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ABSTRACT 

The fracture of a slab avalanche is a multi-phase and 
progressive process. The different kinds of fracture and 
possible scenarios of avalanche release in the form of a zip 
effect are shown. In the course of investigations, most 
importance has so far been attached to shear failure along 
the sliding surface. Various cases of load and their effects 
on the stresses, on the changes of strength, and on the 
stability of the inclined snow-pack are discussed. The usual 
simple model of the shear-stability index is unsatisfactory. 
The present paper deals with the complex interaction of all 
supporting forces of a snow slab by means of simplified 
geotechnical considerations. For this purpose, the acting 
and reacting forces of a "standard avalanche" (i.e. dead load 
with driving and normal component, shear force, tensile 
force, compressive force, and flank force) are estimated 
from published boundary values. Using different 
combinations (e.g. hard slab with high circumferential forces 
on a weak shear surface with low shear force), it can be 
shown that suspension at the crown and lower and lateral 
support are of great importance. This applies especially to 
cases with low shear forces and, consequently, with low 
overall stability. Despite the fact that the circumferential 
area of the model avalanche is only 6% of the area of the 
shear surface, the circumferential force in this case is more 
than 150% of the shear force . In a parameter study with 
different avalanche sizes, these results are generalized and 
confirmed. For the assumed strength limits, critical areas 
and depths of possible slab avalanches can be derived. 
Although the supporting shear force is the major contributor 
to stability, particularly with larger slabs, it can be seen 
from the investigations that the redistributions of stress and 
spatial supports and suspensions of the whole slab avalanche 
must not be neglected in stability analyses. 

I. INTRODUCTION AND SETTING OF THE PROBLEM 

Each winter's contest between stresses and strengths in 
an inclined snow-pack leads to many avalanches in 
moutainous areas with a serious death toll and extensive 
damage to property. Therefore, the fracture mechanism of 
avalanches and the mechanical stability of the snow cover 
are very important for avalanche forecasting and other 
applications, e.g. estimating the time for closing roads or ski 
runs, for choosing the correct route for skiers, or for 
artificial triggering of avalanches. 

The fracture of a slab avalanche (Fig. I) is a multi­
stage, progressive, and very fast-running process, details of 
which are still clouded with many secrets. Among the 
unknowns are the locally and temporally varying tensile, 
compressional, and shear stresses, and also the resisting 
strengths, as they cannot be measured directly because of 
the specific properties of the snow and the severe danger 
involved. Because of the topographic relief and the specific 
build-up of the snow cover in the course of a winter, its 
stability across a potential avalanche area is variable both in 
space and time. Therefore, idealized models, limiting 
considerations, and separate investigations of each stage of 
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Fig. I. Slab avalanche (Piz Sesvenna, 25 March 1986); 
triggered by a group of skiers at a distance of 200 m. 

this complex process are needed . The present simplified 
model deals only with the fracture process itself in a 
geotechnical manner. The preceding avalanche "maturing" 
will be touched on briefly, where necessary. 

2. STAGES OF FRACTURE 

In response to the variety of forces along its 
boundaries (Figs I and 2), a snow-slab avalanche fractures 
in several stages. 

2.1. Shear fracture 
The shear fracture along the shear interface, which is 

more or less parallel to the surface, is the most important 
as regards the area, and is therefore considered to be the 
primary fracture by most experts. The development leading 
up to the failure of the entire shear surface is characterized 
by the large deformability of snow under shear stresses, and 
the resulting dissipative processes. Therefore, the strength 
depends heavily (i.e. inversely) on the strain-rate. Following 
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T driving force due to dead load 

supporting forces: 
Fz tensile force 
Fo compression force 
FF fla.nk force 

~B/2 

/crown 
Fa shear force 

Stauchwall 

D Tensile failure 

~ Shear failure 

Fig. 2. Slab avalanche: definitions, coordinate system, acting forces. T is driving force due to dead 
load. Supporting forces: F Z' tensile force; FD, compression force; FF' flank force; Ss' shear force. 

Gubler (1977, 1988), the initial fracture along a limited 
weak zone of the shear surface requires that a minimal 
strain-rate be exceeded such that the ductile initial strength 
may be overcome. Further propagation of the fracture then 
occurs as a brittle fracture quasi-elastically at high 
deformation rates. In the course of this progression, 
therefore, two quite different strengths play a role, one 
being the higher initial strength (at low strain-rate), and the 
other the lower brittle strength (at a very fast deformation 
speed in the course of the crack's expansion). The question 
to what extent the actual shear strain is important - with 
granular media, as we know, a certain shearing displacement 
is required to activate the shear strength - appears to be 
unresolved. 

Weakening and failure of the shear surface may be 
caused by: 

Increasing stresses and consequent higher strain-rates, caused 
by loading (snow precipitation, skiers), or redistribution of 
stresses. 
Local strain softening of the snow caused by heterogeneous 
deformations. 
Decreasing grain connections caused by TG metamorphism 
or melting processes. 
Temperature rising with strength decreasing. 
Collapse of a depth-hoar layer (especially in areas with a 
continental climate). 

2.2. Tensile fracture 
The tensile fracture at the crown of the snow-slab 

avalanche - the secondary fracture in most cases - is a 
cleavage fracture, which is determined by the rather brittle 
deformation characteristics of snow under tension. This fact 
gives many reasons for believing that here could be primary 
fracture (e.g. Haefeli, 1963, 1967; Sommerfeld, 1969). As 
opposed to the shearing zone, which is often only a few 
millimetres thick, here the properties of the snow cover in 
its entire depth, consisting of layers with varying tensile 
strengths and deformability, come into play. Stress 
concentrations are built up in stiffer layers, also causing the 
fracture process to be progressive in this case. This effect is 
superimposed by the fact that the crown's height is 
frequently not uniform. 

2.3. Flank fracture 
During flank fracture, which is the third phase, shear­

fracture mechanisms and tensile-fracture mechanisms overlap. 
As a consequence, we find different aspect angles between 
the lateral flanks and the down-slope direction (Fig. 2). 

2.4. Compressive fracture 
Finally, following considerable compression of the snow 

at the s/auchwall, compressive fracture will occur as 
shearing across the whole snow cover. Here again, what 
matters are the strength properties of the various snow 
layers involved. 

3. STRESS REDISTRIBUTIONS AND PROPAGATION OF 
THE FAILURE 

3.1. Primary fracture of a thin shear layer 
Before the initial fracture (see section 2.1) occurs, there 

is an equilibrium state between the driving stresses and the 
shear, tensile, and compressive strengths, of which different 
fractions are activated. When the shear strength Ss drops by 
ll.Ss or ceases altogether in the initial fracture zone (of 
slope-parallel length ll.x), the fraction which is no longer 
transmitted down into the deeper snow layers (for each 
metre width of the slab) 

(I) 

must be supported by larger circumferential forces in the 
snow layers above the shear surface. If these are tensile 
forces, the tensile stress (J x' on average, is increased by 

(2) 

where D is thickness of snow-pack (normal to the surface). 
This leads to increased stresses near the initial fracture 

zone, which may either be transmitted down into deeper 
snow layers when the shear strength in the surrounding 
zone is high enough (in which case the shear fracture is 
stopped), or they may also cause a shear fracture here. 
Because of this propagating shear fracture, the tensile 
stresses accumulate to the point where the tensile strength 
of the snow-pack is reached and the tensile fracture is 
initiated. It will be shown later that the developing slab 
avalanche is greater the stronger the snow layers are above 
the shear surface. 

3.2. Collapse of a thick layer (e.g. depth hoar) 
Depth hoar at the bottom has a texture with coarse 

pores, large snow crystals, and few points of contact for 
transmitting forces. At higher stress, collapse of the texture 
may occur due to a local compressive failure, immediately 
preceding the avalanche fracture itself (see Bucher, 1948; or 
Bradley and others, 1977). In the case of depth-hoar 
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collapse, which causes compression of the depth hoar along 
with a decrease of the shear strength, we may imagine a 
variety of complex failure mechanisms: 

(a) The collapse of texture leads to a loss of cohesion 
(mostly small to start with) in the basal layer, which cannot 
be compensated for by increased friction due to denser 
packing of the snow grains. Shear strength decreases and, 
consequently, the shear fracture widens across the basal 
layer much as in the case of thin shear layers, until 
circumferential fractures set in. 

(b) The collapse of texture is accompanied by compression. 
If there is a stiff upper layer, the compression leads to a 
state in which the upper layer locally becomes detached 
from the basal layer, being subjected to bending forces. The 
area of bending widens along with the lateral propagation 
of the collapse. A certain part of the upper layer may 
remain hollow without breaking, but its size depends on its 
bending tensile strength, its thickness, the load, and the 
support conditions. Before the simultaneous failure of the 
shear support leads to fracture propagation, as in case (a), 
the bending strength is exceeded and cracks across the 
upper layer interrupt the lateral and longitudinal force 
transmIssIon. Thus, the circumferential support, being 
already severely stressed by the failure of the shear support, 
collapses entirely. Fracture of the slab avalanche becomes 
unavoidable. 

Preliminary investigations of a circular slab supported 
along the edges have shown that the bending tensile stresses 
at the snow surface along the edges due to the slab's own 
weight and the effect of clamping are probably larger than 
those in the middle of the lower side. Therefore, the 
bending tensile cracks begin at the snow surface. No values 
have been found in the literature for the bending strength 
of snow. An investigation of the fracture mechanics of 
these processes is being planned for the future. 

4. STABILITY AGAINST SHEAR FRACTURE 

As a rule, especially for practical purposes, the slope 
stability is investigated solely with respect to the possible 
shear fracture in the neutral zone, disregarding the 
boundary conditions along the entire snow-slab avalanche, as 
well as the fracture's progressive character. This means that, 
for the potential shear surface, a stability factor is formed 
(really a safety factor in the technical sense). s is the ratio 
of the shear strength Bs to driving shear stress parallel to 
the slope T zx (Roch , 1966a; Fohn, 1981, 1987; Conway and 
Abrahamson, 1984): 

(3) 

Normal and shear stresses are obtained from the dead load 
in the special case after Rankine (activated friction angle 
equals slope angle): 

pgDcos ojI, (4a) 

pgDsin ojI • (4b) 

Here, we use the notation: p is mean density of the 
snow-pack, D is thickness of the snow-pack (normal to the 
surface), ojI is slope inclination, and g = 10 m/ s2. 

If there is an additional load (component parallel to the 
slope IH zx)' caused by snowfall, snowdrift, skiers, 
snowmobiles, or avalanche blasting, the stability changes as 
follows: 

s' = Bs/ (T zx + M zx) . (5) 

Usually Bs is determined from ill situ shear-frame tests, the 
values therefore being rather inaccurate. Also, Ss may 
change, e.g. due to loads which increase O'z: 

(6) 

In Equation (6), a possible change in the strength lIBs has 
been included. The Mohr diagram (Fig . 3) is a graphical 
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Fig. 3. Stability of the snow-pack against shear failure for 
varying load cases (Mohr's diagram): A, dead load 
sf-. = Bs/ T zx > I; B, increase of shear str~ss 
sjl : B~/(T zx + M zx) > I; C, loa.d caused by a skIer 
se - (/3s + lIB3 )/ (T zx + M zx) > I, 0, load caused by 
snowfall S~ = (Ss + I::.S.)/ (T zx + I::.T zx) > I. 

representation of Equations (5) and (6) for varying loads. 
The shear-strength line (Coulomb-Mohr) is taken to be 
invariable. 

Fohn (1981, 1987) investigated mainly the amount of 
additional tangential stress (load case B in Figure 3) and the 
changes in stability, particularly in the case of avalanche 
blasting, but at the same time disregarding the changes of 
strength due to the increased normal stresses or to dynamic 
effects in the snow-pack. 

As proof of the fact that the method based on the 
stability factor is unsatisfactory, we take the results that 
Roch (1966a), as well as Conway and Abrahamson (1984), 
with their improved experimental technique obtained shear 
stabilities up to 4 (with a very large scatter) even when the 
avalanche had fractured. This can partly be explained by 
the fact that strengths are particularly variable across short 
distances. A similarly large variance is, no doubt, true for 
the stresses. Fohn (1987) stated: " ... , the method reveals still 
too many deficiencies ." Apparently, locally restricted 
considerations of strength and stress are insufficient for 
describing the overall stability of a slope. Therefore, in the 
following, we will consider the total potential avalanche. 

5. SUPPORTING FORCES ACTING ON A SNOW SLAB 

5.1. The ·standard· snow-slab avalanche 
Although we are aware of the complex and 

heterogeneous conditions, we are trying to estimate the 
balance of forces acting on a snow slab by adding up 
individual contributions. By this means, we are neglecting 
the sequence of the above-described fracture phases and 
their exact course, especially progressive processes and stress 
redistributions. We will try to model important factors such 
as the suspension of the slab at the crown, its support at 
the stauchwall, and boundary influences from the flanks in 
relation to the forces along the shear surface by using a 
simplified "standard avalanche". The following forces act 
along the down-slope direction (Fig. 2): T is the driving 
component of the total weight G, F z is the tension force at 
the crown, FD is the compression force at the stauchwall, 
F F is flank force, F s is shear force along the shear 
surface. 

According to Perla (1977, 1980) and Fohn (1981), the 
standard avalanche is characterized by the following values: 
B = 50 m (width of avalanche), L = 50 m (length of 
avalanche), D = 0.7 m (thickness of avalanche), IjJ = 38

0 

(slope inclination), and p = 220 kg / m3 (density of snow 
(valid also below the sliding surface». 
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The following active forces may be derived: 

G = pgBLD = 3850 kN (total weight of avalanche) , (7) 

T Gsin cjJ = 2370 kN (slope-parallel component), (8) 

N Gcos cjJ = 3034 kN (normal component). (9) 

Following Melior (1975, figs 17 and 18), we obtain 
limiting values of the tensile, compress ive, and shear 
strengths for snow dens ity of 220 kg / m3. These values are 
shown in Table I below. This table al so contains the 

TABLE I. LIMITS FOR SUPPORTING FORCES ACTING 
ON A TYPICAL SNOW SLAB ("STANDARD 
AVALANCHE" OF AREA 50 x 50 m2, THICKNESS 0.7 m , 
p = 220 kg/ m3 , cjJ = 38

0

, AND STRENGTHS AS 
DISC USSED IN THE TEXT) 

Supporting forces Strengths 13 Forces F 
Kind Equation Min 13 Max 13 Min F Max F 

U nit kPa kPa kN kN 

Tension F_ BDCL 3 15 105 525 
Compress ion F~ BD(3~ 5 20 175 700 
Flanks Fr 2LD13r 2.5 10 175 700 

Circumfer - Fu F::+FD+ 455 1925 
ence + Fr 

Shear Fs = BU\ 0.5 5 1250 12500 

computation of minimal and maximal supporting forces of 
the standard snow slab . 

The equation for the uniaxial tensile strength Bz is 
accepted, being justified by the mechanism of cleavage 
fracture. The simplified computation for the stauchwall with 
the uniaxial compressive strength BD has been checked by 
investigating a shear fracture across the snow-pack , similar 
to passive Earth pressure. Following Ziegler (1963) and 
applying the Tresca criterion for fracture 

(10) 

we compute the slope-parallel supporting force at the 
stauchwall as 

(11) 

with limiting values 193 < F D < 774 kN. Compared to Table 
J with 175 < F D < 700 kN (calculated with I3D), there is a 
difference of only roughly 10%. The complete solution for 
the inclined half-space including the internal friction is too 
cumbersome in the present context and changes the force 
F D only slightly (Kupper, 1967). The Tresca criterion was 
also applied to the cohesion I3r of the flanks. 

If, in place of the Tresca criterion (as in Table I: 
I3s = c = constant), we use the Coulomb-Mohr equation for 
obtaining the shear strength of the shear surface, we obtain 
for the chosen standard avalanche the limits for Bs as 0.4 
and 2.6 kPa , respectively, following Filhn's (1981) analyses 
based on papers by Roch (1966a, b). The limits of strengths 
shown in Table I may, therefore , be considered as the right 
order of magnitude. 

The computed minimal and maximal forces from Table 
I may now be related to different avalanche scenarios , such 
that the restraining shear forces F s may combine in various 
ways with the supporting circumferential forces F u 

(12) 

We distinguish between an internally strong snow slab (e.g. 
formed by wind compaction) and a snow slab of low 
strength consisting of loose snow, and further between a 
solid substrate well connected with the snow slab, and a 

L ackil/ger : Slahilil .l' 0/ sl/ow-slab avalal/ches 

weak shear surface (e.g . hoar frost being snowed in) . The 
various poss ible combinations of suporting forces and the 
respective integra l stabilities: 

( 13 ) 

are put together in Table " . 
Taking the combination with minimal shear force in 

the second-to-Iast line of this table , a case which may 
occ ur with heavy snowfall, we see from s = 0.72 that 
fracturing of the snow- slab avalanche is unavo idable unless 

TABLE 11. COMBINATIONS OF THE SU PPORTING 
FOR C ES FOR VARYING AVALANC HE SCEN ARIOS AND 
INTEGRAL STABILlTI ES FOR TH E STANDARD SNOW 

SLAB 

Property of C ircum- Pro pe rt y Sh ear Fu/ Fs S 
snow slab fe re n tial o f shear force 

fo rce F u surface Fs (FU +Fs) / T 

Unit kN kN % 

Stro ng 192 5 Y/ea k 1250 154 1.34 
Stro ng 1925 Stro ng 12500 15 6.09 
Weak 455 Stro ng 12 500 4 5.4 7 
Weak 455 Weak 1250 36 0 .72 ! 
Stro ng 122 5* Wea k 1250 98 1.04 

* F u = F_ + FF' 

additional supporting forces can be activated, for example 
vaulting with additional lateral support or support at 
protrus ions in the relief. 

The last line of Table 11 refers to a combination with 
minimal shear force , whe reby the pressure force at the 
stauchwall has been disregarded because much deformation 
is needed to activate it. Here, despite the large tensile and 
flank forces, integral stability barely exceeds I. This 
reinforces the overwhelming importance of the shear 
strength . 

It has frequently been assumed that the influence of 
the boundaries is negligible due to their small contribution 
to the total area; for the standard avalanche, the 
circumferential surface is only 5.6% of the shear surface, 
but for many real avalanches it is even less. The above 
conclusion, however, may be quite erroneous; taking the 
ratio F u/ Fs as a measure of the boundary contribution to 
the support of a snow-slab avalanche , this ratio (from Table 
I1) is indeed only 4-15% at high stability (which tends to 
prevent avalanche fracture), but increases rapidly to 
36-154% in the critical cases of lo w stability which are of 
particular interest. 

5.2. The parameter study 
Generalizing the computations (Tables I and JI), a 

parameter stud y has been undertaken using the following 
constants and variables: 

COllslallls 
Density 
Circumferential 

Shear strength 
Slope inclination 

Variables 

p = 220 kg/ m3 (see note (a») 
strengths 13::, I3D, Br ... mlntma and maxima 

for each (from Table J) 
13 = 0 .5 kN/ m2 ... minimum (see note (b)) 
$ = 38

0 

(see note (c)) 

Width B = length L (IOm ~ B ~ I10m) 
Thickness D (0.4 m ~ D~ 1.5 m) 

Note (a) . In a comparative investigation for higher density 
and disproportionately higher strengths (see Melior, 1975), 
stabilities s worked out to be many times higher; these 
values are therefore not relevant. For lower densities and 
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Fig. 4. Integral stability s and ratio of the circumferential 
force to the shear force F u/ F s of a snow slab as a 
function of their width B = length L . 
a, strong slab, weak shear surface, } see Tables 
b, weak slab, weak shear surface, and 11 
BK , critical width (s = 1). 

consequently lower strengths, applicable particularly to new­
snow avalanches, there are hardly any physical parameters in 
the literature. 
Note (b). As shown already in Table 11, no avalanche 
releases may be expected with high shear strengths. 
Note (c). Varying the slope inclination angle by ±6 0, and 
retaining all other parameters and H = D/ cos.p = constant, 
resulted in a change in stability s of only roughly ±IO% 
for the "s tandard avalanche". 

Overall stability for B = L is obtained from the forces 
according to Table I and Equation (13): 

s = (l3ul B + 13sID)l pgs in.p 
where (14) 

l3u = I3 z + 130 + 213F · 

Varying the width or the shear surface area (B = (As)t), 
and keeping the slab's thickness D = 0.7 m constant, gives 
the results shown in Figure 4. It can be seen from the 
approximately hyperbolic curve shape for S as well as for 
Ful Fs that, with increasing size of the slab, the 
circumferential forces' supporting role weakens considerably; 
their contribution, however , remains above 70% of the 
shearing force in this case with a weak shear surface. Even 
so, the circumferential forces can prevent fracture only up 
to a certain critical width BKCs = 1), because beyond this 
point-force transmission becomes impossible due to the 
preceding circumferential fracture . BK increases considerably 
with increasing circumferential strengths (see Figs 4 and 6). 
Stronger, wind-blown slab avalanches with proportionately 
larger circumferential forces (90-300% of Fs) may, 
therefore, fracture as a whole large area, even when the 
shear surface is weak . 

The influence of varying depths on s, retaining the 
width constant, is shown in Figure 5. Stability decreases 
with increasing depth, this decrease being more pronounced 
the larger and weaker the slab. The distance between the 
two lines for a strong and a weak slab, respectively, is a 
measure of how the circumferential forces matter more for 
smaller slabs. Upon reaching the critical depth DK the slab 
avalanche fractures; this point is reached sooner both with 
weak and with large slabs. 
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Fig. Sa, b. Integral stability s of a snow slab as a function 
of their thickness D. a and b, see Fig. 4. D K , critical 
thickness (s = I). 

Setting S = I, we can compute DK for constant Band 
BK for constant D from Equation (14) as follows: 

DK = I3sB/ pgsin c/l(B - l3u/ pgsin .p), (15a) 

l3uDl pgsin c/l(D - 13sl pgsin .p). (ISb) 

They are shown in one diagram (Fig. 6). 
The hyperbolic shape of the curves means that, with 

the assumed low shear strength and at small depths, a small 
increase in depth leads to a very noticeable drop in the 
maximum possible slab size or, alternatively, in the region 
with s = I in an inclined snow-pack. This region is smaller 
the lower the circumferential strength (line b, Fig. 6). This 
favors the spontaneous release of new-snow avalanches. 
Conversely, hardening of the snow enables larger slabs to 
remain stable (line a, Fig. 6). When, however, the avalanche 
is released, e.g. by a skier's forces, it has a larger area. 

On the other hand, if a slab avalanche's size is 
constrained by the topographic relief, a certain depth (the 
critical depth DK ) cannot be exceeded. 
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DK(s = I) of a snow slab. a and b, see Figure 4. 

6. CONCLUSIONS 

The first result of the parameter study carried out is 
confirmation of the overwhelming importance of the shear 
strength of surfaces parallel to the slope for maintaining the 
snow-pack's stability. Particularly low strengths should be 
the preferred objective of intensive future studies, even 
though they are the most difficult to control in 
experiments. 

The second result, however, is that the boundary 
conditions play an important role in the process of stress 
redistribution, particularly when the resisting shear forces 
are weak. Even with low circumferential strengths, 
circumferential forces make a considerable contribution to 
overall stability of a slab; this fraction, however, drops 
rapidly with increasing avalanche size. Boundary conditions 
must be increasingly included in theoretical and practical 
investigations, although, naturally, this will not facilitate the 
solution of problems connected with avalanche fracture. 

Taking note of the great variety of snow types, and of 
each winter's different time sequence of the weather, both 
extensive observations and measurements of snow-slab 
avalanches (geometry, snow data, most of all density, 
stratification, strengths), as well as further mechanical 
models of the force interplay, the stresses, deformations, 
and failure mechanisms will be needed in order to 
understand better the important and complex problem of 
snow-slab avalanche release, particularly regarding the 
processes initiating fracture. 

Lackillger: Stability of sllow-slab avalanches 
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