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Torsionfree modules and
classes of orders

William H. Gustafson

It is shown how torsionfree modules can be used to characterize
certain important classes of orders over Dedekind rings. In
particular, we show that an order is Gorenstein if and only if
each of its lattices can be embedded as a pure sublattice of a
free lattice. We also show that an order is hereditary if and
only if the tensor product of any of its right lattices with any

of its left lattices is torsionfree over the ground domain.

Introduction

let us gather some notation and definitions. Let R be a Dedekind
ring with field of fractions X , and let A be an HR-order in a semi-
simple K-algebra A . That is, A is an R-subalgebra of A , containing
the identity, such that A is finitely generated as an R-module and
contains a K-basis for A4 . By a A-lattice, we mean a A-module which is
finitely generated and projective as HR-module. Denote by NMA-lat
(respectively, lat-A ) the category of left (respectively, right)
A-lattices.

We say that the left A-lattice L is weakly injective if
extk(ﬂ, L) = 0 for each left A-lattice ¥ . A is left Goremstein if A

is weakly injective as a left A-lattice. By Theorem 3.3 of [1], A is
left Gorenstein if and only if the injective dimension of A as a left
A-module is one (assuming R # K ). It follows that our definition of left

Gorenstein orders is in accord with the usual one given in [2]. Further,
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Proposition 6.1 of [2] shows that A is left Gorenstein if and only if it
is right Gorenstein in the obvious sense. Hence, we can refer to left

Gorenstein orders simply as Gorenstein orders.

Given a A-lattice M and a sublattice N , we say that N 1is a pure
sublattice of M if M/N is R-torsionfree. Our characterization of

Gorenstein orders is the following theorem.

THEOREM 1. The R-order A 1is Gorenstein if and only if each left
A-Tlattice is isomorphic to a pure sublattice of a free left A-lattice.

The R-order A is said to be hereditary if it is an hereditary ring.
It follows from the semisimplicity of 4 that any A-lattice can be
embedded in a free A-lattice, hence A is hereditary if and only if all
its lattices are projective A-modules. In particular, an hereditary order
is Gorenstein. Hattori [4] showed that a noetherian integral domain R is
Dedekind if and only if the tensor product of any two torsionfree
R-modules is again torsionfree. Our characterization of hereditary orders

is very similar to this theorem.
THEOREM 2. The R-order A is hereditary if and only if M ®, v

18 R-torsionfree whenever M € lat-A and N € A-lat .

Gorenstein orders

In this section we prove Theorem 1 and discuss some related results.
It is clear that the theorem is analogous to the familiar result that a
finite dimensional algebra over a field is quasi-Frobenius if and only if
each of its finitely generated modules is torsionless. (As we have noted
above, each lattice over an order is torsionless, hence the additional
requirement of purity in Theorem 1 plays an indispensable role.) By
analogy, it is natural to prove the theorem using the dualizing functor

homR(—, R) , which sends A-lat to lat-A , and conversely. As is
customary, we shall denote homR(M, R) by M* . Then, we have the natural
isomorphism M = M** for lattices. Further, homR(-, R) is an exact

functor on the categories of lattices. It is not difficult to show that M

is projective if and only if M* 1is weakly injective.
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Let us now proceed to the proof of Theorem 1. Assume first that A
is Gorenstein and let M be a left A-lattice. Find an exact sequence
O+N->F->M*~>0,
where F is a free right A-lattice. By duality, we obtain the exact
sequence
O-+M+F>N*>0.

Since A is Gorenstein, F* is projective. Further, N* is a lattice,
hence R-torsionfree. Thus, M is a pure sublattice of the projective
lattice F* . If necessary, we may form thé direct sum of F* and another
A-lattice so as to obtain a free A-lattice in which M 1is embedded as a

pure sublattice.

Conversely, assume that each left A-lattice can be embedded as a pure

sublattice of a free lattice. Embed (AA)* as a pure sublattice of a free
A-lattice F . Thus, we have an exact sequence

0> (AY*>F>x>0,

where X is a A-lattice. By duality, we obtain the exact sequence

0->X*->F*—>I\A->O.

Since AA is free, this sequence splits. Therefore, AA is a direct

summand of the weakly injective lattice F* , and is hence itself weakly

injective. Thus A 1is Gorenstein and the proof of Theorem 1 is complete.

We wish now to indicate a possible method of applying this theorem to
the study of orders of finite representation type, that is, those which

have only finitely many isomorphism types of indecomposable lattices.

COROLLARY. Asswme that the Jordan-Zassenhaus Theorem [9] is valid for
R-orders, and let A be an R-order. Then N\ 1is a Gorenstein order of
finite representation type if and only if N is Morita-equivalent to an
order T with the property that each indecomposable T-lattice is
isomorphic to a pm ideal of T .

Proof. If A 1is Morita-equivalent to such an order T , then T has
only finitely many indecomposable lattices by Jordan-Zassenhaus, and I 1is

Gorenstein by the theorem. Since both these properties are Morita-
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invariant, A also enjoys them.

On the other hand, let A be Gorenstein and have only finitely many
indecomposable lattices. Then there is a free A-module F in which all

the indecomposable A-lattices can be embedded as pure sublattices. It is
now easy to verify that T = homA(F, F)°? has the property that each of

its indecomposable lattices is isomorphic to a pure ideal. This completes

the proof.

We remark that it may indeed be necessary to effect a proper Morita
equivalence to obtain the order T in the above corollary. For example,

let p =2 3 be a rational prime, R the ring of p-adic integers and G a

. 2 . . .
cyclic group of order p . Then the group ring RG is a Gorenstein order

with only finitely many indecomposable lattices. However, some of these

indecomposable A-lattices are of R-rank p2 + 1 , and are therefore not
isomorphic to ideals of RG . The indecomposable RG-lattices are listed
in [5] and [é].

Finally, let us remark that by using the main result of [7], one can

imitate the proof of the above corollary to show

PROPOSITION. ILet A be a finite-dimensional K-algebra. Then A 1is
a quasi-Frobenius algebra of finite representation type if and only if A
18 Morita-equivalent to an algebra B , all of whose indecomposable modules

are isomorphic to ideals.

Once again, it is possible to give examples showing that a proper

Morita-equivalence may be needed. One such example is presented in [3].

Hereditary orders

In this section we give a proof of Theorem 2, along the lines of the

work of Hattori mentioned in the introduction.

Let us first suppose that A is hereditary, M € lat-A and
NV € A-lat . Since every A-lattice is projective, we may find X € A-lat
such that N® X is a free A-lattice. Then M@A N 1is an R-direct

summand of M@A (M®X) . The latter module is R-isomorphic to a direct

sum of copies of M , hence M®A N 1is R-torsionfree.
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Conversely, suppose that A is not hereditary. Then there is a-non-
projective right A-lattice M . It follows from [&, p. 62] that ¥ is
not a flat A-module. Hence, there is a left A-module X such that

torf(M, X) # 0 . Since tori\(M, -) commutes with direct limits, we may

assume that X is finitely generated. We now find an exact sequence
O+>N>F+X>0,

where F 1is a finitely generated free left A-lattice. Applying M®A -

to this sequence, we obtain the exact sequence

O+tor:/L\(M, X)->M®A1V+M®AF+M®AX->O ,

A
L (M5 X) . The

proof is now completed by appealing to the next proposition.

whence M®A N contains an R-submodule isomorphic to tor

PROPOSITION. Let M be a right MA-module and X a left MA-module.
Then torﬁ(M, X) is a torsion R-module for all n =1 .
Proof. We give a proof in four steps.

Step I. By a direct limit argument, we see that we may assume that X

is finitely generated.

Step II. Assume that X is a torsion R-module. Then since X is

finitely generated as KR-module, there is a nonzero a € R such that

oX = 0 . It follows that atorﬁ(M, X) =0 forall nz=0.

Step III. Assume that X is torsionfree as an R-module, so that X
is a A-lattice. Because A is semisimple, we can find another A-lattice
Y and a free A-lattice F such that X® Y C F and F/(X®Y) is a

torsion HA-module. The exact homology sequence yields an isomorphism

tor£+l(M, F/()@Y)) = tor:(M, X)® torﬁ(M, Y) .

By Step II, torﬁ(M, X) is torsion.

Step IV. Now we deal with an arbitrary finitely generated X . Let
tX be the R-torsion submodule of X ; clearly, it is a A-submodule.

From the exact sequence
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0O+ tX>X>X/tx >0 ,

we obtain an exact sequence
torﬁ(M, tX) > torﬁ(M, X) » torﬁ(M, X/tx)

Since the end terms are R-torsion, so is the middle term. This completes

the proof.
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