of describing the extreme points of $P\left(A_{1}, A_{2}\right)$. In the case where A_{1} is the algebra of continuous complex functions on some compact Hausdorff space, and A_{2} is the algebra of complex scalars, Arens and Kelley proved that the extreme operators in $P\left(A_{1}, A_{2}\right)$ are exactly the multiplicative ones (see [1]). It was shown by Phelps in [6] that if A_{1} is self-adjoint, then every extreme point of $P\left(A_{1}, A_{1}\right)$ is multiplicative. In [4], Lindenstrauss, Phelps, and Ryff exhibited non-multiplicative extreme points of $P(A, A)$ and $P\left(H_{\infty}, H_{\infty}\right)$, where A and H_{∞} are, respectively, the disk algebra, and the algebra of bounded analytic functions on the open unit disk D. The extreme multiplicative operators in $P(A, A)$ were described in [6]. Rochberg proved in [8] that, if T is a member of $P(A, A)$ which carries the identity on D into an extreme point of the unit ball of A, then T is multiplicative and is an extreme point of $P(A, A)$. Rochberg's paper [9] is a study of certain extremal subsets of $P(A, A)$, namely, those of the form $K(F, G)=\{T \in P(A, A): T F=G\}$, where F and G are inner functions in A. We proved in [5] that, if F is non-constant, then $K(F, G)$ contains an extreme point of $P(A, A)$.

In this note we show that the set of extreme elements of $P\left(H_{\infty}, H_{\infty}\right)$ contains " many" non-multiplicative members. In fact, we show that if F is a member of the unit ball of H_{∞} which has a continuous extension to \bar{D}, and if G is an extreme point of the unit ball of H_{∞} such that $G(D) \subseteq F(D) \backslash F(\partial D)$, then there is an extreme point T of $P\left(H_{\infty}, H_{\infty}\right)$ such that $T F=G$. Unless G is of the form $G=F \circ h$ for some $h \in H_{\infty}$, the operator T cannot be multiplicative. We also apply our methods to showing that neither $P\left(H_{\infty}, H_{\infty}\right)$ nor $P(A, A)$ is the weak operatorclosed convex hull of its multiplicative elements.

Let $P=P\left(H_{\infty}, H_{\infty}\right)$ and let U denote the unit ball of H_{∞}. For $f, g \in U$, let $K(f, g)$ denote the set $\{T \in P: T f=g\}$. If g is an extreme point of U, then $K(f, g)$ is an extreme subset of P, i.e. $c T+(1-c) S \in K(f, g)$, where $c \in(0,1)$ and $S, T \in P$, implies $S, T \in K(f, g)$. We will use B to denote the space of bounded linear operators from H_{∞} to itself. The weakest topology on B for which the linear functionals of the form $T \rightarrow T h(z)$ are continuous will be indicated by τ. By a result due to Kadison [3], the unit ball of B is τ-compact. It follows that P and also sets of the form $K(f, g)$ are τ-compact.

Lemma 1. If g is an extreme point of U and if $K(f, g)$ is non-empty, then there is an extreme point T of P such that $T f=g$.

Proof. The lemma follows from the Krein-Milman theorem and the fact that $K(f, g)$ is an extreme subset of P.

Lemma 2. Let g be a function in H_{∞}. Let f be a member of U having a continuous extension to \bar{D}. If $\overline{g(D)} \subseteq f(D) \backslash f(\partial D)$, then $K(f, g)$ is non-empty.

Proof. Note that the lemma holds if f is a constant. For the remainder of the proof, we will assume that f is not constant. Let E be a closed disk of radius t centred at 0 , where t is less than 1 but chosen large enough so that $\overline{g(D)} \subseteq f(E) \backslash f(\partial E)$. Since $\overline{g(D)}$ is contained in one of the connected components of $f(E) \backslash f(\partial E)$, it follows that the integer

$$
N=(2 \pi i)^{-1} \int_{\partial E} f^{\prime}(\xi)(f(\xi)-g(w))^{-1} d \xi
$$

is independent of $w \in D$, and not equal to zero. Define the operator T on H_{∞} by

$$
T k(w)=(2 \pi i N)^{-1} \int_{\partial E} k(\xi) f^{\prime}(\xi)(f(\xi)-g(w))^{-1} d \xi
$$

Since $T k(w)=N^{-1} \sum_{j=1}^{N} k\left(z_{j}\right)$, where the z_{j} are the roots of $f(z)=g(w)$ which lie in E, it follows that T has norm less than 1. (Let n_{j} denote the order of z_{j} as a zero of $h(z)=f(z)-g(w)$. In the sum above each z_{j} is counted n_{j} times.) It is clear that $T 1=1$ and $T f=g$. Thus $T \in K(f, g)$.

Lemma 3. Let g be a function in H_{∞}. Let fbe a member of U having a continuous extension to \bar{D}. If $g(D) \subseteq f(D) \backslash f(\partial D)$, then $K(f, g)$ is non-empty.

Proof. For each $r \in[0,1)$, let g_{r} denote the function defined by: $g_{r}(z)=g(r z)$. Then $\overline{g_{r}(D)} \subseteq f(D) \backslash f(\partial D)$. It follows by Lemma 2 that an operator T_{r} can be chosen from $K\left(f, g_{r}\right)$ for each $r \in[0,1)$. The net $\left\{T_{r}\right\}_{r \in[0,1)}$ has a subnet which converges in the topology τ to an operator T in P. It follows immediately from the definition of τ that T is in $K(f, g)$.

The following Theorem is an immediate consequence of Lemmas 1 and 3:
Theorem. Let G be an extreme element of U. Let F be a member of U having a continuous extension to \bar{D}. If $G(D) \subseteq F(D) \backslash F(\partial D)$, then there is an extreme element T of P such that $T F=G$.

We observe that the hypotheses of the theorem are fulfilled if F is a finite Blaschke product.
Suppose that M is a multiplicative element in $K(f, g)$, where $f, g \in U$ and f has a continuous extension to \bar{D}. Since f can be approximated uniformly on D by polynomials in the identity function Z, it follows that $M f=f \circ M Z=g$. Thus, unless g is of the form $f \circ h$, where $h \in H_{\infty}$, there can be no multiplicative element of P such that $T f=g$.

Let S denote the collection of multiplicative elements in P. Let K_{1} and K_{2} denote, respectively, the closure in the weak operator topology and the closure in the topology τ, of the convex hull of S. Note that $K_{1} \subseteq K_{2}$. By Milman's converse to the Krein-Milman theorem [7, p. 9], the extreme elements of K_{2} lie in S. Since P contains non-multiplicative extreme points, it follows that K_{2} is a proper subset of P. Thus, K_{1} is a proper subset of P.

Let S_{A} denote the set of multiplicative operators in $P(A, A)$. Since the polynomials are dense in A, it follows that the operators in S_{A} are exactly those of the form

$$
M g=g \circ h \quad(\|h\| \leqq 1)
$$

where $h \in A$. Let $R=\left\{T \in S_{A}: T Z\right.$ is not a constant of modulus 1$\}$. Note that S_{A} is the
uniform closure of R. Hence, the closure of $\operatorname{cov} S_{A}$ in the weak operator topology coincides with the closure of R in the weak operator topology. Each $M \in R$ has an extension M^{*} in S, where M^{*} is defined by

$$
M^{*} f=f \circ M Z
$$

for each $f \in H$. Similarly each $V \in \operatorname{cov} R$ has an extension V^{*} in $\operatorname{cov} S$. Let T be an extreme element of $P(A, A)$ which is not multiplicative. If T is in the closure in the weak operator topology of $\operatorname{cov} S_{A}$, then there is a net $\left\{V_{\alpha}\right\}$ in $\operatorname{cov} R$ which converges to T in the weak operator topology. Let $\left\{V_{\beta}\right\}$ be a subnet of $\left\{V_{\alpha}\right\}$ such that $\left\{V_{\beta}^{*}\right\}$ converges in the topology τ to some $T^{*} \in K_{2}$. It is easy to see that $T g(z)=T^{*} g(z)$ for z in D and g in A. Thus, the set $K=$ $\left\{T^{\prime} \in K_{2}: T^{\prime} \mid A=T\right\}$ is non-empty. By the Krein-Milman theorem, K has an extreme element T_{1}^{\prime}. Since K is an extreme subset of K_{2}, it follows that T_{1}^{\prime} is an extreme point of K_{2}. By Milman's converse to the Krein-Milman theorem, T_{1}^{\prime} must lie in S. But, if T_{1}^{\prime} is in S, then T must be in S_{A}. Since we have reached a contradiction, it follows that T is not in the weak operator closure of $\operatorname{cov} S_{A}$. Thus, $P(A, A)$ is not the weak operator closed, convex hull of its multiplicative elements.

REFERENCES

[^0]
[^0]: 1. R. F. Arens and J. L. Kelley, Characterizations of the space of continuous functions over a compact Hausdorff space, Trans. Amer. Math. Soc. 62 (1947), 499-508.
 2. K. Hoffman, Banach spaces of analytic functions (Prentice-Hall, 1962).
 3. R. V. Kadison, The trace in finite operator algebras, Proc. Amer. Math. Soc. 12 (1961), 973-977.
 4. J. Lindenstrauss, R. R. Phelps and J. V. Ryff, Extreme non-multiplicative operators, Mimeographed lecture notes, 1968.
 5. J. N. McDonald, Convex sets of operators on the disk algebra, to appear.
 6. R. R. Phelps, Extreme positive operators and homomorphisms, Trans. Amer. Math. Soc. 108 (1963), 265-274.
 7. R. R. Phelps, Lectures on Choquet's theorem (Van Nostrand, 1966).
 8. R. Rochberg, Which linear maps of the disk algebra are multiplicative ?, Pacific J. Math. 38 (1971), 207-212.
 9. R. Rochberg, Linear maps of the disk algebra, Pacific J. Math. 44 (1973), 337-354.

 Department of Mathematics
Arizona State University
Tempe, Arizona 85281

