# ON COMPLETELY POSITIVE MAPS DEFINED BY AN IRREDUCIBLE CORRESPONDENCE 

BY<br>C. ANANTHARAMAN-DELAROCHE


#### Abstract

Completely positive maps defined by an irreducible correspondence between two von Neumann algebras $M$ and $N$ are introduced. We give results about their structure and characterize, among them, those which are extreme points in the convex set of all unital completely positive maps from $M$ to $N$. As particular cases we obtain known results of M. D. Choi [4] on completely positive maps between complex matrices and of J. A. Mingo [8] on inner completely positive maps.


In [4], Choi has described the structure of completely positive linear maps $\Phi: M_{m}(\mathbf{C})$ $\rightarrow M_{n}(\mathbf{C})$ where, for $k \geq 1, M_{k}(\mathbf{C})$ is the algebra of $k \times k$ complex matrices: there exists an essentially unique set of independent $m \times n$ matrices $v_{1}, \ldots, v_{l}$ such that $\Phi(x)=$ $\sum_{i=1}^{l} v_{i}^{*} x v_{i}$ for all $x \in M_{m}(\mathbf{C})$. On the other hand, Mingo has studied in [8] the completely positive maps $\Phi$ from a von Neumann algebra $M$ into itself such that there exists a family $\left(a_{i}\right)_{i \in I}$ in $M$ with $\Phi(x)=\sum_{i \in I} a_{i}^{*} x a_{i}$ for all $x \in M$, where the series converges $\sigma$-weakly. Such completely positive maps are called inner. When $M$ is a factor, Mingo has noticed that, although the family $\left(a_{i}\right)_{i \in I}$ is not uniquely determined by $\Phi$, the dimension of the linear span of $\left\{a_{i}, i \in I\right\}$ only depends on $\Phi$; furthermore there is an independent family $\left(b_{j}\right)_{j \in J}$ with $\Phi(x)=\sum_{j \in J} b_{j}^{*} x b_{j}$ for all $x \in M$.

In this paper, we show that completely positive maps between complex matrix algebras, and inner completely positive maps from a factor into itself are particular cases of completely positive maps defined by an irreducible correspondence between two von Neumann algebras $M$ and $N$ (Def. 1) or, in other words, completely positive maps of multiplicity $k$ (Def. 2). Then we describe the structure of these maps (Th. 1 and 2), and characterize among them those which are extreme points of the convex set of all unital completely positive maps from $M$ into $N$ (Th. 4). Thus we obtain another proof of Choi's results, which are at the same time extended to several other situations (see examples 1 , 2,3 ), and in particular to inner completely positive maps of a factor.

Throughout this paper $M$ and $N$ are von Neumann algebras. We assume that the reader is acquainted with the notions of correspondence from $M$ to $N$ [5] and of Hilbert $N$ module [9]. Recall that a correspondence from $M$ to $N$ is a Hilbert space $H$ with a pair of commuting normal representations $\pi_{M}$ and $\pi_{N^{o}}$ of $M$ and $N^{o}$ (the opposite of N ) respectively. As usually, the triple ( $H, \pi_{M}, \pi_{N^{o}}$ ) will be simply denoted by $H$ and for $x \in M$, $y \in N$ and $h \in H$, we shall write $x h y$ instead of $\pi_{M}(x) \pi_{N^{o}}\left(y^{o}\right) h$. The correspondence $H$ is said to be irreducible when the set of operators on $H$ commuting with $\pi_{M}(M)$ and

[^0]AMS subject classification: Primary 46L10, Secondary 46L30.
(c)Canadian Mathematical Society 1990.
$\pi_{N^{o}}\left(N^{o}\right)$ is reduced to the scalar ones. The standard form [7] of $M$ (unique up to isomorphism) yields a correspondence from $M$ to $M$, denoted by $L^{2}(M)$, and called the identity correspondence of $M$.

The $N$-valued inner product of a selfdual (right) Hilbert $N$-module $X$ [9] is denoted by $\langle$,$\rangle , and is supposed to be conjugate linear in the first variable. The von Neumann$ algebra of all $N$-linear bounded operators from $X$ to $X$ will be denoted by $\mathcal{L}_{N}(X)$ (or $\mathcal{L}(X)$ in the classical case where $N=\mathbf{C}$ ).

Given a correspondence $H$ from $M$ to $N$, the space $\operatorname{Hom}_{N^{o}}\left(L^{2}(N), H\right)$ of bounded linear operators from $L^{2}(N)$ into $H$ which commute with the actions of $N^{o}$ on $L^{2}(N)$ and $H$ will be denoted by $X_{H}$.Then $X_{H}$, gifted with a right action of $N$ by composition of operators and with a $N$-valued inner product by

$$
\langle x, y\rangle=x^{*} y \quad \text { for } x, y \in X_{H},
$$

is a selfdual Hilbert $N$-module ([12], Th. 6.5). Moreover, again by composition of operators, we define a normal homomorphism $\pi$ from $M$ into $\mathcal{L}_{N}\left(X_{H}\right)$. We get back the correspondence $H$ from $\left(X_{H}, \pi\right)$ (up to unitary equivalence) in the following way: $H$ is the Hilbert space $X_{H} \otimes_{N} L^{2}(N)$ obtained by inducing the standard representation of $N$ up to $M$ via $X_{H}$ ([11], Th. 5.1); the induced representation of $M$ into $X_{H} \otimes_{N} L^{2}(N)$ gives the left action, and the right action of $N$ is the one defined by

$$
(\xi \otimes h) y=\xi \otimes h y \quad \text { for } \xi \in X_{H}, h \in L^{2}(N), y \in N .
$$

In this way, correspondences from $M$ to $N$ may be identified, up to unitary equivalence, to pairs ( $X, \pi$ ) formed by selfdual Hilbert $N$-modules and normal representations $\pi$ of $M$ on $X$, i.e. normal homomorphisms $\pi: M \rightarrow \mathcal{L}_{N}(X)$ (see [3], Th. 2.2).

Let $H$ be a correspondence from $M$ to $N$ and $I$ a set of indices. The Hilbert tensor product $l^{2}(I) \otimes H$ has, in an obvious way, a structure of correspondence from $M$ to $N$, called a multiple of $H$. Its Hilbert $N$-module version is the right $N$-module of all $I$-uples $\left(\xi_{i}\right)_{i \in I}$ in $X_{H}$ such that $\sum_{i \in I}\left\langle\xi_{i}, \xi_{i}\right\rangle$ is $\sigma$-weakly convergent, provided with the obvious left action of $M$. This selfdual Hilbert $N$-module (see [9], p. 458) is denoted $l^{2}(I) \otimes X_{H}$.

As explained by Paschke in $([9], \S 5)$ the notion of normal completely positive map from $M$ to $N$ has narrow connections with that of pair $(X, \pi)$ where $\pi$ is a normal representation of $M$ on a selfdual Hilbert $N$-module $X$ (and thus with the concept of correspondence from $M$ to $N$ ). Let $\Phi: M \rightarrow N$ be a normal completely positive map. We denote by $X_{\Phi}$ the selfdual Hilbert $N$-module that comes from $\Phi$ by the Stinespring construction. Recall that $X_{\Phi}$ is obtained by separation and selfdual completion (see [9], Th. 3.2) of the right N -module $M \odot N$ (algebraic tensor product) gifted with the $N$-valued inner product

$$
\left\langle x \otimes y, x_{1} \otimes y_{1}\right\rangle=y^{*} \Phi\left(x^{*} x_{1}\right) y_{1} .
$$

We define a normal representation $\pi_{\Phi}: M \rightarrow \mathcal{L}_{N}\left(X_{\Phi}\right)$ by

$$
\pi_{\Phi}(m)(x \otimes y)=m x \otimes y, \quad \text { for } m, x \in M \text { and } y \in N .
$$

Denoting by $\xi_{\Phi}$ the class of $1 \otimes 1$ in $X_{\Phi}$ we have

$$
\Phi(x)=\left\langle\xi_{\Phi}, \pi_{\Phi}(x) \xi_{\Phi}\right\rangle \quad \text { for } x \in M
$$

Note that $\xi_{\Phi}$ is a cyclic vector for $\left(X_{\Phi}, \pi_{\Phi}\right)$, which means that $X_{\Phi}$ is the selfdual Hilbert $N$-submodule of $X_{\Phi}$ generated by $\pi_{\Phi}(M) \xi_{\Phi}$. The associated correspondence $H_{\Phi}$ (defined up to unitary equivalence) may be described in the following way. The algebraic tensor product $M \odot L^{2}(N)$ is endowed with the inner product

$$
\langle x \otimes h, y \otimes k\rangle=\left\langle h, \Phi\left(x^{*} y\right) k\right\rangle
$$

for $x, y \in M$ and $h, k \in L^{2}(N)$, and this defines $H_{\Phi}$ by separation and completion. The right $N$-action and the left $M$-action are given by

$$
m(x \otimes h) n=m x \otimes h n \quad \text { for } m, x \in M, n \in N, h \in L^{2}(N) .
$$

Now let $\pi$ be a normal representation of $M$ on a selfdual Hilbert $N$-module $X$. Then for $\xi \in X$, the map $\Phi: x \rightarrow\langle\xi, \pi(x) \xi\rangle$ is normal and completely positive. We say that $\Phi$ is a coefficient of $(X, \pi)$.

Definition 1. Let $H$ be a correspondence from $M$ to $N$. The coefficient associated to $a \in X_{H}=\operatorname{Hom}_{N^{o}}\left(L^{2}(N), H\right)$ is $x \rightarrow a^{*} x a$. Take now $\left(a_{i}\right)_{i \in I} \in l^{2}(I) \otimes X_{H}$. The corresponding coefficient is

$$
x \rightarrow \sum_{i \in I} a_{i}^{*} x a_{i}=\left\langle\left(a_{i}\right)_{i \in I}, x\left(a_{i}\right)_{i \in I}\right\rangle .
$$

We say that such normal completely positive maps are defined by $H$; they form a convex set denoted by $C P_{H}(M, N)$. Remark that $C P_{H}(M, N)$ does not depend on the particular choice of $L^{2}(N)$, and only depends on the unitary equivalence class of $H$.

Example 1. Let $p$ be a projection in $M$ and take for $N$ the reduced von Neumann algebra $M_{p}$. Denote by $\Psi$ the completely positive map $x \rightarrow p x p$ from $M$ into $N$. Then $X_{\Psi}=M p=\{m p, m \in M\}$ with its obvious structures of left $M$-module and right $M_{p}$-module, and inner product given by $(a, b) \rightarrow a^{*} b$. If $H$ denotes the associated correspondence from $M$ to $N$, notice that $C P_{H}(M, N)$ is the set of completely positive maps of the form $x \rightarrow \sum_{i \in I} p a_{i}^{*} x a_{i} p$, where $\left(a_{i}\right)_{i \in I}$ is a family in $M$ such that $\sum_{i \in I} p a_{i}^{*} a_{i} p$ converges $\sigma$-weakly. The correspondence $H$ is irreducible if and only if $M_{p}$ is a factor. Remark also that in the particular case where $p$ is the unit element of $M, C P_{H}(M, N)$ is the set of all inner completely positive maps from $M$ to $N$, in Mingo's terminology [8].

Suppose that $M$ is a factor and that $M_{p}$ is an injective von Neumann algebra. Since $\pi_{\psi}$ is faithful, it follows from ([1], prop.5.2 and Th. 2.6) that every completely positive map $\Phi: M \rightarrow N$ can be approximately factored by $\Psi$. This means that $\Phi$ can be approached in the topology of $\sigma$-weak pointwise convergence by completely positive maps of the form $x \rightarrow \sum_{i=1}^{n} p a_{i}^{*} x a_{i} p$ with $a_{1}, \ldots, a_{n} \in M$. However it is not true that we can always find a family $\left(b_{j}\right)_{j \in J}$ with $\Phi(x)=\sum_{j \in J} p b_{j}^{*} x b_{j} p$ for all $x \in M$. For instance, Mingo has proved [8] that an automorphism $\Theta$ of a von Neumann algebra $M$ such that there exists a family $\left(b_{j}\right)_{j \in J}$ with $\Theta(x)=\sum_{j \in J} b_{j}^{*} x b_{j}$ for all $x \in M$ is inner. So a counterexample is given in choosing an outer automorphism of an injective factor, $p$ being equal to 1 .
Example 2. Let $K_{1}, K_{2}$ be two Hilbert spaces and take $M=\mathcal{L}\left(K_{1}\right), N=\mathcal{L}\left(K_{2}\right)$. Denote by $\bar{K}_{2}$ the Hilbert space conjugate to $K_{2}$ and put $H=K_{1} \otimes \bar{K}_{2}$. We define on $H$ a structure of correspondence from $M$ to $N$, which is irreducible, by

$$
x\left(h_{1} \otimes \bar{h}_{2}\right) y=x h_{1} \otimes \bar{y}^{*} h_{2}
$$

for $x \in M, y \in N, h_{1} \in \mathcal{L}\left(K_{1}\right), h_{2} \in \mathcal{L}\left(K_{2}\right)$ (where $\bar{h}_{2}$ is the vector $h_{2}$ as an element of $\bar{K}_{2}$ ). As $L^{2}(N)=K_{2} \otimes \bar{K}_{2}$ with it obvious structure of $N$-bimodule, we see at once that $X_{H}$ is the space $\mathcal{L}\left(K_{2}, K_{1}\right)$ of all bounded operators from $K_{2}$ into $K_{1}$, the identification between $\mathcal{L}\left(K_{2}, K_{1}\right)$ and $\operatorname{Hom}_{N^{o}}\left(L^{2}(N), H\right)$ being given by $x \rightarrow x \otimes 1_{\bar{K}_{2}}$. In this case $C P_{H}(M, N)$ is the space of all the completely positive maps $\Phi: M \rightarrow N$ for which there exists a family $\left(a_{i}\right)_{i \in I}$ of elements in $\mathcal{L}\left(K_{2}, K_{1}\right)$ with $\Phi(x)=\sum_{i \in I} a_{i}^{*} x a_{i}$ for all $x \in M$. In fact, a well known consequence of the Stinespring dilation theorem shows that every normal completely positive map $\Psi: M \rightarrow N$ belongs to $C P_{H}(M, N)$. We recall here the proof. There is a normal representation $\rho$ of $M$ in a Hilbert space $K$ and an isometry $v$ from $K_{2}$ into $K$ such that $\Psi(x)=v^{*} \rho(x) v$ for all $x \in M$. As $\rho$ is a normal unital homomorphism from $\mathcal{L}\left(K_{1}\right)$ into $\mathcal{L}(K)$, we may write $K$ as a tensor product $K_{1} \otimes R$ and identify $\rho$ to the amplification $x \rightarrow x \otimes 1_{R}$. Let $\left(e_{i}\right)_{i \in I}$ be an orthonormal basis of $R$. Denote by $p_{i}$ the orthogonal projection from $K$ onto $K_{1} \otimes e_{i}$ and put $a_{i}=p_{i} v$. Then $\left(a_{i}\right)_{i \in I}$ is a family of elements in $\mathcal{L}\left(K_{2}, K_{1}\right)$ with $\Psi(x)=\sum_{i \in I} a_{i}^{*} x a_{i}$ for all $x \in M$.

Example 3. Let $N$ be a von Neumann subalgebra of $M$ such that there exists a faithful normal conditional expectation $E$ from $M$ onto $N$. Choose a faithful normal semifinite weight $\varphi$ on $N$ and put $\Psi=\varphi \circ E$. We consider the identity correspondences $L^{2}(N)$ and $L^{2}(M)$ of $N$ and $M$ respectively, determined by those choices of weights. Denote by $H$ the correspondence from $M$ to $N$ obtained by restricting to $N$ on the right the identity correspondence $L^{2}(M)$ of $M$. Note that $H$ is irreducible if and only if $N^{\prime} \cap M=\mathbf{C}$. We may identify $M$ to a subspace of $X_{H}=\operatorname{Hom}_{N^{o}}\left(L^{2}(N), L^{2}(M)\right)$ by considering $m \in M$ as the operator $h \rightarrow m h$ from $L^{2}(N)$ into $L^{2}(M)$. The $N$-valued inner product on $M$ induced by the one on $X_{H}$ is given by $\langle a, b\rangle=E\left(a^{*} b\right)$ for $a, b \in M$, and it is easily checked that $X_{H}$ is the selfdual completion of the right $N$-module $M$ gifted with this inner product.

Any completely positive map $\Phi: M \rightarrow N$ of the form $x \rightarrow \sum_{i \in I} E\left(a_{i}^{*} x a_{i}\right)$, where $\left(a_{i}\right)_{i \in I}$ is a family of elements in $M$ such that $\sum_{i \in I} E\left(a_{i}^{*} a_{i}\right)$ converges $\sigma$-weakly, belongs to $C P_{H}(M, N)$. In fact $\Phi$ is the coefficient of $l^{2}(I) \otimes X_{H}$ defined by $\left(a_{i}\right)_{i \in I}$ after having identified $M$ to a subset of $X_{H}$.

In the following, we fix an irreducible correspondence $H$ from $M$ to $N$.
Lemma 1.1. Let $I$ be a set and $\left(a_{i}\right)_{i \in I} \in l^{2}(I) \otimes X_{H}$. Denote by $K$ the closed subspace of $l^{2}(I) \otimes H$ generated by $\left\{\left(m a_{i} h\right)_{i \in I}, m \in M, h \in L^{2}(N)\right\}$. The orthogonal projection onto $K$ has the form $p \otimes 1$ with $p \in \mathcal{L}\left(l^{2}(I)\right)$, and the rank of $p$ is equal to the dimension of the linear span of $\left\{a_{i}, i \in I\right\}$ in $X_{H}$. If p is the identity, then $\left(a_{i}\right)_{i \in I}$ is a family of linearly independent vectors; the converse is true when I is finite.

Proof. Since $K$ is invariant by the left action of $M$ and the right action of $N$, and since $H$ is irreducible we see that the projection onto $K$ belongs to $\mathcal{L}\left(l^{2}(I)\right) \otimes 1$. Denote by $r \in \mathbf{N} \cup\{\infty\}$ the dimension of the linear span of $\left\{a_{i}, i \in I\right\}$. Suppose that $r$ is finite and that $a_{i_{1}}, \ldots, a_{i_{r}}$ are independent. Then we have

$$
\begin{equation*}
a_{i}=\sum_{k=1}^{r} \lambda_{i}^{k} a_{i_{k}} \quad \text { for } i \notin\left\{i_{1}, \ldots, i_{r}\right\} \tag{1}
\end{equation*}
$$

and the range of $p \otimes 1$ is contained in the set of all $\left(\eta_{i}\right)_{i \in I} \in l^{2}(I) \otimes H$ which satisfy (1). It follows that rank $p \leq r$.

Conversely suppose that $p$ has a finite rank $s$ and let $\xi^{1}, \ldots, \xi^{s}$ be a basis of the range of $p$. We write $\xi^{j}=\left(\xi_{i}^{j}\right)_{i \in I}$ and we suppose that $i_{1}, \ldots, i_{s}$ are indices such that the $s \times s$ complex matrix $\left(\xi_{i_{k}}^{j}\right)$ is non singular. Then for $i \notin\left\{i_{1}, \ldots, i_{s}\right\}$ there exist $\lambda_{i}^{k}$, $k=1, \ldots, s$ with

$$
\xi_{i}^{j}=\sum_{k=1}^{s} \cdot \lambda_{i}^{k} \xi_{i_{k}}^{j}, \quad j=1, \ldots, s
$$

Consider now an element $\left(\eta_{i}\right)_{i \in I}$ in the range of $p \otimes 1$. We get

$$
\eta_{i}=\sum_{k=1}^{s} \lambda_{i}^{k} \eta_{i_{k}} \quad \text { if } i \notin\left\{i_{1}, \ldots, i_{s}\right\}
$$

Hence

$$
a_{i} h=\sum_{k=1}^{s} \lambda_{i}^{k} a_{i_{k}} h \quad \text { for } i \notin\left\{i_{1}, \ldots, i_{s}\right\} \quad \text { and all } h \in L^{2}(N)
$$

from which it follows that $r \leq s$.
The second assertion of the lemma is then obvious when $I$ is finite. Let us prove now that $\left(a_{i}\right)_{i \in I}$ is a family of independent vectors if $p$ is the identity. Consider a finite set of indices $i_{1}, \ldots, i_{k}$ in $I$ and denote by $q$ the associated projection in $\mathcal{L}\left(l^{2}(I)\right)$. Then

$$
l^{2}\left(\left\{i_{1}, \ldots, i_{k}\right\}\right) \otimes H=(q \otimes 1)(K)
$$

is the closed space generated by $\left\{\left(m a_{i_{1}} h, \ldots, m a_{i_{k}} h\right), m \in M, h \in L^{2}(N)\right\}$, and by the first part of the proof $a_{i_{1}}, \ldots, a_{i_{k}}$ are independent.

THEOREM 1. Let $\Phi$ be a normal completely positive map from $M$ into $N$. Then $H_{\Phi}$ is (unitary equivalent to) a multiple of $H$ if and only if there is a family $\left(a_{i}\right)_{i \in I}$ in $X_{H}$ with $\sum_{i \in I} a_{i}^{*} a_{i} \quad \sigma$-weakly convergent and $\Phi(x)=\sum_{i \in I} a_{i}^{*} x a_{i}$ for all $x \in M$. In this case, the dimension of the linear span of $\left\{a_{i}, i \in I\right\}$ is equal to the multiplicity of $H$ in $H_{\Phi}$, and thus depends only on $\Phi$. Moreover, the family $\left(a_{i}\right)_{i \in I}$ may be chosen such that its elements are linearly independent.
Proof. Suppose first that $H_{\Phi}$ is a multiple of $H$. There exists an isomorphism $U$ from the Hilbert $N$-module $X_{\Phi}$ onto a multiple $l^{2}(I) \otimes X_{H}$ of $X_{H}$ which intertwines the left $M$-actions. Put $\left(a_{i}\right)_{i \in I}=U \xi_{\Phi}$. Then we have for $x \in M$

$$
\begin{aligned}
\Phi(x) & =\left\langle\xi_{\Phi}, x \xi_{\Phi}\right\rangle \\
& =\left\langle U \xi_{\Phi}, x U \xi_{\Phi}\right\rangle=\sum_{i \in I} a_{i}^{*} x a_{i} .
\end{aligned}
$$

Notice that $\left(a_{i}\right)_{i \in I}$ is a cyclic vector in $l^{2}(I) \otimes X_{H}$ and thus the closed subspace spanned by $\left\{\left(m a_{i} h\right)_{i \in I}, m \in M, h \in L^{2}(N)\right\}$ is $l^{2}(I) \otimes H$. Then by lemma 1 the family $\left(a_{i}\right)_{i \in I}$ is made of independent vectors.

Conversely, suppose that $\Phi(x)=\sum_{i \in I} a_{i}^{*} x a_{i}$ for all $x \in M$. Then it is easily seen that $U: M \odot L^{2}(N) \rightarrow l^{2}(I) \otimes H$ defined by

$$
U(m \otimes h)=\left(m a_{i} h\right)_{i \in I} \quad \text { for } m \in M, h \in L^{2}(N)
$$

gives rise to an equivalence between $H_{\Phi}$ and a subcorrespondence of $l^{2}(I) \otimes H$. As $H$ is irreducible this subcorrespondence is determined by a projection $p \otimes 1 \in \mathcal{L}\left(l^{2}(I)\right) \otimes 1_{H}$ and thus is a multiple of $H$. Moreover, by lemma 1 the multiplicity of $H$ in $H_{\Phi}$ is equal to the dimension of the linear span of $\left\{a_{i}, i \in I\right\}$.

DEFINITION 2. We say that a normal completely positive map $\Phi: M \rightarrow N$ has multiplicity $k \in \mathbf{N} \cup\{\infty\}$ if the commutant in $\mathcal{L}\left(H_{\Phi}\right)$ of the von Neumann algebra generated by the left action of $M$ and the right action of $N$ is a factor of type $I_{k}$.

This amounts to say that the correspondence $H_{\Phi}$ is the direct sum of $k$ equivalent irreducible correspondences, the class of which is well determined by $\Phi$ (see [6], §5.4). Thus, these completely positive maps are exactly our object of study in this paper.

REMARK 1 . When $M$ and $N$ are $I I_{1}$ factors, one can prove that the index of a completely positive map $\Phi \in C P_{H}(M, N)$ is equal to the product of $k^{2}$ by the index of the correspondence $H$, where $k$ is the multiplicity of $\Phi$. These two notions of index have been introduced by Popa in ([10], $\S 1.4)$. Recall that the index of a correspondence $H$ is the number $\operatorname{dim}_{M} H \operatorname{dim}_{N^{o}} H$, and the index of $\Phi$ is, by definition, the index of the correspondence $H_{\Phi}$. It follows from the theorem 1 that $\left\{k^{2}, 0 \leq k \leq m n\right\}$ is the set of indices of all the completely positive maps from $M_{m}(\mathbf{C})$ into $M_{n}(\mathbf{C})$.

Let us return now to the general situation. Although the family $\left(a_{i}\right)_{i \in I}$ to which $\Phi \in$ $C P_{H}(M, N)$ is associated is not unique, the next result shows that, when $H_{\Phi}$ is a finite multiple of $H$, there is an essentially unique independent family $\left(b_{j}\right)$ such that

$$
\Phi(x)=\sum_{j} b_{j}^{*} x b_{j} \quad \text { for all } x \in M
$$

THEOREM 2. Let $\Phi \in C P_{H}(M, N)$ of multiplicity $k<+\infty$, and let $b_{1}, \ldots, b_{k}$ be $k$ independent elements of $X_{H}$ such that $\Phi(x)=\sum_{j=1}^{k} b_{j}^{*} x b_{j}$ for all $x \in M$. Then a family $\left(a_{i}\right)_{i \in I}$ in $X_{H}$ satisfies

$$
\sum_{i \in I} a_{i}^{*} x a_{i}=\sum_{j=1}^{k} b_{j}^{*} x b_{j} \quad \text { for all } x \in M
$$

if only and only if there exists an isometry $u=\left(u_{i j}\right)$ from $\mathbf{C}^{k}$ onto $l^{2}(I)$ such that

$$
a_{i}=\sum_{j=1}^{k} u_{i j} b_{j} \quad \text { for } i \in I
$$

Proof. Suppose first that $\sum_{i \in I} a_{i}^{*} x a_{i}=\sum_{j=1}^{k} b_{j}^{*} x b_{j}$ for all $x \in M$. Then

$$
U:\left(m b_{j} h\right)_{j=1, \ldots, k} \rightarrow\left(m a_{i} h\right)_{i \in I} \quad \text { for } m \in M, h \in L^{2}(N)
$$

induces an isometry from the closed linear span $K$ of

$$
\left\{\left(m b_{j} h\right)_{j=1, \ldots, k}, m \in M, h \in L^{2}(N)\right\}
$$

into $l^{2}(I) \otimes H$. By lemma $1, K=\mathbf{C}^{k} \otimes H$ since $b_{1}, \ldots, b_{k}$ are independent. Moreover, $U$ intertwines the left actions of $M$ and the right actions of $N$. Thanks to the irreducibility of
$H$ we see that $U=u \otimes 1$ where $u$ is an isometry from $\mathbf{C}^{k}$ into $l^{2}(I)$. As $U\left(b_{1} h, \ldots, b_{k} h\right)=$ $\left(a_{i} h\right)_{i \in I}$ for all $h \in L^{2}(N)$, it is clear that $a_{i}=\sum_{j=1}^{k} u_{i j} b_{j}$.

The converse is easily checked.
REMARK 2. If $k$ is infinite, the above result remains true provided that we take a family $\left(b_{j}\right)_{j \in J}$ such that the closed linear span of

$$
\left\{\left(m b_{j} h\right)_{j=1, \ldots, k}, m \in M, h \in L^{2}(N)\right\}
$$

is equal to $l^{2}(J) \otimes H$. This hypothesis is stronger that the independence of $\left(b_{j}\right)$.
Let now $c \in N, c \geq 0$, and denote by $C P(M, N, c)$ the convex set of completely positive maps $\Phi: M \rightarrow N$ with $\Phi(1)=c$. Using the Arveson-Paschke characterization of the set of extreme points of $C P(M, N, c)$, that we recall below, it will be easy to find the extreme elements of $C P(M, N, c)$ belonging to $C P_{H}(M, N)$.

Theorem 3. ([9], Th. 5.4) Let $\Phi \in C P_{H}(M, N)$ with $\Phi(1)=c$. Then $\Phi$ is an extreme point of $C P(M, N, c)$ if and only if the map $x \rightarrow\left\langle\xi_{\Phi}, x \xi_{\Phi}\right\rangle$ from $\mathcal{L}_{N}\left(X_{\Phi}\right)$ into $N$ is injective when restricted to the commutant of $\pi_{\Phi}(M)$.

Theorem 4. Let $\Phi \in C P_{H}(M, N)$ of multiplicity $k<+\infty$, with $\Phi(1)=c$. Let $b_{1}, \ldots, b_{k}$ independent elements of $X_{H}$ such that $\Phi(x)=\sum_{j=1}^{k} b_{j}^{*} x b_{j}$ for $x \in M$. Then $\Phi$ is an extreme point of $C P(M, N, c)$ if and only if $\left\{\left\langle b_{i}, b_{j}\right\rangle, i, j=1, \ldots, k\right\}$ is a set of linearly independent elements in $N$.

Proof. We have $X_{\Phi}=\mathbf{C}^{k} \otimes X_{H}$ and $\mathcal{L}_{N}\left(X_{\Phi}\right)=M_{k}(\mathbf{C}) \otimes \mathcal{L}_{N}\left(X_{H}\right)$. By the irreducibility of $H$, we see that the commutant of $\pi_{\Phi}(M)$ in $\mathcal{L}_{N}\left(X_{\Phi}\right)$ is $M_{k}(\mathbf{C}) \otimes 1$. Then, for $x=\left(x_{i j}\right) \in$ $M_{k}(\mathbf{C})$, we have

$$
\left\langle\xi_{\Phi},(x \otimes 1) \xi_{\Phi}\right\rangle=\sum_{i, j=1}^{k} b_{i}^{*} b_{j} x_{i j}
$$

and the conclusion follows immediately from the Arveson-Paschke result.
Remark 3. There is an analogue of this theorem when $k$ is infinite, but with a more complicated expression.

In the case $M=M_{m}(\mathbf{C})$ and $N=M_{n}(\mathbf{C})$, the above result is exactly the theorem 5 of [4].

When applied to example 3 with $N^{\prime} \cap M=\mathbf{C}$, our theorem 4 has for instance the following consequence. Let $b_{1}, \ldots, b_{k}$ be independent elements in $M$ with $E\left(\sum_{j=1}^{k} b_{j}^{*} b_{j}\right)=$ 1. Then the completely positive map $x \rightarrow E\left(\sum_{j=1}^{k} b_{j}^{*} x b_{j}\right)$ is an extreme point of the convex set of all unital completely positive maps from $M$ into $N$ if and only if the elements $E\left(b_{i}^{*} b_{j}\right), i, j=1, \ldots, k$, are independent.

To conclude, let us remark that the case where $H$ is not irreducible is much more difficult to work out, as we can see it in [8] for the case of inner completely positive maps.

## References

1. C. Anantharaman-Delaroche, J. F. Havet, On approximate factorizations of completely positive maps, J. Funct. Anal. 90 (1990), 411-428.
2. W. B. Arveson, Subalgebras of $C^{*}$-algebras, Acta Math. 123 (1969), 141-224.
3. M. Baillet, Y. Denizeau, J. F. Havet, Indice d'une espérance conditionnelle, Comp. Math. 66 (1988), 199-236.
4. M. D. Choi, Completely positive linear maps on complex matrices, Linear Alg. Appl. 10 (1975), 285290.
5. A. Connes, V. Jones, Property T for von Neumann algebras, Bull. London Math. Soc. 17 (1985), 57-62.
6. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969.
7. U. Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271-283.
8. J. Mingo, The correspondence associated to an inner completely positive map, Math. Ann. 284 (1989), 121-135.
9. W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
10. S. Popa, Correspondences, Preprint.
11. M. A. Rieffel, Induced representations of C*-algebras, Advances in Math. 13 (1974), 176-257.
12. M. A. Rieffel, Morita equivalence for $C^{*}$-algebras and $W^{*}$-algebras, J. Pure Appl. Alg. 5 (1974), 51-96.
13. M. Takesaki, Theory of operator algebras I, Springer-Verlag, New-York, 1979.

## Université d'Orléans

Département de Mathématiques et d'Informatique
B.P. 6759, 45067 ORLEANS Cedex 2, France


[^0]:    Received November 9, 1988.

