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Abstract

In this paper we study Nash equilibrium payoffs for nonzero-sum stochastic differential
games with two reflecting barriers. We obtain an existence and a characterization of
Nash equilibrium payoffs for nonzero-sum stochastic differential games with nonlinear
cost functionals defined by doubly controlled reflected backward stochastic differential
equations with two reflecting barriers.
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1. Introduction

Duffie and Epstein [7] introduced a special kind of backward stochastic differential equation
(BSDE) in order to investigate a stochastic differential recursive utility which dependents not
only on the instantaneous consumption rate, but also on the future utility. Thus, it generalizes
the standard additive utility. Pardoux and Peng [13] introduced nonlinear BSDEs. The
theory of BSDEs has many applications in mathematical finance and mathematical economics,
e.g. Knightian uncertainty problems in economics, asset pricing, and hedging of contingent
claims. See El Karoui et al. [8], and the references therein for more applications.

Fleming and Souganidis [9] were the first to study zero-sum stochastic differential games in a
rigorous way. Since this pioneering work, stochastic differential games have been investigated
by many authors. We refer the reader to Buckdahn et al. [2], Buckdahn and Li [4], and the
references therein.

Recently, Buckdahn et al. [3] studied Nash equilibrium payoffs for stochastic differential
games with linear cost functionals. Lin [11], [12] generalizes the earlier result in [3]. In Lin
[11], [12], the admissible control processes can depend on events occurring before the beginning
of the stochastic differential game; thus, the cost functionals are not necessarily deterministic.
Moreover, the cost functionals are defined with the help of BSDEs, and, thus, they are nonlinear.

The objective of this paper is to investigate Nash equilibrium payoffs for nonzero-sum
stochastic differential games with two reflecting barriers whose cost functionals are defined
by doubly controlled reflected backward stochastic differential equations (RBSDEs) with two
reflecting barriers. Cvitanic and Karatzas [6] first studied RBSDEs with two reflecting barriers.
This kind of RBSDE has many applications in economics, e.g. in Dynkin games and mixed
zero-sum games. We shall study Nash equilibrium payoffs for nonzero-sum stochastic different
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games, which are different from the earlier ones [3], [11], and [12]. We shall also study Nash
equilibrium payoffs for nonzero-sum stochastic differential games with more general running
cost functionals, which are defined with the help of RBSDEs with two reflecting barriers. In
comparison with [5] we shall study nonzero-sum stochastic differential games of the strategy
against strategy type, while [5] considered the games of the strategy against control type.

In comparison with [11] and [12], this paper has the following improvements and advantages.
First, the cost functionals of both players are defined by BSDEs without reflecting barriers as in
[11] and BSDEs with one reflecting barriers as in [12]. In this paper, the cost functionals of both
players are defined by BSDEs with two reflecting barriers. Thus, our results are more general.
Second, for the proof of our results in this paper, we make use of elementary mathematical
analysis techniques and the properties of BSDEs with two reflecting barriers. Finally, the
presence of two reflecting barriers in this paper brings with it much difficulty and adds a level
of supplementary complexity.

The paper is organized as follows. In Section 2 we introduce some notation and present
some preliminary results concerning reflected RBSDEs with two reflecting barriers, which are
useful in what follows. In Section 3 we introduce nonzero-sum stochastic differential games
with reflection and obtain the associated dynamic programming principle. In Section 4 we
give a probabilistic interpretation of systems of Isaacs’ equations with two reflecting barriers.
In Section 5 we obtain the main results of this paper, i.e. an existence and a characterization
of Nash equilibrium payoffs for nonzero-sum stochastic differential games with two reflecting
barriers.

2. Preliminaries

In this section we provide some notation and some results about BSDEs, which are useful
in what follows. In this paper we shall work on the classical Wiener space (�, F , P). For
an arbitrarily fixed time horizon T > 0, � is the set of continuous functions from [0, T ] to
R

d , with the initial value 0, and F is the Borel σ -algebra over �, completed by the Wiener
measure on P. With respect to P, the coordinate process Bs(ω) = ωs, s ∈ [0, T ], ω ∈ �, is a
d-dimensional Brownian motion. The filtration F = {Ft , 0 ≤ t ≤ T } is generated by B and
augmented by all P-null sets, i.e.

Ft = σ {Br, 0 ≤ r ≤ t} ∨ NP,

where NP is the set of all P-null sets. Let us introduce some spaces:

L2(�, FT , P; R
n) = {ξ | ξ : � → R

n is an FT -measurable random variable

such that E[|ξ |2] < +∞},
S2(0, T ; R) =

{
ϕ

∣∣∣ ϕ : � × [0, T ] → R is an adapted continuous process

such that E

[
sup

0≤t≤T

|ϕt |2
]

< +∞
}
,

H2(0, T ; R
d) =

{
ϕ

∣∣∣∣ ϕ : � × [0, T ] → R
d is a progressively measurable process

such that E

∫ T

0
|ϕt |2 dt < +∞

}
.
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We consider the following two barriers reflected BSDEs with data (f, ξ, L, U):

Yt = ξ +
∫ T

t

f (s, Ys, Zs) ds + K+
T − K+

t − K−
T + K−

t

−
∫ T

t

Zs dBs, Lt ≤ Yt ≤ Ut, t ∈ [0, T ], (1a)

∫ T

0
(Yt − Lt) dK+

t =
∫ T

0
(Yt − Ut) dK−

t = 0, (1b)

where {K+
t } and {K−

t } are adapted, continuous, and increasing processes such that K+
0 = 0

and K−
0 = 0, f : � × [0, T ] × R × R

d → R and we make the following assumptions:

(H2.1) f (·, 0, 0) ∈ H2(0, T ; R),

(H2.2) there exists some constant L > 0 such that for all y, y′ ∈ R and z, z′ ∈ R
d ,

|f (t, y, z) − f (t, y′, z′)| ≤ L(|y − y′| + |z − z′|),
(H2.3) L and U are continuous processes such that L, U ∈ S2(0, T ; R).

We have the existence and uniqueness theorem for solutions of (1). For its proof, see [10].

Lemma 1. Under assumptions (H2.1)–(H2.3), if ξ ∈ L2(�, FT , P; R), LT ≤ ξ ≤ UT , and
Lt < Ut , 0 ≤ t ≤ T almost surely (a.s.), then (1) has a unique solution (Y, Z, K+, K−).

We now provide the following estimate of the solutions of BSDEs with two reflecting barriers,
which plays an important role in this paper. Since some of the proof technique is derived from
Pham and Zhang [15], we omit the proof here.

Lemma 2. We suppose that (ξ1, f 1, L1, U1) and (ξ2, f 2, L2, U2) satisfy the assumptions in
Lemma 1. Let (Y 1, Z1, K+,1, K−,1) and (Y 2, Z2, K+,2, K−,2) be the solutions of the reflected
BSDEs (1) with data (ξ1, f 1, L1, U1) and (ξ2, f 2, L2, U2), respectively. Write

�ξ = ξ1 − ξ2, �f = f 1 − f 2, �L = L1 − L2,

�U = U1 − U2, �Y = Y 1 − Y 2, �Z = Z1 − Z2,

�K+ = K+,1 − K+,2, �K− = K−,1 − K−,2.

Then there exists a constant C such that

E

[
sup

t≤s≤T

|�Ys |2 +
∫ T

t

|�Zs |2 ds + |�K+
T − �K+

t − �K−
T + �K−

t |2 | Ft

]

≤ CE

[
|�ξ |2 +

(∫ T

t

|�f (s, Y 1
s , Z1

s )| ds

)2

| Ft

]

+ C
(
E

[
sup

t≤s≤T

(|�Ls |2 + |�Us |2) | Ft

])1/2
(At,T + Bt,T ),

where

At,T = E

[
|ξ1|2 +

(∫ T

t

|f 1(s, 0, 0)| ds

)2

+ |ξ2|2 +
(∫ T

t

|f 2(s, 0, 0)| ds

)2 ∣∣∣ Ft

]1/2

,
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and

Bt,T =
(

E

[
sup

t≤s≤T

[(L1
s )

+]2 + sup
t≤s≤T

[(L2
s )

+]2 + sup
t≤s≤T

[(U1
s )+]2 + sup

t≤s≤T

[(U2
s )+]2 | Ft

]

+
2∑

j=1

sup
π

E

[ n∑
i=0

([E[Lj
ti+1

| Fti ] − U
j
ti
]+ + [Lj

ti
− E[Uj

ti+1
| Fti ]]+)2 | Ft

])1/2

,

the supremum is taken over all the partitions π : t = t0 < · · · < tn = T .

We provide the comparison theorem for solutions of BSDEs with two reflecting barriers.
For its proof, we refer the reader to [10] for more details.

Lemma 3. We suppose that (ξ1, f 1, L1, U1) and (ξ2, f 2, L2, U2) satisfy the assumptions in
Lemma 1. Let (Y 1, Z1, K+,1, K−,1) and (Y 2, Z2, K+,2, K−,2) be the solutions of the reflected
BSDEs (1) with data (ξ1, f 1, L1, U1) and (ξ2, f 2, L2, U2), respectively. If the following
holds:

(i) ξ1 ≤ ξ2, P-a.s.

(ii) f 1(t, y2
t , z2

t ) ≤ f 2(t, y2
t , z2

t ), dt dP-almost everywhere (a.e.)

(iii) L1 ≤ L2, U1 ≤ U2
P-a.s.

Then we have Y 1
t ≤ Y 2

t , a.s. for all t ∈ [0, T ]. Moreover, if

(iv) f 1(t, y, z) ≤ f 2(t, y, z), (t, y, z) ∈ [0, T ] × R × R
d , dt dP-a.e.

(v) L1 = L2, U1 = U2, P-a.s.

Then K
−,1
t ≤ K

−,2
t , K

+,1
t ≥ K

+,2
t P-a.s. for all t ∈ [0, T ].

3. Nonzero-sum stochastic differential games with two reflecting barriers

In the following, let us suppose that U and V are two compact metric spaces. The space
U (respectively, V ) is considered as the control state-space of the first (respectively, second)
player. We denote the associated sets of admissible controls by U and V, respectively. The
set U (respectively, V) is the set of all U -valued (respectively, V -valued) F-progressively
measurable processes.

For given admissible controls u(·) ∈ U and v(·) ∈ V, we consider the following control
system for t ∈ [0, T ]:

dXt,x;u,v
s = b(s, Xt,x;u,v

s , us, vs) ds + σ(s, Xt,x;u,v
s , us, vs) dBs, s ∈ [t, T ], (2a)

X
t,x;u,v
t = x ∈ R

n, (2b)

where

b : [0, T ] × R
n × U × V → R

n, σ : [0, T ] × R
n × U × V → R

n×d .

Let us make the following assumptions.

(H3.1) For all x ∈ R
n, b(·, x, ·, ·) and σ(·, x, ·, ·) are continuous in (t, u, v).
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(H3.2) There exists a positive constant L such that, for all t ∈ [0, T ], x, x′ ∈ R
n, u ∈ U, v ∈ V ,

|b(t, x, u, v) − b(t, x′, u, v)| + |σ(t, x, u, v) − σ(t, x′, u, v)| ≤ L|x − x′|.
Under the above assumptions, for any u(·) ∈ U and v(·) ∈ V, (2) has a unique strong

solution {Xt,x;u,v
s }t≤s≤T , and the following standard estimates for solutions hold.

Lemma 4. For all p ≥ 2, there exists a positive constant Cp such that for all t ∈ [0, T ],
x, x′ ∈ R

n, u(·) ∈ U, and v(·) ∈ V,

E

[
sup

t≤s≤T

|Xt,x;u,v
s |p | Ft

]
≤ Cp(1 + |x|p), P-a.s.,

E

[
sup

t≤s≤T

|Xt,x;u,v
s − Xt,x′;u,v

s |p | Ft

]
≤ Cp|x − x′|p, P-a.s.,

where the constant Cp depends only on p, the Lipschitz constant, and the linear growth of b

and σ .

For given admissible controls u(·) ∈ U and v(·) ∈ V, let us consider the following doubly
controlled BSDE with two reflecting barriers for fixed j = 1, 2:

jY t,x;u,v
s = 	j(X

t,x;u,v
T ) +

∫ T

s

fj (r, X
t,x;u,v
r , jY t,x;u,v

r , jZt,x;u,v
r , ur , vr ) dr + jK

+,t,x;u,v
T

− jK+,t,x;u,v
s − jK

−,t,x;u,v
T + jK−,t,x;u,v

s −
∫ T

s

jZt,x;u,v
r dBr, (3a)

hj (s, X
t,x;u,v
s ) ≤ jY t,x;u,v

s ≤ h′
j (s, X

t,x;u,v
s ), s ∈ [t, T ], (3b)∫ T

t

(jY t,x;u,v
r − hj (r, X

t,x;u,v
r )) d jK+,t,x;u,v

r = 0, (3c)

∫ T

t

(jY t,x;u,v
r − h′

j (r, X
t,x;u,v
r )) d jK−,t,x;u,v

r = 0, (3d)

where Xt,x;u,v is introduced in (2) and

	j = 	j(x) : R
n → R, h′

j = h′
j (t, x), hj = hj (t, x) : [0, T ] × R

n → R,

fj = fj (t, x, y, z, u, v) : [0, T ] × R
n × R × R

d × U × V → R.

We make the following assumptions.

(H3.3) There exists a positive constant L such that, for all t ∈ [0, T ], x, x′ ∈ R
n, y, y′ ∈ R,

z, z′ ∈ R
d , u ∈ U and v ∈ V ,

|fj (t, x, y, z, u, v) − fj (t, x
′, y′, z′, u, v)| + |	j(x) − 	j(x

′)|
≤ L(|x − x′| + |y − y′| + |z − z′|).

In addition, we suppose that hj (t, x) < h′
j (t, x), hj (T , x) ≤ 	j(x) ≤ h′

j (T , x) for all
(t, x) ∈ [0, T ] × R

n.

(H3.4) For all (x, y, z) ∈ R
n × R × R

d , fj (·, x, y, z, ·, ·) is continuous in (t, u, v), and there
exists a positive constant L such that for all t, s ∈ [0, T ], x, y ∈ R

n,

|hj (t, x) − hj (s, y)| + |h′
j (t, x) − h′

j (s, y)| ≤ L(|x − y| + |t − s|1/2).
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Under the above assumptions, from [10] it follows that equation (3) admits a unique solution.
For given control processes u(·) ∈ U and v(·) ∈ V , we introduce the associated cost functional
for player j , j = 1, 2,

Jj (t, x; u, v) := jY t,x;u,v
s

∣∣
s=t

, (t, x) ∈ [0, T ] × R
n.

By virtue of [5], the following estimates for solutions hold.

Proposition 1. Under the assumptions (H3.1)–(H3.4), there exists a positive constant C such
that, for all t ∈ [0, T ], u(·) ∈ U and v(·) ∈ V, x, x′ ∈ R

n,

|jY t,x;u,v
t | ≤ C(1 + |x|), P-a.s., |jY t,x;u,v

t − jY
t,x′;u,v
t | ≤ C|x − x′|, P-a.s.

Let us now give the definition of admissible controls and a nonanticipating strategy with
delay (NAD strategy), which were introduced in [11].

Definition 1. The space Ut,T (respectively, Vt,T ) of admissible controls for Player I (respec-
tively, Player II) on the interval [t, T ] is defined as the space of all processes {ur}r∈[t,T ] (respec-
tively, {vr}r∈[t,T ]), which are F-progressively measurable and take values in U (respectively, V ).

Definition 2. An NAD strategy for Player I is a measurable mapping α : Vt,T → Ut,T , which
satisfies the following properties:

1. α is a nonanticipative strategy, i.e. for every F-stopping time τ : � → [t, T ] and for
v1, v2 ∈ Vt,T with v1 = v2 on [[t, τ ]], it holds that α(v1) = α(v2) on [[t, τ ]]. (Recall
that [[t, τ ]] = {(s, ω) ∈ [t, T ] × �, t ≤ s ≤ τ(ω)}).

2. α is a strategy with delay, i.e. for all v ∈ Vt,T , there exists an increasing sequence of
stopping times {Sn(v)}n≥1 with

(i) t = S0(v) ≤ S1(v) ≤ · · · ≤ Sn(v) ≤ · · · ≤ T ,

(ii)
⋃

n≥1{Sn(v) = T } = �, P-a.s. such that, for all n ≥ 1 and v, v′ ∈ Vt,T , � ∈ Ft ,
it holds, if v = v′ on [[t, Sn−1(v)]]⋂([t, T ] × �), then

(iii) Sl(v) = Sl(v
′), on �, 1 ≤ l ≤ n,

(iv) α(v) = α(v′), on [[t, Sn(v)]]⋂([t, T ] × �).

Let us denote the set of all NAD strategies for Player I for games over the time interval [t, T ]
by At,T . The set of all NAD strategies β : Ut,T → Vt,T for Player II for games over the time
interval [t, T ] can be defined in a symmetrical way and let us denote it by Bt,T .

We have the following useful lemma, which was established in [11]. The lemma treats both
players in a fair way.

Lemma 5. Let (α, β) ∈ At,T ×Bt,T . Then there exists a unique couple of admissible controls
(u, v) ∈ Ut,T × Vt,T such that α(v) = u and β(u) = v.
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For (α, β) ∈ At,T × Bt,T , from Lemma 5 we know that there exists a unique couple
(u, v) ∈ Ut,T × Vt,T such that (α(v), β(u)) = (u, v). Thus, we write Jj (t, x; α, β) =
Jj (t, x; u, v). Therefore, we define the lower and the upper value-functions Wj and Uj ,
respectively, associated with Jj : for all (t, x) ∈ [0, T ] × R

n and let us set

Wj(t, x) := ess sup
α∈At,T

ess inf
β∈Bt,T

Jj (t, x; α, β), Uj (t, x) := ess inf
β∈Bt,T

ess sup
α∈At,T

Jj (t, x; α, β).

Remark 1. We do not assume that the admissible control processes of both players are
independent of the information at the beginning of the stochastic differential game, i.e. Ft .
The admissible control processes can depend on events occurring before the beginning of
the stochastic differential game; thus, the cost functionals are not necessarily deterministic.
Moreover, the cost functionals are defined by the solutions of RBSDEs with two reflecting
barriers, and; thus, they are nonlinear.

Under assumptions (H3.1)–(H3.4), it follows that Wj(t, x) and Uj(t, x) are random vari-
ables. But, by virtue of the arguments in [2] and [11], the following proposition holds.

Proposition 2. Let assumptions (H3.1)–(H3.4) hold. Then for all (t, x) ∈ [0, T ] × R
n, the

value-functions Wj(t, x) and Uj(t, x) are deterministic.

We now recall the definition of stochastic backward semigroups, which was first introduced
by Peng [14] in order to study a stochastic optimal control problem. For a given initial condition
(t, x), a positive number δ ≤ T − t , for admissible control processes u(·) ∈ Ut,t+δ and v(·) ∈
Vt,t+δ , and a real-valued random variable η ∈ L2(�, Ft+δ, P; R) such that hj (t+δ, X

t,x;u,v
t+δ ) ≤

η ≤ h′
j (t + δ, X

t,x;u,v
t+δ ), we define

jG
t,x;u,v
t,t+δ [η] := jŶ

t,x;u,v
t ,

where (j Ŷ t,x;u,v, jẐt,x;u,v, jK̂+,t,x;u,v, jK̂−,t,x;u,v) is the unique solution of the following
BSDE with two reflecting barriers over the time interval [t, t + δ]:

jŶ t,x;u,v
s = η +

∫ t+δ

s

fj (r, X
t,x;u,v
r , jŶ t,x;u,v

r , jẐt,x;u,v
r , ur , vr ) dr

+ jK̂
+,t,x;u,v
t+δ − jK̂+,t,x;u,v

s − jK̂
−,t,x;u,v
t+δ + jK̂−,t,x;u,v

s −
∫ t+δ

s

jẐt,x;u,v
r dBr,

hj (s, X
t,x;u,v
s ) ≤ jŶ t,x;u,v

s ≤ h′
j (s, X

t,x;u,v
s ), s ∈ [t, t + δ],∫ t+δ

t

(jŶ t,x;u,v
r − hj (r, X

t,x;u,v
r )) djK̂+,t,x;u,v

r = 0,

∫ t+δ

t

(jŶ t,x;u,v
r − h′

j (r, X
t,x;u,v
r )) djK̂−,t,x;u,v

r = 0,

and Xt,x;u,v is the unique solution of (2).
For (t, x) ∈ [0, T ] × R

n, (u, v) ∈ Ut,T × Vt,T , 0 ≤ δ ≤ T − δ, j = 1, 2, we have

Jj (t, x; u, v) = jG
t,x;u,v
t,T [	j(X

t,x;u,v
T )]

= jG
t,x;u,v
t,t+δ [jY t,x;u,v

t+δ ]
= jG

t,x;u,v
t,t+δ [Jj (t + δ, X

t,x;u,v
t+δ , u, v)].
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Proposition 3. Let the assumptions (H3.1)–(H3.4) hold. Then we have the following dynamic
programming principle for all 0 < δ ≤ T − t, x ∈ R

n:

Wj(t, x) = ess sup
α∈At,t+δ

ess inf
β∈Bt,t+δ

jG
t,x;α,β
t,t+δ [Wj(t + δ, X

t,x;α,β
t+δ )],

Uj (t, x) = ess inf
β∈Bt,t+δ

ess sup
α∈At,t+δ

jG
t,x;α,β
t,t+δ [Uj(t + δ, X

t,x;α,β
t+δ )].

For the proof of the above proposition, we can use the similar arguments to those in [2]
and [11]. We omit it here. Using the standard arguments and Proposition 3, we can easily
obtain the following proposition.

Proposition 4. Let assumptions (H3.1)–(H3.4) hold. Then there exists a positive constant C

such that for all t, t ′ ∈ [0, T ] and x, x′ ∈ R
n, we have

(i) Wj(t, x) is 1
2 -Hölder continuous in t:

|Wj(t, x) − Wj(t
′, x)| ≤ C(1 + |x|)|t − t ′|1/2;

(ii) |Wj(t, x) − Wj(t, x
′)| ≤ C|x − x′|.

The same properties holds for the function Uj .

4. Probabilistic interpretation of systems of Isaacs’ equations with obstacles

The objective of this section is to give a probabilistic interpretation of systems of Isaacs’
equations with obstacles, and to show that Wj and Uj introduced in Section 3 are the viscosity
solutions of the following Isaacs’ equations with obstacles for (t, x) ∈ [0, T ) × R

n,

min

{
Wj(t, x) − hj (t, x), max

[
Wj(t, x) − h′

j (t, x), − ∂

∂t
Wj (t, x)

− H−
j (t, x, Wj (t, x), DWj(t, x), D2Wj(t, x))

]}
= 0,

(4a)

Wj(T , x) = 	j(x), (4b)

and

min

{
Uj(t, x) − hj (t, x), max

[
Uj(t, x) − h′

j (t, x), − ∂

∂t
Uj (t, x)

− H+
j (t, x, Uj (t, x), DUj (t, x), D2Uj(t, x))

]}
= 0, (5a)

Uj(T , x) = 	j(x), (5b)

respectively, where

Hj(t, x, y, p, A, u, v) = 1
2 tr(σσT (t, x, u, v)A) + pb(t, x, u, v)

+ fj (t, x, y, pσ(t, x, u, v), u, v),
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(t, x, y, p, u, v) ∈ [0, T ] × R
n × R × R

n × U × V and A ∈ S
n (Sn denotes all the n × n

symmetric matrices),

H−
j (t, x, y, p, A) = sup

u∈U

inf
v∈V

Hj (t, x, y, p, A, u, v),

H+
j (t, x, y, p, A) = inf

v∈V
sup
u∈U

Hj (t, x, y, p, A, u, v).

By means of the arguments [5] and [12], we can obtain the following theorem. We omit the
proof here.

Theorem 1. Let assumptions (H3.1)–(H3.4) hold. Then the function Wj (respectively, Uj ) is
a viscosity solution of the system (4) (respectively, (5)).

We now provide a comparison theorem for the viscosity solution of (4). Let us first introduce
the following space:

� :=
{
ϕ ∈ C([0, T ] × R

n) : there exists a constant A > 0 such that

lim|x|→∞ |ϕ(t, x)| exp{−A[log((|x|2 + 1)1/2)]2} = 0, uniformly in t ∈ [0, T ]
}
.

Theorem 2. Under the assumptions (H3.1)–(H3.4), if an upper semicontinuous function u1 ∈
� is a viscosity subsolution of (4) (respectively, (5)), and a lower semicontinuous function
u2 ∈ � is a viscosity supersolution of (4) (respectively, (5)), then we have

u1(t, x) ≤ u2(t, x) for all (t, x) ∈ [0, T ] × R
n.

Using the arguments in Barles et al. [1], we can obtain the above theorem. We omit the
proof here.

Remark 2. From Proposition 4 it follows that Wj (respectively, Uj ) is a viscosity solution
of linear growth. Therefore, from the above theorem we see that Wj (respectively, Uj ) is the
unique viscosity solution in � of the system (4) (respectively, (5)).

Isaacs’ condition: For all (t, x, y, p, A, u, v) ∈ [0, T ] × R
n × R × R × R

d × S
n × U × V ,

j = 1, 2, we have

sup
u∈U

inf
v∈V

{ 1
2 tr(σσT (t, x, u, v)A) + pb(t, x, u, v) + fj (t, x, y, pσ(t, x, u, v), u, v)

}
= inf

v∈V
sup
u∈U

{ 1
2 tr(σσT (t, x, u, v)A) + pb(t, x, u, v) + fj (t, x, y, pσ(t, x, u, v), u, v)

}
.

(6)

Corollary 1. Let Isaacs’ condition (6) hold. Then we have for all (t, x) ∈ [0, T ] × R
n,

(U1(t, x), U2(t, x)) = (W1(t, x), W2(t, x)).

In a symmetric way for all (t, x) ∈ [0, T ] × R
n, we write

Wj(t, x) := ess sup
β∈Bt,T

ess inf
α∈At,T

Jj (t, x; α, β), Uj (t, x) := ess inf
α∈At,T

ess sup
β∈Bt,T

Jj (t, x; α, β).

By virtue of the arguments in [2], we have the following propositions.
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Proposition 5. Let assumptions (H3.1)–(H3.4) hold. Then for all (t, x) ∈ [0, T ] × R
n, the

value-functions Wj(t, x) and Uj(t, x) are deterministic.

Proposition 6. Let assumptions (H3.1)–(H3.4) hold. Then we have the following dynamic
programming principle: for all 0 < δ ≤ T − t, x ∈ R

n,

Wj(t, x) = ess sup
β∈Bt,t+δ

ess inf
α∈At,t+δ

jG
t,x;α,β
t,t+δ [Wj(t + δ, X

t,x;α,β
t+δ )],

Uj (t, x) = ess inf
α∈At,t+δ

ess sup
β∈Bt,t+δ

jG
t,x;α,β
t,t+δ [Uj(t + δ, X

t,x;α,β
t+δ )].

Isaacs’ condition: For all (t, x, y, p, A, u, v) ∈ [0, T ] × R
n × R × R × R

n × S
n × U × V ,

j = 1, 2, we have

inf
u∈U

sup
v∈V

{ 1
2 tr(σσT (t, x, u, v)A) + pb(t, x, u, v) + fj (t, x, y, pσ(t, x, u, v), u, v)

}
= sup

v∈V

inf
u∈U

{ 1
2 tr(σσT (t, x, u, v)A) + pb(t, x, u, v) + fj (t, x, y, pσ(t, x, u, v), u, v)

}
.

(7)

Using the above arguments in this section, we have the following proposition.

Proposition 7. Under Isaacs’ condition (7), we have for all (t, x) ∈ [0, T ] × R
n,

(U1(t, x), U2(t, x)) = (W 1(t, x), W 2(t, x)).

5. Nash equilibrium payoffs

The objective of this section is to obtain an existence of Nash equilibrium payoffs for
nonzero-sum stochastic differential games.

In this section, let us redefine the following notation which are different from the above
sections, for (t, x) ∈ [0, T ] × R

n,

W1(t, x) := ess sup
α∈At,T

ess inf
β∈Bt,T

J1(t, x; α, β), W2(t, x) := ess sup
β∈Bt,T

ess inf
α∈At,T

J2(t, x; α, β).

Let us suppose that the following condition holds.
Isaacs’ condition A: For all (t, x, y, p, A, u, v) ∈ [0, T ] × R

n × R × R × R
d × S

n × U × V ,
we have

sup
u∈U

inf
v∈V

{ 1
2 tr(σσT (t, x, u, v)A) + pb(t, x, u, v) + f1(t, x, y, pσ(t, x, u, v), u, v)

}
= inf

v∈V
sup
u∈U

{ 1
2 tr(σσT (t, x, u, v)A) + pb(t, x, u, v) + f1(t, x, y, pσ(t, x, u, v), u, v)

}
,

and

inf
u∈U

sup
v∈V

{ 1
2 tr(σσT (t, x, u, v)A) + pb(t, x, u, v) + f2(t, x, y, pσ(t, x, u, v), u, v)

}
= sup

v∈V

inf
u∈U

{ 1
2 tr(σσT (t, x, u, v)A) + pb(t, x, u, v) + f2(t, x, y, pσ(t, x, u, v), u, v)

}
.
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Under the above condition, from the previous section, we have for (t, x) ∈ [0, T ] × R
n,

W1(t, x) = ess sup
α∈At,T

ess inf
β∈Bt,T

J1(t, x; α, β) = ess inf
β∈Bt,T

ess sup
α∈At,T

J1(t, x; α, β)

and
W2(t, x) = ess inf

α∈At,T

ess sup
β∈Bt,T

J2(t, x; α, β) = ess sup
β∈Bt,T

ess inf
α∈At,T

J2(t, x; α, β).

In order to simplify arguments, let us also assume that the coefficients b, σ , 	j , hj , h′
j ,

and fj satisfy assumptions (H3.1)–(H3.4) and are bounded.
We present the definition of the Nash equilibrium payoff of stochastic differential games

(see [11] or [3] for more details).

Definition 3. A couple (e1, e2) ∈ R
2 is called a Nash equilibrium payoff at the point (t, x) if

for any ε > 0, there exists (αε, βε) ∈ At,T × Bt,T such that for all (α, β) ∈ At,T × Bt,T ,

J1(t, x; αε, βε) ≥ J1(t, x; α, βε) − ε,

J2(t, x; αε, βε) ≥ J2(t, x; αε, β) − ε, P-a.s., (8)

and
|E[Jj (t, x; αε, βε)] − ej | ≤ ε, j = 1, 2.

By Lemma 5, we have the following lemma.

Lemma 6. For any ε > 0 and (αε, βε) ∈ At,T × Bt,T , (8) holds if and only if for all (u, v) ∈
Ut,T × Vt,T ,

J1(t, x; αε, βε) ≥ J1(t, x; u, βε(u)) − ε, P-a.s.,

J2(t, x; αε, βε) ≥ J2(t, x; αε(v), v) − ε, P-a.s.

We first provide the following lemma, which we shall need in what follows.

Lemma 7. Let (t, x) ∈ [0, T ] × R
n and u ∈ Ut,T be arbitrarily fixed. Then

(i) for all δ ∈ [0, T − t] and ε > 0, there exists a NAD strategy α ∈ At,T such that for all
v ∈ Vt,T ,

α(v) = u, on [t, t + δ], 2Y
t,x;α(v),v
t+δ ≤ W2(t + δ, X

t,x;α(v),v
t+δ ) + ε, P-a.s.

(ii) for all δ ∈ [0, T − t] and ε > 0, there exists a NAD strategy α ∈ At,T such that for all
v ∈ Vt,T ,

α(v) = u, on [t, t + δ], 1Y
t,x;α(v),v
t+δ ≥ W1(t + δ, X

t,x;α(v),v
t+δ ) − ε, P-a.s.

For the proof of the above lemma, see [11]. We also need the following lemma. And we
easily prove it by standard arguments for SDEs.

Lemma 8. There exists a positive constant C such that for all (u, v), (u′, v′) ∈ Ut,T × Vt,T ,
and for all Fr -stopping times S : � → [t, T ] such that X

t,x;u,v
S = X

t,x;u′,v′
S , P-a.s., it holds for

all real τ ∈ [0, T ],
E[ sup

0≤s≤τ

|Xt,x;u,v
(S+s)∧T − X

t,x;u′,v′
(S+s)∧T |2 | Ft ] ≤ Cτ, P-a.s.
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We now provide one of the main results of this section: the characterization theorem of Nash
equilibrium payoffs for nonzero-sum stochastic differential games with two reflecting barriers
as follows.

Theorem 3. Under Isaacs’ condition A, for (t, x) ∈ [0, T ] × R
n, and for all ε > 0, if there

exists (uε, vε) ∈ Ut,T × Vt,T such that for all s ∈ [t, T ] and j = 1, 2,

P(jY t,x;uε,vε

s ≥ Wj(s, X
t,x;uε,vε

s ) − ε | Ft ) ≥ 1 − ε, P-a.s., (9)

and
|E[Jj (t, x; uε, vε)] − ej | ≤ ε, (10)

then (e1, e2) ∈ R
2 is a Nash equilibrium payoff at point (t, x).

Proof. For arbitrarily fixed ε > 0 and some ε0 > 0 (ε0 depends on ε), we suppose that
(uε0 , vε0) ∈ Ut,T × Vt,T satisfies (9) and (10), i.e. for all s ∈ [t, T ] and j = 1, 2,

P(jY t,x;uε0 ,vε0
s ≥ Wj(s, X

t,x;uε0 ,vε0
s ) − ε0 | Ft ) ≥ 1 − ε0, P-a.s., (11)

as well as
|E[Jj (t, x; uε0 , vε0)] − ej | ≤ ε0. (12)

Let us fix some partition t = t0 ≤ t1 ≤ · · · ≤ tm = T of [t, T ] and write τ = supi |ti − ti+1|.
Applying Lemma 7 to uε0 and t + δ = t1, . . . , tm, successively, for ε1 > 0 (ε1 depends on ε

and is specified later), we have the existence of NAD strategies αi ∈ At,T , i = 1, . . . , m, such
that for all v ∈ Vt,T ,

αi(v) = uε0 , on [t, ti],
2Y

t,x;αi(v),v
ti

≤ W2(ti , X
t,x;αi(v),v
ti

) + ε1, P-a.s. (13)

For all v ∈ Vt,T , let
Sv = inf{s ≥ t | λ({r ∈ [t, s] : vr �= vε0

r }) > 0},
tv = inf{ti ≥ Sv | i = 1, . . . , m} ∧ T ,

where λ denotes the Lebesgue measure on the real line R. It can be checked that Sv and tv are
stopping times such that Sv ≤ tv ≤ Sv + τ . Let

αε(v) =
{

uε0 , on [[t, tv]],
αi(v), on (ti , T ] × {tv = ti}, 1 ≤ i ≤ m.

Then αε is a NAD strategy. From (13), we obtain

2Y
t,x;αε(v),v
tv =

m∑
i=1

2Y
t,x;αε(v),v
ti

1{tv=ti }

≤
m∑

i=1

W2(ti , X
t,x;αε(v),v
ti

) 1{tv=ti } +ε1

= W2(t
v, X

t,x;αε(v),v
tv ) + ε1, P-a.s. (14)

We claim that for all ε > 0 and v ∈ Vt,T ,

J2(t, x; αε(v), v) ≤ J2(t, x; uε0 , vε0) + ε, αε(v
ε0) = uε0 . (15)
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The proof of the above inequality is presented later. By a symmetric argument, we can construct
βε ∈ Bt,T such that for all u ∈ Ut,T ,

J1(t, x; u, βε(u)) ≤ J1(t, x; uε0 , vε0) + ε, βε(u
ε0) = vε0 . (16)

Finally, from (15), (16), (12), and Lemma 6, we see that (αε, βε) satisfies Definition 3.
Therefore, (e1, e2) is a Nash equilibrium payoff.

We now provide the proof of (15). For this, we need the following estimate. There exists a
positive constant C such that

J2(t, x, αε(v), v) = 2G
t,x;αε(v),v
t,tv [2Y

t,x,αε(v),v
tv ]

≤ 2G
t,x;αε(v),v
t,tv [W2(t

v, X
t,x;αε(v),v
tv )] + Cε

1/2
1 . (17)

Indeed, we consider the following BSDEs:

2Y t,x;αε(v),v
s = 2Y

t,x;αε(v),v
tv + k+

tv − k+
s − k−

tv + k−
s −

∫ tv

s

2Zt,x;αε(v),v
r dBr

+
∫ tv

s

f2(r, X
t,x;αε(v),v
r , 2Y t,x;αε(v),v

r , 2Zt,x;αε(v),v
r , αε(vr ), vr ) dr,

h2(s, X
t,x;αε(v),v
s ) ≤ 2Y t,x;αε(v),v

s ≤ h′
2(s, X

t,x;αε(v),v
s ), s ∈ [t, tv],∫ tv

t

(2Y t,x;αε(v),v
r − h2(r, X

t,x;αε(v),v
r )) dk+

r = 0,

∫ tv

t

(2Y t,x;αε(v),v
r − h′

2(r, X
t,x;αε(v),v
r )) dk−

r = 0,

and

ys = W2(t
v, X

t,x;αε(v),v
tv ) + ε1 +

∫ tv

s

f2(r, X
t,x;αε(v),v
r , yr , zr , αε(vr), vr ) dr

+ k+
tv − k+

s − k−
tv + k−

s −
∫ tv

s

zr dBr,

h2(s, X
t,x;αε(v),v
s ) ≤ ys ≤ h′

2(s, X
t,x;αε(v),v
s ) + ε1, s ∈ [t, tv],∫ tv

t

(yr − h2(r, X
t,x;αε(v),v
r )) dk+

r =
∫ tv

t

(yr − h′
2(r, X

t,x;αε(v),v
r ) − ε1) dk−

r = 0,

and

ŷs = W2(t
v, X

t,x;αε(v),v
tv ) +

∫ tv

s

f2(r, X
t,x;αε(v),v
r , y̌r , ẑr , αε(vr ), vr ) dr

+ k̂+
tv − k̂+

s − k̂−
tv + k̂−

s −
∫ tv

s

ẑr dBr,

h2(s, X
t,x;αε(v),v
s ) ≤ ŷs ≤ h′

2(s, X
t,x;αε(v),v
s ), s ∈ [t, tv],∫ tv

t

(ŷr − h2(r, X
t,x;αε(v),v
r )) dk̂+

r =
∫ tv

t

(ŷr − h′
2(r, X

t,x;αε(v),v
r )) dk̂−

r = 0.

https://doi.org/10.1239/aap/1435236979 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236979


368 Q. LIN

Thanks to (14), using Lemma 3 we obtain 2Y
t,x;αε(v),v
t ≤ yt , P-a.s. From Lemma 2 it follows

that there exists a constant C such that |ŷt − yt | ≤ Cε
1/2
1 , P-a.s., where we use the fact that for

all the partitions π : t = t0 < · · · < tn = supω∈� tv(ω),

[E[h2(ti+1, X
t,x;αε(v),v
ti+1

) | Fti ] − h′
2(ti , X

t,x;αε(v),v
ti

)]+
≤ E[|h2(ti+1, X

t,x;αε(v),v
ti+1

) − h2(ti , X
t,x;αε(v),v
ti

)| | Fti ]
+ [h2(ti , X

t,x;αε(v),v
ti

− h′
2(ti , X

t,x;αε(v),v
ti

)]+
≤ L|ti+1 − ti |1/2 + LE[|Xt,x;αε(v),v

ti+1
− X

t,x;αε(v),v
ti

)| | Fti ],
similarly,

[h2(ti , X
t,x;αε(v),v
ti

) − E[h′
2(ti+1, X

t,x;αε(v),v
ti+1

) | Fti ]]+
≤ L|ti+1 − ti |1/2 + LE[|Xt,x;αε(v),v

ti+1
− X

t,x;αε(v),v
ti

)| | Fti ].
Therefore,

sup
π

E

[ n∑
i=0

([E[h2(ti+1, X
t,x;αε(v),v
ti+1

) | Fti ] − h′
2(ti , X

t,x;αε(v),v
ti

)]+

+ [h2(ti , X
t,x;αε(v),v
ti

) − E[h′
2(ti+1, X

t,x;αε(v),v
ti+1

) | Fti ]]+)2 | Ft

]

≤ C sup
π

E

[ n∑
i=0

(|ti+1 − ti | + E[|Xt,x;αε(v),v
ti+1

− X
t,x;αε(v),v
ti

)|2 | Fti ]) | Ft

]

≤ C sup
π

E

[ n∑
i=0

(ti+1 − ti ) | Ft

]

≤ C,

where C is a constant. Then we can easily obtain (17).
Using Lemma 2 again, we have

|2Gt,x;αε(v),v
t,tv [W2(t

v, X
t,x;uε0 ,vε0

tv )] − 2G
t,x;αε(v),v
t,tv [W2(t

v, X
t,x;αε(v),v
tv )]|

≤ CE[|W2(t
v, X

t,x;uε0 ,vε0

tv ) − W2(t
v, X

t,x;αε(v),v
tv )|2 | Ft ]1/2

≤ CE[|Xt,x;uε0 ,vε0

tv − X
t,x;αε(v),v
tv |2 | Ft ]1/2

≤ Cτ 1/2, P-a.s.

For the last two inequalities we have used Proposition 4 and Lemma 8. Then by (17), we have

J2(t, x, αε(v), v)

≤ 2G
t,x;αε(v),v
t,tv [W2(t

v, X
t,x;uε0 ,vε0

tv )] + Cε1

+ |2Gt,x;αε(v),v
t,tv [W2(t

v, X
t,x;uε0 ,vε0

tv )] − 2G
t,x;αε(v),v
t,tv [W2(t

v, X
t,x;αε(v),v
tv )]|

≤ 2G
t,x;αε(v),v
t,tv [W2(t

v, X
t,x;uε0 ,vε0

tv )] + Cε
1/2
1 + Cτ 1/2.
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Let us write

�s = {2Y t,x;uε0 ,vε0
s ≥ W2(s, X

t,x;uε0 ,vε0
s ) − ε0}, s ∈ [t, T ]. (18)

Then we have

J2(t, x; αε(v), v)

≤ 2G
t,x;αε(v),v
t,tv

[ m∑
i=1

W2(ti , X
t,x;uε0 ,vε0
ti

) 1{tv=ti }
]

+ Cε
1/2
1 + Cτ 1/2

≤ 2G
t,x;αε(v),v
t,tv

[ m∑
i=1

W2(ti , X
t,x;uε0 ,vε0
ti

) 1{tv=ti } 1�ti

]
+ Cε

1/2
1 + Cτ 1/2 + I, (19)

where

I =
∣∣∣∣2G

t,x;αε(v),v
t,tv

[ m∑
i=1

W2(ti , X
t,x;uε0 ,vε0
ti

) 1{tv=ti }
]

− 2G
t,x;αε(v),v
t,tv

[ m∑
i=1

W2(ti , X
t,x;uε0 ,vε0
ti

) 1{tv=ti } 1�ti

]∣∣∣∣.
Since h2 and h′

2 are bounded, it follows that W2 is bounded. Thus, by Lemma 2, we have

I ≤ E

[ m∑
i=1

|W2(ti , X
t,x;uε0 ,vε0
ti

)|2 1{tv=ti } 1�c
ti

| Ft

]1/2

≤ C

m∑
i=1

P(�c
ti

| Ft )
1/2

≤ Cmε
1/2
0 . (20)

Here, we have used (11) for the latter estimate. Using (18) and a similar argument in the proof
of (17), we have that there exists a constant C > 0 such that

2G
t,x;αε(v),v
t,tv

[ m∑
i=1

W2(ti , X
t,x;uε0 ,vε0
ti

) 1{tv=ti } 1�ti

]

≤ 2G
t,x;αε(v),v
t,tv

[ m∑
i=1

2Y
t,x;uε0 ,vε0
ti

1{tv=ti } 1�ti

]
+ Cε0,

and, using the above arguments, we also have∣∣∣∣2G
t,x;αε(v),v
t,tv

[ m∑
i=1

2Y
t,x;uε0 ,vε0
ti

1{tv=ti } 1�ti

]
− 2G

t,x;αε(v),v
t,tv

[ m∑
i=1

2Y
t,x;αε(v),v
ti

1{tv=ti }
]∣∣∣∣

≤ Cmε
1/2
0 .

Therefore,

2G
t,x;αε(v),v
t,tv

[ m∑
i=1

W2(ti , X
t,x;uε0 ,vε0
ti

) 1{tv=ti } 1�ti

]

≤ 2G
t,x;αε(v),v
t,tv [2Y

t,x;uε0 ,vε0

tv ] + Cε0 + Cmε
1/2
0
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≤ |2Gt,x;αε(v),v
t,tv [2Y

t,x;uε0 ,vε0

tv ] − 2G
t,x;uε0 ,vε0

t,tv [2Y
t,x;uε0 ,vε0

tv ]|
+ 2G

t,x;uε0 ,vε0

t,tv [2Y
t,x;uε0 ,vε0

tv ] + Cε0 + Cmε
1/2
0

= |2Gt,x;αε(v),v
t,tv [2Y

t,x;uε0 ,vε0

tv ] − 2G
t,x;uε0 ,vε0

t,tv [2Y
t,x;uε0 ,vε0

tv ]|
+ J2(t, x; uε0 , vε0) + Cε0 + Cmε

1/2
0

≤ J2(t, x; uε0 , vε0) + Cε0 + Cmε
1/2
0 + Cτ 1/2.

Here we have used the fact that

|2Gt,x;αε(v),v
t,tv [2Y

t,x;uε0 ,vε0

tv ] − 2G
t,x;uε0 ,vε0

t,tv [2Y
t,x;uε0 ,vε0

tv ]| ≤ Cτ 1/2.

In fact, let us consider the following BSDEs:

ys = 2Y
t,x;uε0 ,vε0

tv +
∫ tv

s

f2(r, X
t,x;αε(v),v
r , yr , zr , αε(vr), vr ) dr

+ k+
tv − k+

s − k−
tv + k−

s −
∫ tv

s

zr dBr,

h2(s, X
t,x;αε(v),v
s ) ≤ ys ≤ h′

2(s, X
t,x;αε(v),v
s ), s ∈ [t, tv],∫ tv

t

(yr − h2(r, X
t,x;αε(v),v
r )) dk+

r =
∫ tv

t

(yr − h′
2(r, X

t,x;αε(v),v
r )) dk−

r = 0,

and

2Y t,x;uε0 ,vε0
s = 2Y

t,x;uε0 ,vε0

tv −
∫ tv

s

2Zt,x;uε0 ,vε0
r dBr

+
∫ tv

s

f2(r, X
t,x;uε0 ,vε0
r , 2Y t,x;uε0 ,vε0

r , 2Zt,x;uε0 ,vε0
r , uε0

r , vε0
r ) dr

+ 2K
+,t,x;uε0 ,vε0

tv − 2K+,t,x;uε0 ,vε0
s − 2K

−,t,x;uε0 ,vε0

tv + 2K−,t,x;uε0 ,vε0
s ,

h2(s, X
t,x;uε0 ,vε0
s ) ≤ 2Y t,x;uε0 ,vε0

s ≤ h′
2(s, X

t,x;uε0 ,vε0
s ), s ∈ [t, tv],∫ tv

t

(2Y t,x;uε0 ,vε0
r − h2(r, X

t,x;uε0 ,vε0
r )) d 2K+,t,x;uε0 ,vε0

r = 0,

∫ tv

t

(2Y t,x;uε0 ,vε0
r − h′

2(r, X
t,x;uε0 ,vε0
r )) d 2K−,t,x;uε0 ,vε0

r = 0.

We note that αε(v) = uε0 , on [[t, tv]], and v = vε0 , on [[t, Sv]]. By Lemma 2 and the
boundedness of f2, b, and σ , we have

|2Gt,x;αε(v),v
t,tv [2Y

t,x;uε0 ,vε0

tv ] − 2G
t,x;uε0 ,vε0

t,tv [2Y
t,x;uε0 ,vε0

tv ]|2

≤ CE

[∫ tv

t

|f2(r, X
t,x;αε(v),v
r , yr , zr , αε(v)r , vr ) dr

− f2(r, X
t,x;uε0 ,vε0
r , yr , zr , u

ε0
r , vε0

r )|2 | Ft

]
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+ CE

[
sup

r∈[t,tv]
(|h2(r, X

t,x;αε(v),v
r ) − h2(r, X

t,x;uε0 ,vε0
r )|2

+ |h′
2(r, X

t,x;αε(v),v
r ) − h′

2(r, X
t,x;uε0 ,vε0
r )|2) | Ft

]1/2

= CE

[∫ tv

Sv

|f2(r, X
t,x;αε(v),v
r , yr , zr , αε(v)r , vr ) dr

− f2(r, X
t,x;uε0 ,vε0
r , yr , zr , u

ε0
r , vε0

r )|2 | Ft

]

+ CE

[
sup

r∈[Sv,tv]
|Xt,x;αε(v),v

r − Xt,x;uε0 ,vε0
r |2 | Ft

]1/2

≤ CE

[∫ tv

Sv

1{vr �=v
ε0
r } | Ft

]
+ Cτ 1/2 ≤ CE[tv − Sv | Ft ] + Cτ 1/2 ≤ Cτ 1/2.

Therefore,

2G
t,x;αε(v),v
t,tv

[ m∑
i=1

W2(ti , X
t,x;uε0 ,vε0
ti

) 1{tv=ti } 1�ti

]

≤ Cτ 1/2 + J2(t, x; uε0 , vε0) + Cε0 + Cmε
1/2
0 .

Thus, (19) and (20) yield

J2(t, x; αε(v), v) ≤ J2(t, x; uε0 , vε0) + Cε0 + Cmε
1/2
0 + Cε

1/2
1 + Cτ 1/4.

Let us choose τ > 0, ε0 > 0, and ε1 > 0 such that Cε0 + Cmε
1/2
0 + Cε

1/2
1 + Cτ 1/4 ≤ ε and

ε0 < ε. Consequently,

J2(t, x; αε(v), v) ≤ J2(t, x; uε0 , vε0) + ε, v ∈ Vt,T .

The proof is complete.

Let us provide some preliminaries for the existence of a Nash equilibrium payoff.

Proposition 8. Under the assumptions of Theorem 3 for all ε > 0, there exists (uε, vε) ∈
Ut,T × Vt,T independent of Ft such that for all t ≤ s1 ≤ s2 ≤ T , j = 1, 2,

P(Wj (s1, X
t,x;uε,vε

s1
) − ε ≤ jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)] | Ft ) > 1 − ε.

The proof of the above proposition needs the following two lemmas. Since the proof of the
following lemma is similar to that in [11], we omit it here.

Lemma 9. For all ε > 0, all δ ∈ [0, T − t], and x ∈ R
n, there exists (uε, vε) ∈ Ut,T × Vt,T

independent of Ft such that j = 1, 2,

Wj(t, x) − ε ≤ jG
t,x;uε,vε

t,t+δ [Wj(t + δ, X
t,x;uε,vε

t+δ )], P-a.s.

We also need the following lemma.

Lemma 10. Let n ≥ 1 and let us fix some partition t = t0 < t1 < · · · < tn = T of the interval
[t, T ]. Then for all ε > 0, there exists (uε, vε) ∈ Ut,T × Vt,T independent of Ft such that for
all i = 0, . . . , n − 1,

Wj(ti, X
t,x;uε,vε

ti
) − ε ≤ jG

t,x;uε,vε

ti ,ti+1
[Wj(ti+1, X

t,x;uε,vε

ti+1
)], P-a.s.
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Proof. We provide the proof by induction. By the above lemma, it is obvious for i = 0.
We now suppose that (uε, vε) independent of Ft , is constructed on the interval [t, ti ) and we
shall define it on [ti , ti+1). From the above lemma, we have for all y ∈ R

n, there exists
(uy, vy) ∈ Uti ,T × Vti ,T independent of Ft such that,

Wj(ti, y) − ε

2
≤ jG

ti ,y;uy,vy

ti ,ti+1
[Wj(ti+1, X

t,y;uy,vy

ti+1
)], P-a.s. j = 1, 2. (21)

For arbitrarily j = 1, 2, for all y, z ∈ R
n and s ∈ [ti , ti+1], write

y1
s = jG

ti ,y;uy,vy

s,ti+1
[Wj(ti+1, X

ti ,y;uy,vy

ti+1
)] and y2

s = jG
ti ,z;uy,vy

s,ti+1
[Wj(ti+1, X

ti ,z;uy,vy

ti+1
)].

Then let us consider the following BSDEs:

y1
s = Wj(ti+1, X

ti ,y;uy,vy

ti+1
) +

∫ ti+1

s

fj (r, X
ti ,y;uy,vy

r , y1
r , z1

r , u
y
r , v

y
r ) dr

+ 1K+
ti+1

− 1K+
s − 1K−

ti+1
+ 1K−

s −
∫ ti+1

s

z1
r dBr,

hj (s, X
ti ,y;uy,vy

s ) ≤ y1
s ≤ h′

j (s, X
ti ,y;uy,vy

s ), s ∈ [ti , ti+1],∫ ti+1

ti

(y1
s − hj (s, X

ti ,y;uy,vy

s )) d 1K+
r =

∫ ti+1

ti

(y1
s − h′

j (s, X
ti ,y;uy,vy

s )) d 1K−
r = 0,

and

y2
s = Wj(ti+1, X

ti ,z;uy,vy

ti+1
) +

∫ ti+1

s

fj (r, X
ti ,z;uy,vy

r , y2
r , z2

r , u
y
r , v

y
r ) dr

+ 2K+
ti+1

− 2K+
s − 2K−

ti+1
+ 2K−

s −
∫ ti+1

s

z2
r dBr,

hj (s, X
ti ,z;uy,vy

s ) ≤ y2
s ≤ h′

j (s, X
ti ,z;uy,vy

s ), s ∈ [ti , ti+1],∫ ti+1

ti

(y2
s − hj (s, X

ti ,z;uy,vy

s )) d 2K+
s =

∫ ti+1

ti

(y2
s − h′

j (s, X
ti ,z;uy,vy

s )) d 2K−
s = 0.

By Lemmas 2 and 4, we deduce that

|jGti ,y;uy,vy

ti ,ti+1
[Wj(ti+1, X

t,y;uy,vy

ti+1
)] − jG

ti ,z;uy,vy

ti ,ti+1
[Wj(ti+1, X

ti ,z;uy,vy

ti+1
)]|2

≤ CE[|Wj(ti+1, X
ti ,y;uy,vy

ti+1
) − Wj(ti+1, X

ti ,z;uy,vy

ti+1
)|2 | Fti ]

+ CE

[(∫ ti+1

ti

|fj (r, X
ti ,y;uy,vy

r , y1
r , z1

r , u
y
r , v

y
r )

− fj (r, X
ti ,z;uy,vy

r , y1
r , z1

r , u
y
r , v

y
r )| dr

)2

| Fti

]
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+ CE

[
sup

ti≤s≤ti+1

(|hj (s, X
ti ,y;uy,vy

s ) − hj (s, X
ti ,z;uy,vy

s )|2

+ |h′
j (s, X

ti ,y;uy,vy

s ) − h′
j (s, X

ti ,z;uy,vy

s )|2) | Fti

]1/2

≤ CE[|Xti,y;uy,vy

ti+1
− X

ti,z;uy,vy

ti+1
|2 | Fti ] + CE

[∫ ti+1

ti

|Xti,y;uy,vy

r − Xti,z;uy,vy

r |2 dr | Fti

]

+ CE

[
sup

ti≤s≤ti+1

|Xti,y;uy,vy

s − Xti,z;uy,vy

s |2 | Fti

]1/2

≤ C|y − z|.
Thus, from Proposition 4 and (21), we have

Wj(ti, z) − ε ≤ Wj(ti, y) − ε + C|y − z|1/2

≤ jG
ti ,y;uy,vy

ti ,ti+1
[Wj(ti+1, X

t,y;uy,vy

ti+1
)] − ε

2
+ C|y − z|1/2

≤ jG
t,z;uy,vy

ti ,ti+1
[Wj(ti+1, X

t,z;uy,vy

ti+1
)] − ε

2
+ C|y − z|1/2

≤ jG
t,z;uy,vy

ti ,ti+1
[Wj(ti+1, X

t,z;uy,vy

ti+1
)], P-a.s.

for C|y − z|1/2 ≤ ε/2.
Let {Oi}i≥1 ⊂ B(Rn) be a partition of R

n with diam(Oi) < ε/2C and let yl ∈ Ol . Then
for z ∈ Ol ,

Wj(ti, z) − ε ≤ jG
t,z;uyl ,vyl

ti ,ti+1
[Wj(ti+1, X

t,z;uyl ,vyl

ti+1
)], P-a.s. (22)

Write
uε =

∑
l≥1

1Ol
(Xt,x;uε,vε

)uyl , vε =
∑
l≥1

1Ol
(Xt,x;uε,vε

)vyl .

Then
jG

t,x;uε,vε

ti ,ti+1
[Wj(ti+1, X

t,x;uε,vε

ti+1
)]

= jG
ti ,X

t,x;uε,vε

ti
;uε,vε

ti ,ti+1

[∑
l≥1

Wj(ti+1, X
ti ,X

t,x;uε,vε

ti
;uε,vε

ti+1
) 1Ol

(X
t,x;uε,vε

ti
)

]

= jG
ti ,X

t,x;uε,vε

ti
;uε,vε

ti ,ti+1

[∑
l≥1

Wj(ti+1, X
ti ,X

t,x;uε,vε

ti
;uyl ,vyl

ti+1
) 1Ol

(X
t,x;uε,vε

ti
)

]

=
∑
l≥1

jG
ti ,X

t,x;uε,vε

ti
;uyl ,vyl

ti ,ti+1
[Wj(ti+1, X

ti ,X
t,x;uε,vε

ti
;uyl ,vyl

ti+1
)] 1Ol

(X
t,x;uε,vε

ti
).

Consequently, from (22), we have

jG
t,x;uε,vε

ti ,ti+1
[Wj(ti+1, X

t,x;uε,vε

ti+1
)] ≥

∑
l≥1

[Wj(ti, X
t,x;uyl ,vyl

ti
) − ε] 1Ol

(X
t,x;uε,vε

ti
)

=
∑
l≥1

Wj(ti, X
t,x;uyl ,vyl

ti
) 1Ol

(X
t,x;uε,vε

ti
) − ε

= Wj(ti, X
t,x;uε,vε

ti
) − ε,

from which we obtain the desired result.
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We now provide the proof of Proposition 8.

Proof. Let t = t0 < t1 < · · · < tn = T be a partition of [t, T ] and τ = supi (ti+1 − ti ).
From Proposition 4 and Lemma 8, it follows that for all j = 1, 2, 0 ≤ k ≤ n, s ∈ [tk, tk+1)

and (u, v) ∈ Ut,T × Vt,T ,

E[|Wj(tk, X
t,x;u,v
tk

) − Wj(s, X
t,x;u,v
s )|2]

≤ 2E[|Wj(tk, X
t,x;u,v
tk

) − Wj(s, X
t,x;u,v
tk

)|2]
+ 2E[|Wj(s, X

t,x;u,v
tk

) − Wj(s, X
t,x;u,v
s )|2]

≤ C|s − tk|(1 + E[|Xt,x;u,v
tk

|2]) + CE[|Xt,x;u,v
tk

− Xt,x;u,v
s |2]

≤ Cτ. (23)

In what follows, C represents a generic constant which may be different at different places.
Let (uε, vε) ∈ Ut,T × Vt,T be defined as in Lemma 10 for ε = ε0, where ε0 > 0 will be

specified later. Then for all i, 0 ≤ i ≤ n,

Wj(ti, X
t,x;uε,vε

ti
) − ε0 ≤ jG

t,x;uε,vε

ti ,ti+1
[Wj(ti+1, X

t,x;uε,vε

ti+1
)], P-a.s.

For t ≤ s1 ≤ s2 ≤ T , without loss of generality, we assume that ti−1 ≤ s1 < ti and
tk < s2 ≤ tk+1 for some 1 ≤ i < k ≤ n − 1. Thus, from Lemmas 2 and 3, it follows that

jG
t,x;uε,vε

ti ,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] = jG

t,x;uε,vε

ti ,tk
[jGt,x;uε,vε

tk,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)]]

≥ jG
t,x;uε,vε

ti ,tk
[Wj(tk, X

t,x;uε,vε

tk
) − ε0]

≥ jG
t,x;uε,vε

ti ,tk
[Wj(tk, X

t,x;uε,vε

tk
)] − Cε0

≥ · · · ≥ jG
t,x;uε,vε

ti ,ti+1
[Wj(ti+1, X

t,x;uε,vε

ti+1
)] − C(k − i)ε0

≥ Wj(ti, X
t,x;uε,vε

ti
) − C(k − i + 1)ε0.

Consequently, from the above inequality and a similar argument in the proof of (17), it follows
that there exists a constant C > 0 such that

jG
t,x;uε,vε

s1,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] = jG

t,x;uε,vε

s1,ti
[jGt,x;uε,vε

ti ,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)]]

≥ jG
t,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − C(k − i + 2)ε0

≥ jG
t,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − ε

2
,

where we write ε0 = ε/2Cn. We set

I1 = jG
t,x;uε,vε

s1,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − jG

t,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] + ε

2
≥ 0,

I2 = jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)] − Wj(s1, X

t,x;uε,vε

s1
) + ε

2
. (24)

We claim that
E[|I1 − I2|2] ≤ Cτ.

Indeed, we write

ys = jG
t,x;uε,vε

s,ti
[Wj(ti, X

t,x;uε,vε

ti
)], s ∈ [s1, ti].
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We consider the following BSDEs:

ys = Wj(ti, X
t,x;uε,vε

ti
) +

∫ ti

s

fj (r, X
t,x;uε,vε

r , yr , zr , u
ε
r , v

ε
r ) dr

+ k+
ti

− k+
s − k−

ti
+ k−

s −
∫ ti

s

zr dBr,

hj (s, X
t,x;uε,vε

s ) ≤ ys ≤ h′
j (s, X

t,x;uε,vε

s ), s ∈ [s1, ti],∫ ti+1

ti

(yr − hj (r, X
t,x;uε,vε

r )) dk+
r =

∫ ti+1

ti

(yr − h′
j (r, X

t,x;uε,vε

r )) dk−
r = 0,

and
y′
s = Wj(s1, X

t,x;uε,vε

s1
), s ∈ [s1, ti].

By Lemma 2, we obtain

|jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − Wj(s1, X

t,x;uε,vε

s1
)|2

≤ CE[|Wj(ti, X
t,x;uε,vε

ti
) − Wj(s1, X

t,x;uε,vε

s1
)|2 | Fs1 ]

+ CE

[∫ ti

s1

|fj (r, X
t,x;uε,vε

r , yr , zr , u
ε
r , v

ε
r )|2 | Fs1

]

+ CE

[
sup

s1≤s≤ti

|hj (s, X
t,x;uε,vε

s ) − hj (s1, X
t,x;uε,vε

s1
)|2dr | Fs1

]1/2

≤ CE[|Wj(ti, X
t,x;uε,vε

ti
) − Wj(s1, X

t,x;uε,vε

s1
)|2 | Fs1 ]

+ C(ti − s1) + CE

[
sup

s1≤s≤ti

|Xt,x;uε,vε

s − Xt,x;uε,vε

s1
|2 | Fs1

]1/2
.

Here, we have used assumptions (H3.3) and (H3.4) and the boundedness of fj . Since (uε, vε) ∈
Ut,T × Vt,T is independent of Ft , we have

E[|jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − Wj(s1, X

t,x;uε,vε

s1
)|2 | Ft ]

≤ CE[|Wj(ti, X
t,x;uε,vε

ti
) − Wj(s1, X

t,x;uε,vε

s1
)|2] + C(ti − s1)

+ CE

[
sup

s1≤s≤ti

|Xt,x;uε,vε

s − Xt,x;uε,vε

s1
|2 | Ft

]1/2
.

From (23), we have

E[|jGt,x;uε,vε

s1,ti
[Wj(ti, X

t,x;uε,vε

ti
)] − Wj(s1, X

t,x;uε,vε

s1
)|2] ≤ Cτ 1/2. (25)

Using a similar argument, we have

E[|jGt,x;uε,vε

s2,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − Wj(s2, X

t,x;uε,vε

s2
)|2] ≤ Cτ 1/2. (26)

For s ∈ [s1, s2], we write

y1
s = jG

t,x;uε,vε

s,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] = jGt,x;uε,vε

s,s2
[jGt,x;uε,vε

s2,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)]],

and
y2
s = jGt,x;uε,vε

s,s2
[Wj(s2, X

t,x;uε,vε

s2
)].
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Let us consider the associated BSDEs:

y1
s = jG

t,x;uε,vε

s2,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] +

∫ s2

s

fj (r, X
t,x;uε,vε

r , y1
r , z1

r , u
ε
r , v

ε
r ) dr

+ k1,+
s2

− k1,+
s − k1,−

s2
+ k1,−

s −
∫ s2

s

z1
r dBr,

hj (s, X
t,x;uε,vε

s ) ≤ y1
s ≤ h′

j (s, X
t,x;uε,vε

s ), s ∈ [s1, s2],∫ s2

s1

(yr − hj (r, X
t,x;uε,vε

r )) dk1,+
r =

∫ s2

s1

(yr − h′
j (r, X

t,x;uε,vε

r )) dk1,−
r = 0,

and

y2
s = Wj(s2, X

t,x;uε,vε

s2
) +

∫ s2

s

fj (r, X
t,x;uε,vε

r , y2
r , z2

r , u
ε
r , v

ε
r ) dr

+ k2,+
s2

− k2,+
s − k2,−

s2
+ k2,−

s −
∫ s2

s

z2
r dBr,

hj (s, X
t,x;uε,vε

s ) ≤ y2
s ≤ h′

j (s, X
t,x;uε,vε

s ), s ∈ [s1, s2],∫ s2

s1

(yr − hj (r, X
t,x;uε,vε

r )) dk2,+
r =

∫ s2

s1

(yr − h′
j (r, X

t,x;uε,vε

r )) dk2,+
r = 0,

By Lemmas 2 and 4, it follows that

|jGt,x;uε,vε

s1,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]|2

≤ CE[|jGt,x;uε,vε

s2,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − Wj(s2, X

t,x;uε,vε

s2
)|2 | Fs1 ].

Hence, (26) yields

E[|jGt,x;uε,vε

s1,tk+1
[Wj(tk+1, X

t,x;uε,vε

tk+1
)] − jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]|2] ≤ Cτ 1/2.

The above inequality and (25) yield

E[|I1 − I2|2] ≤ Cτ 1/2.

Therefore,

P

(
I2 ≤ −ε

2

)
≤ P

(
|I1 − I2| ≥ ε

2

)
≤ 4E[|I1 − I2|2]

ε2 ≤ 4Cτ 1/2

ε2 ≤ ε,

where we choose τ ≤ (ε3/4C)2, and, by (24), we have

P(Wj (s1, X
t,x;uε,vε

s1
) − ε ≤ jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]) ≥ 1 − ε.

We also refer to the fact that since (uε, vε) is independent of Ft , the conditional probability
P(· | Ft ) of the event {Wj(s1, X

t,x;uε,vε

s1 )− ε ≤ jG
t,x;uε,vε

s1,s2 [Wj(s2, X
t,x;uε,vε

s2 )]} coincides with
its probability. Indeed, also

{Wj(s1, X
t,x;uε,vε

s1
) − ε ≤ jGt,x;uε,vε

s1,s2
[Wj(s2, X

t,x;uε,vε

s2
)]}

is independent of Ft . The proof is complete.
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We now provide another main result in this section: the existence theorem of a Nash
equilibrium payoff.

Theorem 4. Let Isaacs’condition A hold. Then for all (t, x) ∈ [0, T ]×R
n, there exists a Nash

equilibrium payoff at (t, x).

Proof. By Theorem 3 we have to prove only that for all ε > 0, there exists (uε, vε) ∈
Ut,T × Vt,T which satisfies (9) and (10) for s ∈ [t, T ], j = 1, 2. For ε > 0, let us consider
(uε, vε) ∈ Ut,T × Vt,T given by Proposition 8, i.e. in particular, (uε, vε) is independent of Ft .
Setting s1 = t and s2 = T in Proposition 8, we obtain (9). Since (uε, vε) is independent of
Ft , Jj (t, x; uε, vε), j = 1, 2, are deterministic and {(J1(t, x; uε, vε), J2(t, x; uε, vε)), ε > 0}
is a bounded sequence. Consequently, let us choose an accumulation point of this sequence, as
ε → 0. We denote this point by (e1, e2). From Theorem 3, it follows that (e1, e2) is a Nash
equilibrium payoff at (t, x). The proof is complete.
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