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Abstract
For a uniform random labelled tree, we find the limiting distribution of tree parameters which are stable
(in some sense) with respect to local perturbations of the tree structure. The proof is based on the mar-
tingale central limit theorem and the Aldous–Broder algorithm. In particular, our general result implies
the asymptotic normality of the number of occurrences of any given small pattern and the asymptotic
log-normality of the number of automorphisms.
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1. Introduction
The distribution of various random variables associated with trees is widely studied in the litera-
ture. Typically, the tree parameters that behave additively exhibit normal distribution, which was
observed by Drmota [7, Chapter 3], Janson [16], and Wagner [27]. For example, the number of
leaves or, more generally, the number of vertices of a given degree satisfies a central limit theorem
(CLT) for many random models: labelled trees, unlabelled trees, plane trees, forests; see Drmota
and Gitteberger [8] and references therein for more details.

The classical limit theorems of probability theory are impractical for random trees due to the
dependency of adjacencies. Instead, one employs more elaborate tools such as the analysis of gen-
erating functions [2], the conditional limit theorems [12], andHwang’s quasi-power theorem [13].
These methods are particularly efficient for parameters that admit a recurrence relation, which is
often the case for trees.

The martingale CLT [4] is a powerful tool that has been extensively used to study random
structures. Nevertheless, it is surprisingly overlooked in the context of the distribution of tree
parameters and the vast majority of known results rely on the methods mentioned in the para-
graph above. We are aware of only a few applications of the martingale CLT: Smythe [25] and
Mahmoud [18] analysed growth of leaves in the random trees related to urn models; Móri [22]
examined the max degree for Barabási–Albert random trees; Fen and Hu [9] considered the
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Figure 1. Sjki removes ij from a tree and adds ik (dashed).

Zagreb index for random recursive trees; Sulzbach [26] studied the path length in a randommodel
encapsulating binary search trees, recursive trees and plane-oriented recursive trees.

We prove a CLT for an arbitrary tree parameter using the martingale approach. Unlike other
methods, the parameter is not required to be of a specific form or to satisfy a recurrence relation.
Our only assumption is that the parameter is stable with respect to small perturbations in the sense
that precisely specified below. We also bound the rate of convergence to the normal distribution.
In this paper, we restrict our attention to unrooted labelled trees even though martingales appear
naturally in many other random settings. This is sufficient to demonstrate the power of the new
approach and cover several important applications that go beyond the toolkit of existing methods.

Let Tn be the set of trees whose vertices are labelled by [n] := {1, . . . , n} and T be a uniform
random element of Tn. By Cayley’s formula, we have |Tn| = nn−2. For a tree T ∈ Tn and two ver-
tices i, j ∈ [n], let dT(i, j) denote the distance between i and j that is the number of edges in the
unique path from i to j in T. For A, B⊆ [n], let

dT(A, B) := min
u∈A,v∈B dT(u, v).

Throughout the paper, we identify graphs and their edge sets. Consider an operation defined Sjki
as follows. If ij ∈ T and ik /∈ T, let Sjki T be the graph obtained from T by deleting the edge ij and
inserting the edge ik; see Figure 1 below.

Observe that Sjki T is a tree if and only if the path from j to k in T does not contain the vertex i.
We refer the operation Sjki as a tree perturbation.

Let R+ denote the set of non-negative real numbers. For α ∈R
+, we say a tree parameter

F : Tn →R is α-Lipschitz if

|F(T)− F
(
Sjki T

)
|� α.

for all T ∈ Tn and triples (i, j, k) that Sjki T is a tree.We also require that the effects on the parameter
F of sufficiently distant perturbations Sjki and Sbca superpose; that is

F
(
Sjki S

bc
a T

)
− F(T)=

(
F
(
Sjki T

)
− F(T)

)
+
(
F
(
Sbca T

)
− F(T)

)
.

For ρ ∈R
+, we say F is ρ-superposable if the above equation holds for all T ∈ Tn and triples

(i, j, k), (a, b, c) such that Sjki T, Sbca T, S
jk
i Sbca T are trees and dT({j, k}, {b, c})� ρ. Note that the

sets {j, k} and {b, c} are at the same distance in all four trees T, Sjki T, Sbca T, and Sjki Sbca T. Thus,
dT({j, k}, {b, c}) is an appropriate measure for the distance between the two tree perturbations Sjki
and Sbca .

For a random variable X let

δK [X] := sup
t∈R

∣∣P (X −E[X]� t(Var[X])1/2
)− �(t)

∣∣ ,
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where �(t)= (2π)−1/2 ∫ t
−∞ e−x2/2dx. In other words, δK[X] is the Kolmogorov distance between

the scaled random variable X and the standard normal distribution. We say X = Xn is asymptoti-
cally normal if δK[X]→ 0 as n→ ∞.

In the following theorem, F, α, and ρ stand for sequences parametrised by a positive integer n
that is (F, α, ρ)= (Fn, αn, ρn). We omit the subscripts for notation simplicity. All asymptotics in
the paper refer to n→ ∞ and the notations o( · ), O( · ), �( · ) have the standard meaning.

Theorem 1.1. Let a tree parameter F : Tn →R be α-Lipschitz and ρ-superposable for some α > 0
and ρ � 1. Assume also that, for a fixed constant ε > 0,

nα3

(Var [F(T)] )3/2
+ n1/4αρ

(Var [F(T)] )1/2
=O(n−ε).

Then, F(T) is asymptotically normal. Moreover, δK[F(T)]=O(n−ε
′
) for any ε′ ∈ (0, ε).

To clarify the assumptions Theorem 1.1, we consider a simple application to the afore-
mentioned parameter L(T), the number of leaves in a tree T. The distribution of L(T) was
derived for the first time by Kolchin [17], using generating functions and the connection to the
Galton–Watson branching process. Theorem 1.1 immediately leads to the following result:

Corollary 1.2. L(T) is asymptotically normal and δK[L(T)]=O(n−1/4+ε) for any ε > 0.

Proof. For any tree T ∈ Tn and a triple (i, j, k) that Sjki T is a tree, the numbers of leaves of T and
Sjki T differ by at most one. Thus, L is α-Lipchitz on Tn with α = 1.

Next, observe that if T, Sjki T, Sbca T, and Sjki Sbca T are trees and {j, k} ∩ {b, c} = ∅, then
L(T)− L

(
Sjki T

)
− L

(
Sbca T

)
+ L

(
Sjki S

bc
a T

)
= 0.

Indeed, the trees T, Sjki T, Sbca T, S
jk
i Sbca T have the same sets of leaves except possibly vertices

{j, k, b, c}. However, any vertex from {j, k, b, c} contributes to the same number of negative and
positive terms in the left-hand side of the above. This implies that L is ρ-superposable with ρ = 1.

It is well known that Var[L(T)]= (1+ o(1))n/e; see, for example, [21, Theorem 7.7]. Then,
all the assumptions of Theorem 1.1 are satisfied with α = ρ = 1 and ε = 1/4. This completes the
proof.

Remark 1.3. The rates of convergence δK[F(T)]=O(n−1/4+ε) are typical in applications of
Theorem 1.1 because, for many examples, Var[F(T)] is linear and α, ρ are bounded by some
power of log n. Wagner [29] pointed out that Hwang’s quasi-power theorem [13] leads to a better
estimate δK[L(T)]=O(n−1/2+ε) for the number of leaves. This matches the rates of convergence
in the classical Berry–Esseen result (for a sum of i.i.d. variables) and, thus, is likely optimal. It
remains an open question whether the bound δK[F(T)]=O(n−1/2+ε) always hold for an arbi-
trary α-Lipschitz and ρ-superposable tree parameter F (assuming the variance is linear and α and
ρ are not too large).

The asymptotic normality of the number of vertices in T with a given degree is proved iden-
tically to Corollary 1.2. However, for many other applications, a tree parameter F might behave
badly on a small set of trees. Then, Theorem 1.1 does not work directly since α and ρ are too large.
For example, a single perturbation Sjki can destroy a lot of paths on three vertices in a tree with
large degrees. To overcome this difficulty, one can apply Theorem 1.1 to a parameter F̃, which is
related to F, but ignores the vertices with degrees larger log n. This trick does not change the lim-
iting distribution because the trees with large degrees are rare: Moon [21, formula (7.3)] showed
that, for any d ∈ [n],

P(T has a vertex with degree > d)� n/d! (1)
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Similarly, one can restrict attention to the trees for which the neighbourhoods of vertices do not
grow very fast. Let

β(T)= max
i,d∈[n]

|{j ∈ [n] : dT(i, j)= d}|
d

. (2)

In this paper, we prove the following result, which might be of independent interest.

Theorem 1.4. P
(
β(T)� log4n

)
� e−ω(log n).

Remark 1.5. The distribution of the height profiles in branching processes is a well-studied topic.
In particular, the number of vertices in T at distance at most d from a given vertex was already
considered by Kolchin [17]. However, we could not find a suitable large deviation bound for β(T)
in the literature. In fact, the constant 4 in the exponent of the logarithm in the bound above is not
optimal, but sufficient for our purposes.

The structure of the paper is as follows. In Section 2, we analyse the number of occurrences of
an arbitrary tree pattern. For various interpretations of the notion “occurrence,” the asymptotic
normality in this problem was established by Chysak, Drmota, Klausner, Kok [5] and Janson [16].
Applying Theorem 1.1, we not only confirm these results but also allow much more general types
of occurrences. In particular, we prove the asymptotical normality for the number of induced
subgraphs isomorphic to a given tree of fixed size and for the number of paths of length up to
n1/8−ε . Both of these applications go beyond the setup of [5, 16]. In Section 3, we derive the
distribution of the number of automorphisms of T and confirm the conjecture by Yu [30]. To our
knowledge, this application of Theorem 1.1 is also not covered by any of the previous results.

We prove Theorem 1.1 in Section 5, using a martingale construction based on the Aldous–
Broder algorithm [1] for generating random labelled spanning trees of a given graph. Section 4
contains the necessary background on the theory of martingales. We also use martingales to prove
Theorem 1.4 in Section 6. This proof is independent of Section 5 and, in fact, Theorem 1.4 is one
of the ingredients that we need for our main result, Theorem 1.1. We also use Theorem 1.4 in the
application to long induced paths to bound the number of the paths affected by one perturbation;
see Theorem 2.9.

Tedious technical calculations of the variance for the pattern and automorphism counts are
given in Appendices A and B.

2. Pattern counts
In this section, we apply Theorem 1.1 to analyse the distribution of the number of occurrences of
a tree pattern H as an induced subtree in uniform random labelled tree T. To our knowledge, the
strongest results for this problem were obtained by Chysak et al. [5] and Janson [16].

Chysak et al. [5] consider occurrences of a patternH as an induced subgraph of a tree T with the
additional restriction that the internal vertices in the pattern match the degrees the corresponding
vertices in T. That is, the other edges of T can only be adjacent to leaves of H. For example, the
tree T on Figure 2 contains only three paths on three vertices in this sense, namely T[{1, 5, 8}],
T[{1, 3, 6}], and T[{3, 6, 13}]. In particular, the induced path on vertices 1, 2, 7 is not counted
since the internal vertex 2 is adjacent to 4. The result by Chysak, Drmota, Klausner, Kok is given
below.

Theorem 2.1 ([5, Theorem 1]). Let H to be a given finite tree. Then the limiting distribution of the
number of occurrences of H (in the sense described above) in T is asymptotically normal with mean
and variance asymptotically equivalent to μn and σ 2n, where μ > 0 and σ 2 � 0 depend on the
pattern H and can be computed explicitly and algorithmically and can be represented as polynomials
(with rational coefficients) in 1/e.
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Figure 2. A labelled tree T and a pattern H.

Janson [16] considers the subtree counts ηH(T) defined differently. Set vertex 1 to be a root of
T ∈ Tn. For any other vertex v, let Tv be the subtree consisting of v an all its descendants. Such
subtrees are called fringe subtrees. The parameter ηH(T) equals the number of fringe subtrees iso-
morphic toH (with a root). For example, the tree T on Figure 2 contains only one path with three
vertices (rooted at end vertex), namely T[{3, 6, 13}]. In particular, the induced paths T[{1, 5, 8}]
andT[{1, 3, 6}] are not counted since they are not fringe subtrees. Janson [16] proved the following
result about joint asymptotic normality for several such subtree counts.

Theorem 2.2 ([16, Corollary 1.8]) Let TGW
n be a conditioned Galton–Watson tree of order n

with offspring distribution ξ , where E[ξ ]= 1 and 0< σ 2 := Var[ξ ]< ∞. Then, the subtree counts
ηH(TGW

n ) (for all H from a given set of patterns) are asymptotically jointly normal.

Janson [16, Corollary 1.8] also gives expressions for the covariances of the limiting distribution
in terms of the distribution of the corresponding unconditioned Galton–Watson tree. To relate
this model to uniform random labelled tree T, one need to take the conditioned Galton–Watson
tree of order n with the Poisson offspring distribution.

We consider a more general type of tree counts which encapsulates both counts from above. In
fact, it was suggested by Chysak et al. [5]: “. . .we could also consider pattern-matching problems for
patterns in which some degrees of certain possibly external “filled” nodes must match exactly while
the degrees of the other, possibly internal “empty” nodes might be different. But then the situation is
more involved.” Then, in [5, Section 5.3] they explain that having an internal “empty” node leads
to serious complications in their approach.

We define our tree parameter formally. Let H be a tree with � vertices v1, . . . , v�. Let θ =
(θ1, . . . , θ�) ∈ {0, 1}�. We say the pattern (H, θ) occurs in a tree T ∈ Tn if there exists a pair of
sets (U,W) such thatW ⊂U ⊂ [n] and

• the induced subgraph T[U] is isomorphic to H,
• the setW corresponds to all vertices vi with θi = 1 (“empty” nodes),
• there is no edge in T between U −W and [n]−U.

Denote byNH,θ (T) the number of occurrences of the pattern (H, θ) in T that is the number of dif-
ferent pairs (U,W) satisfying the above. It equals the number of ways to choose suitable identities
for v1, . . . , v� in [n] divided by |AUT (H, θ) |, the number of automorphisms of H that preserve
θ . In particular, if θi = 1 for all i ∈ [�] then NH,θ (T) is the number of induced subgraphs in T
isomorphic H. If θi = 1 whenever i is a leaf of H, then NH,θ (T) is the tree count considered in
Theorem 2.1. If θi = 1 for exactly one vertex i ∈ [�] which is a leaf in H, then NH,θ (T) counts
fringe subtrees.

In Section 2.2, we prove that NH,θ (T) is asymptotically normal for any fixed H and θ ∈ {0, 1}�
with at least one non-zero component (where � is the number of vertices inH). Note that if θi = 0
for all i ∈ [�] and n> �, then NH,θ (T)= 0 since at least one vertex corresponding to H must be
adjacent to other vertices in T. Our approach also works for growing patterns. We demonstrate it
for the case when H is a path.
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2.1. Moments calculation
To apply Theorem 1.1, we need a lower bound for Var(NH,θ (T)). One can compute the moments
ofNH,θ (T) using the following formula for the number of trees containing a given spanning forest.
Lemma 2.3 is a straightforward generalisation of [21, Theorem 6.1] with almost identical proof,
which we include here for the sake of completeness.

Lemma 2.3. Let S=H1 � . . . �Hk be a forest on [n] and Bi be non-empty subsets (not necessarily
proper) of V(Hi) for all i ∈ [k]. Then, the number of trees T on [n] containing all edges of H such
that degT(v)= degS(v) for every v outside B1 ∪ . . . ∪ Bk equals b1 · · · bk(b1 + · · · + bk)k−2, where
bi is the number of vertices in Bi.

Proof. Any desired tree T corresponds to a tree TH on k vertices labelled byH1, . . . ,Hk for which
the vertices Hi and Hj are adjacent if and only if there is an edge between Hi and Hj in T. If
d1, . . . , dk are degrees of TH , then the number of trees T corresponding to TH equals bd11 . . . bdkk
since we can only use vertices from B1 ∪ . . . ∪ Bk for edges of T. From [21, Theorem 3.1], we
know that the number of trees on k vertices with degrees d1, . . . , dk is

( k−2
d1−1,...,dk−1

)
. Thus, the

total number of such trees T is

∑
(d1,...,dk)

bd11 . . . bdkk

(
k− 2

d1 − 1, . . . , dk − 1

)
= b1 . . . bk(b1 + · · · + bk)k−2,

where the sum is over all positive integers sequences that d1 + · · · + dk = 2k− 2.

For an �-tuple u= (u1, . . . , u�) ∈ [n]� with distinct coordinates, let 1u(T) be the indicator of
the event that a pattern (H, θ) occurs in T with u1, . . . , u� corresponding to the vertices of H. Let
s := ∑�

i=1 θi. Applying Lemma 2.3 to a forest consisting of one nontrivial component isomorphic
to H and dividing by |Tn| = nn−2, we find that

E [1u(T)]= s (n− � + s)n−�−1

nn−2 = se−�+s+O(�2/n)

n�−1 . (3)

Summing over all choices for u and dividing by |AUT (H, θ) | to adjust overcounting, we get

E
[
NH,θ (T)

]= 1
|AUT (H, θ) |

∑
u

E [1u(T)]= n
se−�+s+O(�2/n)

AUT (H, θ)
.

In particular, this formula agrees with Theorem 2.1 thatμ is a polynomial with rational coefficients
in 1/e. Similarly, for the variance, we have

Var
[
NH,θ (T)

]= 1
|AUT (H, θ) |2

∑
u,u′

Cov(1u(T), 1u′(T)), (4)

where the sum over all �-tuples u, u′ ∈ [n]� with distinct coordinates. Then, we can also use
Lemma 2.3 (with one or two nontrivial components) to compute Cov(1u(T), 1u′(T)). However,
this computation is muchmore involved: one needs to consider all possible ways the pattern (H, θ)
intersects with itself. Nevertheless, for a fixed pattern, it is not difficult to see that E [1u(T)] and
E
[
1u(T)1u′(T)

]
are polynomials with integer coefficients in 1/e divided by some power of n. This
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observation is already sufficient to establish the bound Var
[
NH,θ (T)

]= �(n) for the case when∑�
i=1 θi < �.

Lemma 2.4. Let (H, θ) be a fixed pattern, � be the number of vertices in tree H, and s := ∑�
i=1 θi.

Then, there exist a polynomial pH,θ of degree at most 2� − 2s with integer coefficients that

Var
[
NH,θ (T)

]= n
pH,θ (1/e)

|AUT (H, θ) |2 +O(1).

Moreover, if s< � then pH,θ (1/e)> 0.

Proof. Consider any �-tuples u, u′ ∈ [n]� with distinct coordinates. If the coordinates of u and u′
form disjoint sets, then applying Lemma 2.3 to a forest consisting of two nontrivial component
isomorphic to H, we find that

E
[
1u(T)1u′(T)

]= s2 (n− 2� + 2s)n−2�

nn−2 .

Using (3), we get that

Cov(1u(T), 1u′(T))= s2

n2�−2

⎛
⎝e−2� + 2s− (2� − 2s)2

2n +O(n−2) − e
2
(

−�+s− (�−s)2
2n

)
+O(n−2)

⎞
⎠

= − s2(� − s)2e−2� + 2s

n2�−1 +O(n−2�).

Then, the contribution of such u, u′ to the sum
∑

u,u′ Cov(1u(T), 1u′(T)) in (4) equals

−ns2(� − s)2e−2� + 2s +O(1).

Next, we proceed to the case when the sets formed by the coordinates of u and u′ intersect. Let
a be the size of the union of these two sets and

b := |{ui : θi = 1} ∩ {u′
i : θi = 1}|.

Note that � − s� a− b� 2� − 2s. Then, using Lemma 2.3 (and also (3)), we find that

Cov(1u(T), 1u′(T))= b(n− a+ b)n− a− 1

nn− 2 −
(
s(n− � + s)n− � − 1

nn− 2

)2

= 1+O(n−1)
na− 1 ·

{
be−a+ b, if a� 2� − 2,

be−a+ b − s2e−2� + 2s, if a= 2� − 1.

We say a pair (u, u′) is equivalent to (w,w′) if there is a permutation σ of the set [n] that
wi = σ (ui) and w′

i = σ (u′
i) for all i ∈ [�]. Note that the number of pairs equivalent to (u, u′) is

exactly (n)a. Then, the contribution of the equivalence class to the sum
∑

u,u′ Cov(1u(T), 1u′(T))
in (4) is nbe−a+b +O(1) or nbe−a+b − s2e−2�+2s +O(1). Summing over all equivalence classes,
we complete the proof of the first part.

For the second part, observe in the above that a− b= � − s if and only if the sets of coor-
dinates of u and u′ coincide and {ui : θi = 1} = {u′

i : θi = 1}. In particular, we have a< 2� − 1 so
Cov(1u(T), 1u′(T))> 0. Then, the coefficient corresponding to x−�+s in pH,θ (x) is strictly posi-
tive so the polynomial pH,θ (x) is not trivial. Since the number 1/e is transcendental, we conclude
that pH,θ (1/e) is not zero. Also, pH,θ (1/e) cannot be negative since Var

[
NH,θ (T)

]
� 0 so it can

only be positive. This completes the proof.
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For a tree T ∈ Tn, let NH(T) := NH,θ (T) if θi = 1 for all i ∈ [�] that is NH(T) is the number
of induced subgraphs of T isomorphic to H. Unfortunately, the lemma above cannot guarantee
that Var [NH(T)]= �(n). In this case, the polynomial pH,θ is a non-negative constant, but an
additional argument is required to show that it is not zero.

Lemma 2.5. For any fixed tree H with degrees h1, . . . , h�, we have

Var [NH(T)]�
n

|AUT (H) |2
∑
j�2

c2j j! +O(1),

where cj =∑�
i=1

((hi
j
)+ (� − 1)

(hi−1
j
))
. In particular, c2 > 0 if �� 3.

The proof of Lemma 2.5 is given in Appendix A of the ArXiv version [15] of the current paper.
The key idea of this proof is to estimate the variance of the conditional expection value of NH(T)
given the degree sequence of T.

Remark 2.6. There is a different way to show Var
[
NH,θ (T)

]= �(n) for any fixed H and θ

(including the case θi = 1 for all i ∈ [�]). First, one establishes that P(NH,θ (T)= xn)= o(1) for
any sequence xn. Reducing/incrementing the number of fringe copies of H in a clever way shows
that P(NH,θ (T)= xn) is not much larger than P(NH,θ (T)= xn − k)+ P(NH,θ (T)= xn + k) for
all k from a sufficiently large set. This implies that Var

[
NH,θ (T)

]→ ∞. Therefore, pH,θ > 0
so Var

[
NH,θ (T)

]= �(n). In fact, the proof of Lemma 2.5 given in [15, Appendix A] is more
technically involved than this idea, but it extends better to growing substructures.

Using formula (4), we also obtain a precise estimate of Var [NH(T)] for the case when H is a
path. With slight abuse of notations, let P�(T) := NP�

(T) that is the number of paths on � vertices
in a tree T ∈ Tn.
Lemma 2.7. Let � > 2 and � =O(n1/2), then

Var [P�(T)]=
(
1+O

(
�2

n

))
n

�(� − 1)2(� − 2)
24

.

Proof. For the induced path counts formula (4) simplifies as follows:

Var [P�(T)]= 1
4
∑
u,u′

Cov(1u(T), 1u′(T)).

For i ∈ [�], let �i be the set of pairs (u, u′) that the sets formed by its coordinates have exactly
i elements in common. From (3), we have that E [1u(T)]= �n1−�. Using Lemma 2.3, we get
E
[
1u(T)1u′(T)

]= �2n2−2� for (u, u′) ∈ �0, so∑
(u,u′)∈�0

Cov(1u(T), 1u′(T))= 0.

Applying Lemma 2.3, it is a routine to check that
∑

(u,u′)∈�1

Cov(1u(T), 1u′(T))= |�1|
(
(2� − 1)n2− 2� − �2n2− 2�

)

= − (n)2� − 1
n2� − 2 �2(� − 1)2 = −

(
1+O

(
�2

n

))
n�2(� − 1)2.
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Similarly, for 2� i� �, we get∑
(u,u′)∈�i

Cov(1u(T), 1u′(T))= |�i|
(
(2� − i)n1− 2� + i − �2n2− 2�

)

=
(
1+O

(
�

n

))
2(n)2� − i
n2� − i− 1 (� − i+ 1)2(2� − i)

=
(
1+O

(
�2

n

))
2n(� − i+ 1)2(2� − i).

Summing the above bounds for �0, . . . ,�� and using

−�2(� − 1)2 + 2
�∑

i=2
(� − i+ 1)2(2� − i)= �(� − 1)2(� − 2)

6
,

we get the stated formula for VarP�(T).

2.2. Asymptotic normality of pattern counts
Here we apply Theorem 1.1 to derive the limiting distribution of the pattern counts NH,θ (T). In
fact, all applications of Theorem 1.1 typically have short proofs leaving the lower bound for the
variance to be the most technically involved part.

Theorem 2.8. Let H be a tree on � vertices and θ ∈ {0, 1}� be a non-zero vector. Then NH,θ (T) is
asymptotically normal and δK

[
NH,θ (T)

]=O(n−1/4+ε) for any ε > 0.

Proof. For a tree T ∈ Tn, let F(T) be the number of occurrences of (H, θ) in the induced subforest
of T for the set of vertices with degrees at most log n in T.

Removing one edge from T can only destroy at most log�n patterns (H, θ) counted in F(T).
Thus, F is α-Lipschitz with α = 2 log�n. If two perturbations Sjki and Sbca are at distance at least
3� in T, then every pattern (H, θ) counted in F(Sjki Sbca T)− F(T) (with positive or negative sign) is
present in exactly one of the terms F(Sjki T)− F(T) and F(Sbca T)− F(T) (with the same sign). Thus,
F is ρ-superposable with ρ = 3�.

From (1), we know that
P(F(T) �=NH,θ (T))= e−ω(log n).

Since the values of these random variables are not bigger than n�, we get

E [F(T)]=E
[
NH,θ (T)

]+ e−ω(log n),

Var [F(T)]=Var
[
NH,θ (T)

]+ e−ω(log n).
Combining Lemmas 2.4 and 2.5, we get that Var [F(T)]= �(n). Applying Theorem 1.1, we
complete the proof.

In the next result, we allow the pattern to grow, but restricted to the case when H is a path and
all θi equal 1 (all vertices are “empty”).

Theorem 2.9. Let � =O(n1/8−δ) for some fixed δ ∈ (0, 1/8). Then P�(T) is asymptotically normal
and δK [P�(T)]=O(n−ε

′
) for any ε′ ∈ (0, 2δ).

Proof. For a tree T ∈ Tn, let
Vgood(T) :=

{
i ∈ [n] : for all d ∈ [n], we have |{j ∈ [n] : dT(i, j)= d}|� d log4 n

}
.

Define F(T) to be the number of induced paths on � vertices in the forest T[Vgood(T)].
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The number of �-paths counted in F(T) containing any fixed edge is at most

log8n
� − 2∑
i=1

i(� − i− 1)� 1
2
�3 log8n.

Arguing similarly to the proof of Theorem 2.8, we conclude that F is α-Lipschitz with α = �3 log8n
and ρ-superposable with ρ = 3�. From Theorem 1.4, we also get

P(F(T) �= P�(T))= e−ω(log n).

Next, for a tree T ∈ Tn, observe that F(T)� P�(T)� n2 since any path in T is uniquely deter-
mined by the choice of its end vertices. The rest of the argument is identical to the proof of
Theorem 2.8.

3. Number of automorphisms
An automorphism of a graph G is a bijection σ :V(G)→V(G) such that the edge set of G is
preserved under σ . Bona and Flajolet [3] studied this parameter for random unlabelled rooted
non-plane trees and random phylogenetic trees (rooted non-plane binary trees with labelled
leaves). They showed that in both cases the distribution is asymptotically lognormal; that is, the
logarithm of the number of automorphisms in a random tree is asymptotically normal. McKeon
[20] proved asymptotic formulas for the number automorphisms in related random models of
unlabelled locally restricted trees.

In her PhD thesis, Yu [30] determined the asymptotics of E
[
log |AUT (T)|] for uniform

random labelled tree T. She also made the following conjecture:

Conjecture 3.1. [30] The distribution of |AUT (T)| is asymptotically lognormal.

In this section, we prove this conjecture. Unfortunately, we cannot immediately apply
Theorem 1.1 to derive the distribution of the number of automorphisms since the logarithm of
this parameter is not ρ-superposable for a sufficiently small ρ. This happens because some trees
have automorphisms affected by both perturbations Sjki and Sbca even if dT({j, k}, {b, c}) is large.
Instead, we start by looking at AUTr (T), the subgroup of AUT (T) consisting of automorphisms
σ ∈AUT (T) such that σ (r)= r, where r is some fixed vertex from [n]. In other words, AUTr (T)

is the number of rooted automorphisms of a tree T with root r, or equivalently the stabilizer of r.
The parameter AUTr (T) is easier to work with while also remaining asymptotically very similar

to AUT (T). The ease of analysis comes from the product representation of |AUTr (T)| given by
Yu [30, Corollary 2.1.3].

|AUTr (T)| =
∏
i∈[n]

∏
B

Ni(B, T, r)! (5)

The product over B represents a product over isomorphism classes of rooted unlabelled trees.
Define a branch of T at v to be a subtree rooted at an immediate descendent (with respect to r)
of v. That is the branch is a fringe subtree of T at this descendent. The term Ni(B, T, r) denotes
the number of branches isomorphic to B at vertex i. Factorisation (5) also follows from the result
of Stacey and Holton that says every rooted automorphism is a product of branch transpositions
[24, Lemma 2.4].

We give an example of (5) in Figure 3 for a tree on 9 vertices. There are only three types
of branches in this tree with respect to the root r = 1, namely B1, B2, and B3. Vertex 1 has
two branches isomorphic to B2, and thus N1(B2, T, r)! = 2! = 2. It also has one branch iso-
morphic to B1, and thus N1(B1, T, r)! = 1. Vertex 2 has three branches isomorphic to B3, and
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Figure 3. A labelled tree on the left and its (rooted, unlabelled) branches on the right.

thus N2(B3, T, r)! = 3! = 6. Vertices 3 and 4 each have one branch isomorphic to B3, and thus
N3(B3, T, r)! =N4(B3, T, r)! = 1. Applying (5) shows that |AUTr(T)| = 3! · 2! = 12.

To define our tree parameter F(T), we look at a subgroup of AUTr (T) based on small auto-
morphisms. We define a small branch to be a branch with at most 4 log n vertices, any branch
that is not small is large. A small automorphism is an automorphism where any vertex that is
the root of a large branch is fixed. For a given tree T, let AUTsmall ⊆AUTr (T) be the set of small
automorphisms.

Lemma 3.2. AUTsmall is a subgroup of AUTr (T).

Proof. Observe that any automorphism in AUTsmall must also have an inverse in AUTsmall, since
they move the same vertices. Furthermore, to prove closure under composition, suppose that
a, b ∈AUTsmall but ab /∈AUTsmall. Let B be a large branch that is mapped by ab onto B′. Then
all of the vertices in B are moved by either a or b. Since a ∈AUTsmall, there are some vertices in
B not moved by a; denote this set by X. Since B is connected, there exists an edge between X and
V(B)\X in the edge set of B. Thus, there exists an edge between aX and aV(B) in T; however, this
creates a cycle and thus a contradiction. Thus, ab must also only move small branches, and thus
ab ∈AUTsmall. Thus, AUTsmall is a subgroup.

The parameter F(T) is obtained by writing |AUTsmall| in the same product representation as
|AUTr (T)| and taking the logarithm:

F(T) := log|AUTsmall| =
∑
i∈[n]

∑
B∈Bsmall

log(Ni(B, T, r)!). (6)

Here Bsmall is the set of small branches.

Remark 3.3. In fact, the parameter F defined above belongs to a larger class of additive function-
als considered by Janson [16] and Wagner [27]. They established a general CLT for this type of
parameters. [16, Theorem 1.3] and [27, Theorem 2] do not cover the number of automorphisms
in T because E

[(∑
B log(Ni(B, T, r)!)

)2] is not vanishing. In fact, it is bounded below by the sec-
ond moment of the number of leaves attached to a given vertex which tends to a positive constant;
see also the estimates given in [15, Appendix B].

Next, we show that F(T) satisfies assumptions of Theorem 1.1 while also being very close to
log |AUTr (T)|.
Lemma 3.4. Let α = 3log n and ρ = 10 log n. Then F(T) as defined in (6) is α-Lipschitz and ρ-
superposable.

Proof. To prove the Lipschitz property, we show that for any two trees T and T′ differing by
a perturbation Sjki , the order of AUTsmall for each tree can differ by at most a factor of n3. Any
automorphism of T fixing

{
i, j, k

}
is an automorphism of T′, since all other edges remained static

so their orbits are unaffected. Let Gijk be the subgroup of AUTsmall that fixes
{
i, j, k

}
. Then the
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cosets of this subgroup are defined by where they send each of these vertices. Since there are at
most n such options for each element in the set, we get at most n3 cosets. By Lagrange’s theorem,
we get that

AUTsmall(T)�
|AUTsmall(T′)|

n3

and vice versa by swapping the roles of T and T′. Taking the logarithm of both sides gives the
desired bound.

Next, we show that F is ρ-superposable. Suppose d = dT
({
j, k

}
,
{
b, c

})
> 10 log n. Then sup-

pose an automorphism σ ∈AUTsmall(T) is created or destroyed by S
jk
i . Then σ must not fix

{
i, j, k

}
.

Any path between one of
{
j, k

}
and one of

{
b, c

}
must be longer than 10 log n. Therefore, any par-

ent vertex in the tree is strictly more than 5 log n distance from at least one vertex in each pair.
So σ must fix

{
a, b, c

}
and all lower branches, since each branch moved by the automorphism

is at most 4 log n. So Sbca cannot affect the presence or absence of σ in AUT (T). Similarly, any
automorphism created or destroyed by Sbca cannot be affected by Sjki . Thus,

F
(
Sjki S

bc
a T

)
− F(T)=

(
F
(
Sjki T

)
− F(T)

)
+
(
F
(
Sbca T

)
− F(T)

)
.

This completes the proof.

In the next lemma, we derive bounds needed to compare AUT(T) and F(T).

Lemma 3.5. The following statements hold.

a.
∣∣∣log |AUTr (T)| − log |AUT (T)|

∣∣∣� log n for all T ∈ Tn,

b. P
(
F(T) �= log |AUTr (T)|)=O

(
1
n3

)
,

c. E
[
log |AUT (T)|]−E [F(T)]=O(log n),

d. Var
[
log |AUT (T)|]−Var [F(T)]=O

(√
n log n

)
.

Proof. Each automorphism in AUTr (T) is an automorphism in AUT (T). The group AUT (T)

operates on [n] such that AUTr (T) is the stabilizer of r. Hence,

|AUTr (T)|� |AUT (T)| = |Orbit(r)| × |AUTr (T)|� n |AUTr (T)| .
Thus, we get (a). Parts (b) follows almost immediately from results by Yu [30, Corollary 2.2.2].
To show part (c), we use parts (a) and (b) and observe F(T)� |AUTr (T)|� log n!� n log n to
get that

E
[
log |AUT (T)| − F(T)

]
<max

T
|log |AUT (T)| − log |AUTr (T)||

+ P
(
F(T) �= log |AUTr (T)|) n log n

� log n+O
(
log n
n2

)
=O

(
log n

)
.

Finally, we proceed to part (d). Let W = F(T)− log |AUTr (T)| and Z = log |AUTr (T)| −
log |AUT (T)|. From Lemma 3.5(a,b,c), we get that

|Var [W]+Cov(Z,W)|� P
(
F(T) �= log |AUTr (T)|) 2n2 log2n=O

(
log2n
n

)

Var [Z]�EZ2 � log2n,

|Cov (F(T),W + Z)|� (Var [F(T)] Var [W + Z])1/2 =O
(√

n log n
)
.
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Then, we have

Var
[
log |AUT (T)|]=Var [F(T)− [W + Z]]=Var [F(T)]+O

(√
n log n

)
.

The final ingredient needed to apply Theorem 1.1 is a bound on the variance of F(T), given in
the lemma below.

Lemma 3.6. For sufficiently large n, we have Var [F(T)]� 0.002 n.

The proof of Lemma 3.6 is lengthy and quite technical. We include it in Appendix B of the
ArXiv version [15] of the current paper.

Now, we are ready to prove the following result.

Theorem 3.7. Conjecture 3.1 is true. Furthermore, δK
[
log |AUT (T)|]=O

(
n− 1

4 + ε
)

and

δK
[
log |AUTr (T)|]=O

(
n− 1

4 + ε
)
for any ε > 0.

Proof of Theorem 3.7. Combining Lemmas 3.4, 3.5, and 3.6, we get that the parameter F defined
in (6) satisfies all the assumptions of Theorem 1.1 and δk[F(T)]=O(n−1/4+ε) for any ε > 0. Using
Lemma 3.5 and recalling that F(T)� log |AUTr (T)|� logAUT (T), we get that log |AUTr (T)|
and log|AUT (T)| have the same limiting distribution as F(T) (with the same bound for the
Kolmogorov distance).

Remark 3.8. Recently, Stufler and Wagner [28] have also announced progress in showing that
the distributions of |AUT (T)| and |AUTr (T)| are asymptotically lognormal; however, it has not
yet appear in any published or arXiv paper. Their method is based on the analysis of the gener-
ating function and is different from our approach. Stufler and Wagner gave much more accurate
values for the mean and variance in their talk [28], specifically E

[
log |AUT (T)|]≈ 0.052290n and

Var
[
log |AUT (T)|]= 0.039498n.

4. Tools from the theory of martingales
LetP = (Ω ,F , P) be a probability space. A sequenceF0, . . . ,Fn of sub-σ -fields ofF is a filtration
if F0 ⊆ · · · ⊆Fn. A sequence Y0, . . . , Yn of random variables on P is a martingale with respect to
F0, . . . ,Fn if

i. Yi is Fi-measurable and |Yi| has finite expectation, for 0≤ i≤ n;
ii. E [Yi |Fi]= Yi−1 for 1≤ i≤ n.

In the following we will always assume that F0 = {∅,Ω} and so Y0 =E[Yn].
In this section, we state some general results on concentration and limiting distribution for

martingales. In fact, we only need these results for discrete uniform probability spaces, where
the concept of martingale reduces to average values over increasing set systems. In this case, Ω
is a finite set and each σ -field Fi is generated by unions of blocks of a partion of Ω . Following
McDiarmid [19], for i= 0, . . . , n we define the conditional range of a random variable X on P as

ran[X |Fi] := sup [X |Fi]+ sup [− X |Fi]. (7)

Here, sup [X |Fi] is the Fi-measurable random variable which takes the value at ω ∈ Ω equal to
themaximum value ofX over the block ofFi containingω (and similarly for−X). More generally,
“supremum” can be replaced by “essential supremum”. For more information about conditional
range and diameter, see, for example, [14, Section 2.1] and references therein. We will use that the
conditional range is a seminorm and, in particular, it is subadditive.
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Our first tool is the following result of McDiarmid [19]. Further in this section, the notation
rani[ · ] stands for ran[· |Fi].

Theorem 4.1 ([19, Theorem 3.14]) Let Y0, Y1, . . . , Yn be a real-valued martingale with respect to
the filtration {∅,Ω} =F0,F1 . . . ,Fn. Denote

R2 :=
n∑

i=1
(rani−1[Yi])2 .

Then, for any r, t > 0

P (|Yn − Y0|� t)� 2 exp(− 2t2/r2)+ 2P
(
R2 > r2

)
.

The normalized quadratic variation of a martingale sequence Y = (Y0, . . . , Yn) is defined by

Q[Y] := 1
Var [Yn]

n∑
i=1

(Yi − Yi−1)2.

Observe that

E
[
(Yi − Yi− 1)2

]=E [Var[Yi | Fi− 1]]=E
[
E
[
Y2
i − Y2

i− 1 | Fi− 1
]]=E

[
Y2
i − Y2

i− 1
]
. (8)

Thus,

EQ[Y]= 1
Var [Yn]

n∑
i=1

(
E
[
Y2
i
]−E

[
Y2
i− 1

])= 1.

A classical result by Brown [4] states that if the increments Yi − Yi−1 have finite variances,

Q[Y]
prob.−−→ 1 as n→ ∞ and a certain Lindeberg-type condition is satisfied then the limiting dis-

tribution of Yn is normal, i.e. δK[Yn]→ 0. For a more restricted class of martingales with bounded
differences, these conditions can be slightly simplified and will be sufficient for our purposes. Our
second tool is the following result of Mourrat [23] which gives an explicit bound on the rate of
convergence in the CLT under a strengthened condition that the normalized quadratic variation
Q[Y] converges to 1 in Lp.

Theorem 4.2 ([23, Theorem 1.5.]) Let p ∈ [1,+∞) and γ ∈ (0,+∞). There exists a constant
Cp,γ > 0 such that, for any real martingale sequence Y= (Y0, . . . , Yn) satisfying |Yi − Yi−1|� γ

for all i= 1, . . . , n,

δK[Yn]� Cp,γ

(
n log n

(Var [Yn] )3/2
+ (

E
[|Q[Y]− 1|p]+ (Var [Yn])−p)1/(2p+ 1)

)
.

One way to bound the term E
[|Q[Y]− 1|p] in the above is by applying Theorem 4.1 to the

martingale for Q[Y] with respect to the same filtration, as which gives the following lemma.

Lemma 4.3. Let Y0, . . . , Yn be a real-valued martingale with respect to the filtration {∅,Ω} =
F0, . . . ,Fn. For q̂> 0, letAq̂ denote the event

n∑
i=1

(
rani−1 [Var [Yn |Fi]]+ (rani−1[Yi])2

)2
>
(
q̂Var [Yn]

)2 .
Then, for any p ∈ [1,+∞), we have

E
[|Q[Y]− 1|p]� cp q̂p + 2P

(
Aq̂

)
sup|Q[Y]− 1|p,

where cp = 2p
∫ +∞
0 e−2x2xp−1dx.
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Proof. By definition, we have that |Yi − Yi− 1|� rani− 1[Yi] for all i ∈ [n]. Therefore,

rani− 1
[
(Yi − Yi− 1)2

]
� (rani− 1[Yi])2.

Observe also rani−1
[
(Yj − Yj−1)2

]= 0 for any j< i. Then, using (8) and the subadditivity of the
conditional range, we get that

rani− 1 [E [Q[Y] |Fi]]= 1
Var [Yn]

rani− 1

⎡
⎣ n∑

j= i
E
[
(Yj − Yj− 1)2 |Fi

]⎤⎦

= rani− 1
[
Var [Yn |Fi]+ (Yi − Yi− 1)2

]
Var [Yn]

� rani− 1 [Var [Yn |Fi]]+ (rani− 1[Yi])2

Var [Yn]
.

Applying Theorem 4.1 to the martingale {E [Q[Y] |Fi]}i=0,...,n, we find that

P (|Q[Y]− 1|� t)� 2 exp (− 2t2/q̂2)+ 2P
(
Aq̂

)
.

Substituting this bound into

E
[|Q(Y)− 1|p]=

∫ tmax

0
P (|Q(Y)− 1|� t) ptp−1dt

and changing the variable t = q̂x, we complete the proof. Here, tmax = sup |Q(Y)− 1|.
Using the formulas for E

[
(Yj − Yj−1)2 |Fi

]
similar to (8), we find that

Var [Yn |Fi]=
n∑

j=i+1
E
[
(Yj − Yj−1)2 |Fi

]
. (9)

Then, by the subadditivity of the conditional range, we get the next bound, which will be useful in
applying Lemma 4.3.

rani−1 [Var [Yn |Fi)]]�
n∑

j=i+1
rani−1E

[
(Yj − Yj−1)2 |Fi

]
. (10)

The Doob martingale construction is another important tool in our argument. Suppose X =
(X1, . . . , Xn) is a random vector on P taking values in S and f : S→R is such that f (X) has
bounded expectation. Consider the filtration F0, . . .Fn defined by Fi = σ (X1, . . . , Xi) which
is the σ -field generated by random variables X1, . . . Xi. Then, the Doob martingale YDoob =
YDoob(f , X) is defined by, for all i= 0, . . . , n,

YDoob
i := E

[
f (X1, . . . , Xn) |Fi

]
.

In case of finite S, the random variables YDoob
i , Var

[
YDoob
n |Fj

]
and rani[YDoob

n ] can be seen as
functions fi, vi, ri : S→R of the random vector X defined as follows: for x ∈ S,

fi(x) := E
[
f (X) | X1 = x1, . . . , Xi = xi

]=E
[
f (x1, . . . , xi, Xi+1 . . . , Xn)

]
,

vi(x) := Var
[
f (X) | X1 = x1, . . . , Xi = xi

]=Var
[
f (x1, . . . , xi, Xi+1 . . . , Xn)

]
,

ri(x) := ran
[
f (X) | X1 = x1, . . . , Xi = xi

]
=max

y
f (x1, . . . , xi, yi+1 . . . , yn)−min

y
f (x1, . . . , xi, yi+1 . . . , yn),

(11)
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where x1, . . . , xi are fixed and Xi+1, . . . , Xn are random and both max andmin are over y ∈ S such
that yj = xj for j= 1, . . . , i. If, in addition, random variables X1, . . . , Xn are independent then

|YDoob
i − YDoob

i−1 |� rani−1
[
YDoob
i

]
�max

x,x′
|f (x)− f (x′)|, (12)

where the maximum is over x, x′ ∈ S that differ only in the ith coordinate.
In particular, the Doob martingale process is applicable for functions of random permutations

since we can represent them as vectors. Let Sn be the set of permutations of [n]. We write ω =
(ω1, . . . ,ωn) ∈ Sn if ω maps j to ωj. The product of two permutuations ω, σ ∈ Sn is defined by

ω ◦ σ := (ωσ1 , . . . ,ωσn)
which corresponds to the composition of ω and σ if we treat them as functions on [n]. For a
function f : Sn →R and 1� i �= j� n− 1, define

αi[f ] :=
n∑

a=i+1

maxω∈Sn |f (ω)− f (ω ◦ (ia))|
n− i

,

Δij[f ] :=
n∑

a=i+1

n∑
b=j+1

maxω∈Sn |f (ω)− f (ω ◦ (ia))− f (ω ◦ (jb))+ f (ω ◦ (jb) ◦ (ia))|
(n− i)(n− j)

.

Let X = (X1, . . . , Xn) be a uniform random element of Sn and YDoob(f , X) be the Doobmartingale
sequence for f (X). Note that YDoob

n = YDoob
n−1 = f (X) since the first n− 1 coordinates Xi determine

the permutation X uniquely.

Lemma 4.4. If YDoob = YDoob(f , X) where f : Sn →R and X is a uniform random element of Sn,
then

a. |YDoob
i − YDoob

i−1 |� rani−1
[
YDoob
i

]
� αi[f ], for all 1� i� n− 1.

b. rani−1
[
E

[
(YDoob

j − YDoob
j−1 )2 |Fi

]]
� 2αj[f ]Δij[f ], for all 1� i< j� n− 1.

Proof. To show the first inequality in part (a), we observe that

−sup(− YDoob
i |Fi−1)� YDoob

i−1 � sup(YDoob
i |Fi−1),

by definition. The other bounds is a special case of [11, Lemma 2.1.] for real-valued random
variables, where the conditional range is the same as the conditional diameter.

5. Martingales for tree parameters
To prove Theorem 1.1, we use the martingale based on the Aldous–Broder algorithm, which gen-
erates a random spanning tree of a given graph G. Here is a quick summary: (1) consider the
random walk starting from any vertex; (2) every time we traverse an edge which takes us to a ver-
tex we have not yet explored, add this edge to the tree; (3) stop when we visited all vertices. The
resulting random graph has uniform distribution over the set of spanning trees of G, for more
details see [1]. If G is the complete graph Kn, n� 2, this construction can be rephrased as the
following two-stage procedure [1, Algorithm 2]:

I. For 1� i� n− 1 connect vertex i+ 1 to vertex Vi =min{i,Ui}, where U =
(U1, . . . ,Un−1) is uniformly distributed on [n]n−1.

II. Relabel vertices 1, . . . , n as X1, . . . , Xn, where X = (X1, . . . , Xn) is a uniform random
permutation from Sn.
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Let T(u) is the tree produced at stage I given that U = u. For a permutation ω ∈ Sn and a tree
T ∈ Tn, let

Tω := the tree obtained from T by relabelling according to ω.
From [1] we know that T(U)X has uniform distribution on the set Tn. Now, a tree parameter
F : Tn →R can be seen as a function with domain [n]n−1 × Sn. Consider the functions F̂ : Tn →R

and FT : Sn →R defined by

F̂(T) := E
[
F(TX)

]
, FT(ω) := F(Tω). (13)

Let Y = (Y0, . . . , Yn−1) and Z(T)= (Z0(T), . . . , Zn−1(T)) be the Doob martingale sequences for
F̂(T(U)) and FT(X), respectively: for i= 0, . . . , n− 1,

Yi := E
[
F̂(T(U)) |Fi

]
and Zi(T) := E

[
FT(X) | Gi

]
, (14)

where the filtrations areFi = σ (U1, . . . ,Ui) and Gi = σ (X1, . . . , Xi). We construct the martingale
for F(T) by combining the above two sequences together. Further in this section, we will use the
following notations for conditional statistics of a random variableW with respect to Fi and Gi:

EFi[W] := E [W |Fi] ,

VarFi[W] := Var [W |Fi] ,

supFi[W] := sup[W |Fi],

ranFi[W] := ran[W |Fi],

EGi[W] := E[W | Gi],
VarGi[W] := Var[W | Gi],
supGi[W] := sup[W | Gi],
ranGi[W] := ran[W | Gi].

5.1. Properties of FT and F̂
First, we study properties of functions FT and F̂ from (13) given that the parameter F is α-Lipschitz
and ρ-superposable.

Lemma 5.1. Let a tree parameter F : Tn →R be α-Lipschitz and ρ-superposable for some α � 0 and
ρ � 1, then

a. F̂ is α-Lipschitz and ρ-superposable.

Furthermore, the following holds for all trees T ∈ Tn and permutations ω ∈ Sn.

b. If (ia) is a transposition from Sn, then
|FT(ω)− FT(ω ◦ (ia))|� α(degT(i)+ degT(a)),

where degT(i), degT(a) are degrees of i, a in the tree T.
c. Let T′ = Srsq T be a tree for some triple (q, r, s). If (ia) is a transposition from Sn that

dT({i, a}, {r, s})� ρ + 1, then
FT(ω)− FT(ω ◦ (ia))− FT′(ω)+ FT′(ω ◦ (ia))= 0.

d. If (ia), (jb) are transpositions from Sn such that dT({i, a}, {j, b})� ρ + 2, then
FT(ω)− FT(ω ◦ (ia))− FT(ω ◦ (jb))+ FT(ω ◦ (jb) ◦ (ia))= 0.

Proof. For any permutation ω = (ω1, . . . ,ωn) ∈ Sn define the function Fω : Tn →R by Fω(T) :=
F(Tω). If Sjki T is a tree then (Sjki T)ω = Sωjωk

ωi Tω. Relabelling also does not change the distances, that
is, dT(a, b)= dTω (ωa,ωb) for all a, b ∈ [n]. Thus, Fω is α-Lipschitz and ρ-superposable. Averaging
over all ω proves part (a).
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For part (b), we show that the tree T(ia) can be obtained from T by performing at most
degT(i)+ degT(a) tree perturbations Syzx . We denote the set of these perturbations by P ia

T . Let
u and v be the vertices on the path from i to a in T adjacent to i and a, respectively. Consider
degT(i)− 1 perturbations Siax for all vertices x �= u adjacent to i and degT(a)− 1 perturbations Saix
for all for all vertices x �= v adjacent to a. If dT(a, i)� 2 then performing these degT(i)+ degT(a)−
2 perturbations in any order turns T into T(ia). Otherwise, all vertices i, a, u, v are distinct and we
need two more perturbations Suvi and Svua to obtain T(ia). This defines the set P ia

T . Now, since F is
α-Lipschitz, the value of the function changes by at most α after each perturbation so

|F(T)− F
(
T(ia)

)
|� α(degT(i)+ degT(a)).

The above holds for any T ∈ Tn. Substituting Tω and observing degTω (ωi)= degT(i), we prove
part (b).

Before proving parts (c) and (d), we outline some important properties of the setP ia
T of the tree

perturbations that turn T into T(ia).

i. The perturbations ofP ia
T can be performed in any order, that is, all intermediate graphs are

trees.
ii. dT({x, y, z}, {i, a})= 0 for any Syzx ∈P ia

T , that is, {x, y, z} ∩ {i, a} �= ∅.
iii. the distance from any w ∈ [n] to {i, a} is unchanged by perturbations Siax or Saix .
iv. the distance from any w ∈ [n] to {i, a} can increase after performing one of the perturba-

tions Suvi or Svua but then it decreases back to the initial value after performing the second
(so it never gets smaller than the initial distance dT(w, {i, a})).

For (c), observe first that dT({i, a}, {r, s})� 2 implies that i and a are adjacent to the same sets of
vertices in T and T′. Consider first the case when both u and v belong to the path from i to a in the
tree T′. For example, this is always the case when the path from i to a is not affected by removing
the edge qr. Then, by definition, P ia

T =P ia
T′ that is we can use the same sets of perturbations to

change labels i and a in both trees. We order them arbitrary to form a sequence (S1, . . . , Sk). Note
also that for any perturbation Syzx ∈P ia

T we have dT({y, z}, {r, s})� ρ due to the property (ii) and
dT({i, a}, {r, s})� ρ + 1. Since F is ρ-superposable and using properties (iii) and (iv), we get that

F(St · · · S1T)− F(St · · · S1T′)− F(St+1 · · · S1T)+ F(St+1 · · · S1T′)= 0.

Summing up these equalities for all t = 0, . . . k− 1, we get that

F(T)− F(T′)− F
(
T(ia)

)
+ F

(
T′(ia)

)
= 0. (15)

We still need to consider the case when removing qr changes the path from i to a such that
u or v do not lie on the path anymore. In this case, one have to be slightly more careful with
the order of perturbations (S1, . . . , Sk) to avoid the appearance of cycles in St · · · S1T′. Without
loss of generality, we may assume that dT(i, q)< dT(i, r) (otherwise, swap the roles of i and a).
Let v′ be the vertex adjacent to a that lies on the path from i to a in T′. In notations of part (b),
we define S1 = Suvi and S2 = Sai

v′ , then put the remaining perturbations in any order. A sequence

(S1, . . . , Sk) defined in this way ensures that all intermediate steps from T′ to T′(ia) are trees.
Repeating the same argument as above, we prove (15). To complete the proof of part (c), we just
need to substitute T by Tω similarly to part (b).

Finally, we prove (d) by repeatedly using part (c) for a sequence of perturbations Srsq ∈P jb
T

that turn T into T(jb). We can apply part (c) for all intermediate trees T′ because the assump-
tion dT({i, a}, {j, b})� ρ + 2 together with properties (ii), (iii), (iv) implies that dT′({i, a}, {r, s})�
ρ + 1.
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5.2. Martingale properties
Here, we establish the properties of martingales Y and Z(T) from (14) needed to apply the results
of Section 4. For a tree T ∈ Tn and A, B⊂ [n], define

1
ρ

T(A, B) :=
{
1, if dT(A, B)< ρ,

0, otherwise.

We will repeatedly use the fact that for any T ∈ Tn and i ∈ [n], we have

n∑
j=1

1
ρ

T({i}, {j})� ρ2β(T), (16)

where β(T) is the parameter defined in (2). In the following, for simplicity of notations, we write
1

ρ

T(i, B), or 1
ρ

T(A, j), or 1
ρ

T(i, j) when A, or B, or both are one-element sets. Let T d
n ⊂ Tn be the set

of trees with degrees at most d. We denote by a∧ b the minimum of two real numbers a, b.

Lemma 5.2. Let F : Tn →R be α-Lipschitz and ρ-superposable for some α � 0 and ρ � 1. Then, the
following holds for all i ∈ [n− 1], d ∈R

+ and T ∈ T d
n .

a. |Yi − Yi−1|� ranFi−1 [Yi]� α.
b. ranFi−1

[
VarFi[Yn−1]

]
� 32α2ρ2supFi−1

[
EFi[β(T(U))]

]
.

c. |Zi(T)− Zi−1(T)|� ranGi−1 [Zi(T)]� max
ω,(ia)∈Sn

|F(Tω)− F(Tω◦(ia))|� 2αd.

d. ranGi−1

[
VarGi[Zn−1(T)]

]
� 64α2d2(ρ + 2)2β(T)log n.

e. Let V(u) := Var [Zn−1(T(u))]=Var
[
FT(u)(X)

]
. Then, 0�V(U)� 4α2n2 and

ranFi−1

[
EFi

[
V(U)1T(U)∈T d

n

] ]
� α2supFi−1

[
EFi

[
4n21T(U)/∈T d

n
+ 8d2(ρ + 1)2β(T(U))

]]
.

Proof. Using bound (12), we find that

|Yi − Yi−1|� ranFi−1 [Yi]�max |F̂(T(u))− F̂(T(u′))|,
where u, u′ ∈ [n]n−1 differ in ith coordinate. Observe that

T(u′)= Si∧ui i∧u
′
i

i+1 T(u). (17)

From Lemma 5.1(a), we know that F̂(T) is α-Lipschitz. Part (a) follows.
As explained in (11), we have Yi = fi(U), where

fi(u)=E

[
F̂(T(U)) | u�i

]
and E(· | u�i) stands for E(· |U1 = u1, . . . ,Ui = ui). Let 0� i< j� n− 1. Using formula (17), we
find that

fj(u)− fj−1(u)= 1
n

n∑
u=1

E

[
F̂(T(U))− F̂

(
Sj∧uj j∧uj+1 T(U)

)
| u�j

]
.
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Consider u′ ∈ [n]n−1 that differs from u only in ith coordinate. Then, we have

fj(u)− fj−1(u)− fj(u′)+ fj−1(u′)= 1
n

n∑
u=1

E

[
F̂(T(U))− F̂

(
Sj∧uj j∧uj+1 T(U)

)

− F̂
(
Si∧ui i∧u

′
i

i+1 T(U)
)

+ F̂
(
Sj∧uj j∧uj+1 Si∧ui i∧u

′
i

i+1 T(U)
)

| u�j

]

From part (a), we have 0� |fj − fj−1|� α. Observe also that if U1 = u1, . . . ,Uj−1 = uj−1 and
v ∈ [i] then

dT(U)(v, {i∧ ui, i∧ u′
i})= dT(u)(v, {i∧ ui, i∧ u′

i}).
That is, the distance between v and {i∧ ui, i∧ u′

i} is completely determined by u1, . . . , uj−1 and v.
From Lemma 5.1(a), we know that F̂(T) is ρ-superposable. Thus, we find that

|(fj(u)− fj−1(u))2 − (fj(u′)− fj−1(u′))2|� 2α|fj(u)− fj−1(u)− fj(u′)+ fj−1(u′)|

� 4α2

n

n∑
u=1

1
ρ

T(u)({j∧ uj, j∧ u}, {i∧ ui, i∧ u′
i}))

Using (16), we can bound

1
n

n∑
u=1

E

[
1

ρ

T(u)({j∧ uj, j∧ u}, {i∧ ui, i∧ u′
i}) | u�j−1

]

= 1
n2

n∑
u=1

n∑
uj=1

1
ρ

T(u)({j∧ uj, j∧ u}, {i∧ ui, i∧ u′
i})

� 2 · 1ρ

T(u)(j, {i∧ ui, i∧ u′
i})+

2
n

j−1∑
k=1

1
ρ

T(u)(k, {i∧ ui, i∧ u′
i})

� 2 · 1ρ

T(u)(j, i∧ ui)+ 2 · 1ρ

T(u)(j, i∧ u′
i)+

4
n
ρ2β(T(u)).

Similarly to (11), let ranFi−1

[
VarFi[Yn−1]

]= r(U1, . . . ,Ui−1). Using (9), (12) and taking the
conditional expectation given U1 = u1, . . . ,Ui−1 = ui−1 for the bounds above, we obtain that

r(u1, . . . , ui−1)= max
ui,u′

i∈[n]

∣∣∣∣
n∑

j=i+1
E
[
(fj(U)− fj−1(U))2 | u�i−1,Ui = ui

]

−
n∑

j=i+1
E
[
(fj(U)− fj−1(U))2 | u�i−1,Ui = u′

i
] ∣∣∣∣

� 16α2

n
max
u∈[n]

n∑
j=i+1

E

[
1

ρ

T(u)(j, i∧ u)+ ρ2β(T(U)) | u�i−1,Ui = u
]

� 32α2ρ2 max
ui∈[n]

E(β(T(U)) | u�i).

This completes the proof part (b).
Part (c) immediately follows from Lemma 4.4(a) and Lemma 5.1(b). Indeed,

αi[FT]� max
ω,(ia)∈Sn

|FT(ω)− FT(ω ◦ (ia))|� 2αd. (18)
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For (d), recall from (10) that

ranGi−1

[
VarGi[Zn−1(T)]

]
�

n−1∑
j=i+1

ranGi−1

[
EGi

[
(Zj(T)− Zj−1(T))2

]]
. (19)

We will apply Lemma 4.4(b) to estimate the right-hand side of (19). From Lemma 5.1(d) and the
bound (18), we get that

|FT(ω)− FT(ω ◦ (ia))− FT(ω ◦ (jb))+ FT(ω ◦ (jb) ◦ (ia))|� 4αd 1ρ+2
T ({i, a}, {j, b}).

Bounding

1
ρ+2
T ({i, a}, {j, b})� 1ρ+2

T (i, j)+ 1ρ+2
T (i, b)+ 1ρ+2

T (a, j)+ 1ρ+2
T (a, b)

and using (16), we find that, for 1� i< j� n− 1,

Δij[FT]� 4αd
n∑

a=i+1

n∑
b=j+1

1
ρ+2
T ({i, a}, {j, b})
(n− i)(n− j)

� 4αd
(
1

ρ+2
T (i, j)+ 3(ρ + 2)2β(T)

n− j

)
.

Combining (16), (18), Lemma 4.4(b) and the inequality

1+ 3
n−1∑
k=1

k−1 � 4+ 3 log n� 4 log n,

we obtain that

ranGi−1

[
VarGi[Zn−1(T)]

]
�

n−1∑
j=i+1

16α2d2
(
1

ρ+2
T (i, j)+ 3(ρ + 2)2β(T)

n− j

)

� 64α2d2(ρ + 2)2β(T)log n.

Finally, we proceed to part (e). Since F is α-Lipschitz, we have |F(T)− F(T′)|� 2αn for any
two trees T, T′ ∈ Tn. Indeed, applying at most n perturbations of type Sy1x , where x is a leaf, we can
turn any tree into a star centered at vertex 1. Thus, we can bound

0�V(u)� 4α2n2.

Then, for anyA⊂ [n]n−1 and u1, . . . , ui−1 ∈ [n],

ran
[
EFi [V(U)1U∈A] | u�i−1

]
= max

u∈[n]
E
[
V(U)1U∈A | u�i−1,Ui = u

]− min
u∈[n]

E
[
V(U)1U∈A | u�i−1,Ui = u

]
� 4α2n2 max

ui∈[n]
P(U /∈A | u�i)+ max

ui,u∈[n]
E

[
(V(U)−V(U ′))1U ,U′∈A | u�i,U ′

i = u
]

where U ′ differs from U in ith coordinate only. For the following we putA= {u ∈ [n]n−1 : T(u) ∈
T d
n }. It remains to bound V(U)−V(U ′) when T(U), T(U ′) ∈ T d

n .
Consider any u, u′ ∈ [n]n−1 that differ in ith coordinate only and T(u), T(u′) ∈ T d

n . If T(u)=
T(u′), then V(u)=V(u′). Otherwise, recalling (17), we can find some relabelling σ ∈ Sn that the
trees T = T(u)σ , T′ = T(u′)σ satisfy T′ = S123 T and

0= dT(1, {1, 2})� · · ·� dT(n, {1, 2}).
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Note that Var[FT(X)]=V(u) and Var[FT′(X)]=V(u′). Using Lemma 5.1(c) and (18), we find
that, for any 1� i< a� n,

|FT(ω)− FT(ω ◦ (ia))− FT′(ω)+ FT′(ω ◦ (ia))|� 4αd 1ρ+1
T ({i, a}, {1, 2})

� 4αd 1ρ+1
T (i, {1, 2}).

Applying Lemma 4.4(a) to the function FT − FT′ , we obtain

|Zi(T)− Zi−1(T)− Zi(T′)+ Zi−1(T′)|� αi(FT − FT′)� 4αd 1ρ+1
T (i, {1, 2}).

We have already proved in part (b) that |Zi(T)− Zi−1(T)|� 2αd. Using (8) and (16), we bound

V(u)−V(u′)=Var [Zn−1(T)]−Var
[
Zn−1(T′)

]
=

n−1∑
i=1

E
[
(Zi(T)− Zi−1(T))2 − (Zi(T′)− Zi−1(T′))2

]

�
n−1∑
i=1

4α2d21ρ+1
T (i, {1, 2})� 8α2d2(ρ + 1)2β(T).

Part (e) follows.

5.3. Proof of Theorem 1.1
Before proving of Theorem 1.1, we need one more lemma. Let

Usmall := {u ∈ [n]n−1 : T(u) ∈ T log n
n and β(T(u))� log4 n},

Ubig := {u ∈ [n]n−1 : T(u) ∈ T 2 log n
n and β(T(u))� 2 log4 n}.

Lemma 5.3. The following asymptotics bounds hold for any u ∈ Usmall, u ∈ [n]:

P(U /∈ Usmall)= e−ω(log n), P(U /∈ Ubig | u�i−1,Ui = u)= e−ω(log n).

Proof. The first bound follows immediately from (1) and Theorem 1.4. For the second, observe
that, for any u′

1, . . . , u
′
i−1 ∈ [n],

P
(
U ∈ Usmall |U1 = u′

1, . . . ,Ui−1 = u′
i−1

)
� P

(
U ∈ Ubig | u�i−1

)
.

Indeed, let U , U ′ are such that Uj = uj and U ′
j = u′

j for j ∈ [i− 1] and Uj =U ′
j for j� i. Then,

T(U)⊂ T(U ′)∪ T(u) because the edges corresponding from i− 1 steps of the Aldous–Broder
algorithm for T(U) lie in T(u), while the remaining edges are covered by T(U ′)). We know that
u ∈ Usmall. Therefore, if U ′ ∈ Usmall, then U ∈ Ubig.

Next, averaging over all u′
1, . . . , u

′
i−1 ∈ [n], we conclude that

P
(
U /∈ Ubig | u�i−1

)
� P (U /∈ Usmall) .

Note that, for any u ∈ [n],

P(U /∈ Ubig | u�i−1,Ui = u)= P(U /∈ Ubig,Ui = u | u�i−1)
P(Ui = u | u�i−1)

� nP (U /∈ Usmall) .

Recalling P (U /∈ Usmall) = e−ω(log n), we complete the proof.
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Now we are ready to prove Theorem 1.1, our main result. Let Y and Z(T) be the martingales
from (14). Consider the sequenceW = (W0, . . . ,W2n−2) defined by

Wi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Yi, if i= 0, . . . , n− 1,

Zi−n+1(T(U)), if i� n and T(U) ∈ T log n
n ,

Yn−1, if i� n and T(U) /∈ T log n
n .

Note that W is a martingale with the respect to the filtration F ′
0, . . . ,F ′

2n−2, where F ′
i =Fi, for

i� n− 1 and F ′
i =Fn−1 × Gi−n+1, for i� n. Using (1), (8), and Lemma 5.2(e), we get that

Var [W2n−2]=Var [Yn−1]+E

[
V(U)1T(U)∈T log n

n

]
=Var [Yn−1]+E [V(U)]− 4α2n2e−ω(log n) =Var [F(T)]− α2e−ω(log n).

Then, by assumptions of Theorem 1.1, we get Var [W2n−2]=
(
1+ e−ω(log n))Var [F(T)] and

α2 =O
(
n−2/3−2ε/3)Var [W2n−2] , α2ρ2 =O

(
n−1/2−2ε)Var [W2n−2] . (20)

Using Lemma 5.2(a,c), we obtain that, for all i ∈ [2n− 2],

Wi −Wi−1 =O(αlog n). (21)

Let u ∈ [n]n−1 ∈Usmall. Combining Lemmas 5.2(b,d,e) and 5.3 and observing β(T)� n2 for all
T ∈ Tn, we get that, for all i ∈ [n− 1]

ran
[
VarFi[Yn−1] | u�i−1

]=O
(
α2ρ2log4 n

)
ranGi−1 [Zi(T(u))]=O

(
α2ρ2log7n

)
ran

[
EFi[V(U)] | u�i−1

]=O
(
α2ρ2log6n

)
Note that, in the case of the event U ∈ Usmall, we haveWi = Zi(T(U)) and

Var[W2n−2 |Fi]=VarFi[Yn−1]+EFi[V(U)].

Then, we obtain that if U ∈ Usmall then, for all i ∈ [2n− 2],

ran
[
Var[W2n−2 |F ′

i ] |F ′
i−1

]=O(α2ρ2log7n).

Using (20), we conclude that, with probability 1− e−ω(log n),
2n−2∑
i=1

(
ran

[
Var[W2n−2 |F ′

i ] |F ′
i−1

]+ (
ran

[
Wi |F ′

i−1
] )2)2

=O(α4ρ4nlog14n)=O(n−4εlog14n) (Var[W2n−2])2 .

Let ε̃ ∈ (0, ε). Setting q̂= n−2ε̃ and applying Lemma 4.3, we get that, for any p ∈ [1,+∞),

E
[|Q[W]− 1|p]=O

(
n−2p̃ε + sup |Q[W]− 1|pe−ω(log n)

)
.

Using (21) and (20), we can bound

Q[W]= 1
Var[W2n−2]

2n−2∑
i=1

(Wi −Wi−1)2 =O
(
n1/3

)
.
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Applying Theorem 4.2 to the scaled martingale sequenceW/(α log n), we get that

δK[W2n−2]=O

⎛
⎝
(

α2log2n
Var[W2n−2]

)3/2

nlog n+
(
n−2p̃ε + e−ω(log n)np/3

)1/(2p+1)
⎞
⎠

=O
(
n−εlog4 n+ n−2pε̃/(2p+1)

)
=O(n−2pε̃/(2p+1)).

We can make 2pε̃/(2p+ 1)� ε′ for any ε′ ∈ (0, ε) by taking ε̃ to be sufficiently close to ε and
p to be sufficiently large. Recalling that W2n−2 = F(T(U)X) with probability 1− eω(log n) (that is
for the event T(U) ∈ T log n

n ) and Var[W2n−2]=
(
1+ e−ω(log n))Var [F(T)], the required bound for

δK[F(T)] follows.

Remark 5.4. The proof of Theorem 1.1 can be significantly simplified under additional assump-
tion that the tree parameter F is symmetric. Namely, we would not need the martingale sequence
Z(T), the bounds of Section 5.1, and we would only use parts (a), (b) from Lemma 5.2. In fact, a
symmetric version of Theorem 1.1 would be sufficient to cover all applications given in Sections
2 and 3. Our decision to consider arbitrary tree parameters serves two purposes. First, the result
is significantly stronger. Second, the analysis of martingales based on functions with dependent
random variables is essential for extensions to more sophisticated tree models.

Remark 5.5. Combining Lemma 5.2(a,c) and Theorem 4.1 one can easily derive fast decreasing
bounds for the tail of the distribution of F(T), provided a tree parameter F is α-Lipschitz. Cooper,
McGrae and Zito [6, Section 4] used a different martingale construction for trees to establish the
concentration of F(T) around its expectation; however, they needed more restrictive assumptions
about the tree parameter F.

6. The balls in random trees are not too large
In this section, we prove Theorem 1.4 using martingales. For a tree T ∈ Tn, let �k

T(v) be the set of
all vertices at distance exactly k from v. Theorem 1.4 follows immediately from Lemmas 6.2 and
6.4 (stated below) by summing over all |�k

T(v)| for k= 1, . . . , d and using the union bound over
all vertices v ∈ [n].

Let a> b be positive integers. Let A be an arbitrary set of a vertices from [n], and B be its subset
on b vertices. Consider event EA,B that A induces a tree and vertices of A\B have neighbours only
in A. For T ∈ Tn, let ξA,B(T) be the number of neighbours of B in T outside A. Below, we denote
the random variable ξA,B(T) simply ξA,B.

Lemma 6.1. The conditional distribution of ξA,B − 1 subject to EA,B is binomial with parameters
(n− a− 1, b

n−a+b ).

Proof. Let T0 be a tree on A. Consider event EA,B,T0 that A induces exactly the given subtree T0
and vertices of A\B have neighbours only in A. By Lemma 2.3,

∣∣EA,B,T0∣∣= b(n− a+ b)n−a−1.

Let k ∈N. By Lemma 2.3,

∣∣{ξA,B = k} ∩ EA,B,T0
∣∣= bk

⎛
⎝n− a− 1

k− 1

⎞
⎠ (n− a)n−a−k.
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Therefore,

P(ξA,B = k | EA,B)=
∑

T P(ξA,B = k | EA,B,T)P(EA,B,T)∑
T P(EA,B,T)

= P(ξA,B = k | EA,B,T0 )

=
(

b
n− a+ b

)k−1 (
1− b

n− a+ b

)n−a−k
⎛
⎝n− a− 1

k− 1

⎞
⎠ ,

which is the required distribution.

Fix a vertex v ∈ [n]. Define the sequence of random variables X0, . . . , Xn by

X0 := 1, and Xk := |�k
T(v)| for all k ∈ [n].

From Lemma 6.1, we have X1 − 1∼Bin(n− 2, 1n ). Notice that, for k� 1, the vertices of �k+1
T (v)

are adjacent only to the vertices of �k
T(v) in

⊔
j�k+1 �

j
T(v). Let (x1, . . . , xk) be a sequence of pos-

itive integers such that 1+ x1 + . . . + xk � n. By Lemma 6.1, if x1 + . . . + xk � n− 3, then the
conditional distribution of Xk+1 − 1 subject to (X1 = x1, . . . , Xk = xk) is binomial with parame-
ters n− x1 − . . . − xk − 2 and xk

n−x1−...−xk−1−1 . If x1 + . . . + xk = n− 2, then Xk+1 = 1. Finally, if
x1 + . . . + xk = n− 1, then Xk+1 = 0.

Lemma 6.2. There exists a sequence X0 = X′
0, X

′
1, . . . , X′

n such that

• X′
k � Xk,

• for k� 0, the distribution of X′
k+1 − 1 subject to Xj = xj, X′

j = x′
j, j ∈ [k], is⎧⎪⎨

⎪⎩
Bin

(
n−∑k−1

j=0 xj,
x′
k

n−∑k−1
j=0 xj

)
, if n−∑k−1

j=0 xj � x′
k,

x′
k with probability 1, otherwise.

Proof. It is straightforward since, for every k, we preserve the denominator of the second
parameter of the binomial distribution but make the first one larger.

Note that (X′
k − k)k∈[n] is a martingale sequence. Unfortunately, we can not apply Theorem 4.1

directly because every X′
k ranges in a large interval (mostly for small k). Instead, we cut the tails of

these random variables and construct a newmartingale. To do that we need the following property
of binomial distributions.

Lemma 6.3. Let N and a�N be positive integers, ξ ∼ Bin(N, a
N ). Then, for every b ∈N, there exists

an interval I = I(N, a, b)⊂ [a− b, a+ b] such that

• P(ξ /∈ I)�N2
P(ξ /∈ [a− b, a+ b]),

• ∃c ∈ [a− b, a+ b] such that the function f :R→R defined by

f (x) :=
⎧⎨
⎩ x, x ∈ I
c, x /∈ I

satisfies E
[
f (ξ )

]= a.

Proof. For a=N/2, we get the result by setting I = [a− b, a+ b] and c= a. For the following,
without loss of the generality, we may assume a<N/2 since the proof for a>N/2 is symmetric.
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Let us consider the set S of all integers s such that
E[ξ1{ξ∈[a−s,a+b]}]� aP(ξ ∈ [a− s, a+ b]). (22)

It is clear that 0 ∈ S . However, for every x ∈N, P(ξ = a− x)> P(ξ = a+ x). Indeed,

P (ξ = a− x)
P (ξ = a+ x)

=
(
1+ x

a
) (

1+ x−1
a
)
. . .

(
1− x−1

a
)

(
1+ x

N−a

) (
1+ x−1

N−a

)
. . .

(
1− x−1

N−a

) > 1.

Therefore, b /∈ S . Let s∗ be the maximum integer from S . Then, s∗ ∈ [1, b− 1] and
E[ξ1{ξ∈[a−s∗−1,a+b]}]< aP(ξ ∈ [a− s∗ − 1, a+ b]). (23)

Let us prove that I = [a− s∗, a+ b] is the desired interval. From (23), we get
E[(a− s∗ − 1)1{ξ /∈I} + ξ1{ξ∈I}]

=E[(a− s∗ − 1)]1{ξ /∈[a−s∗−1,a+b]} + ξ1{ξ∈[a−s∗−1,a+b]}]
< (a− s∗ − 1)P(ξ /∈ [a− s∗ − 1, a+ b])+ aP(ξ ∈ [a− s∗ − 1, a+ b])< a.

Moreover, since (22) holds for s= s∗,
E[a1{ξ /∈I} + ξ1{ξ∈I}]� aP(ξ /∈ I)+ aP(ξ ∈ I)= a.

Therefore, there exists c ∈ (a− s∗ − 1, a] such that E[cI(ξ /∈ I)+ ξ I(ξ ∈ I)]= a.
It remains to estimate P(ξ /∈ I) from above. Notice that, from (23),

aP(ξ ∈ [a− s∗ − 1, a+ b])+ (a− s∗)P(ξ < a− s∗ − 1)+NP(ξ > a+ b)> a.
Therefore, s∗P(ξ < a− s∗ − 1)<NP(ξ > a+ b). Since 2aP(ξ = a− s∗ − 2)> P(ξ = a− s∗ − 1),
we get

P(ξ < a− s∗)< (2a+ 1)P(ξ < a− s∗ − 1)�N2
P(ξ > a+ b),

and this immediately implies that P(ξ /∈ I)�N2
P(ξ /∈ [a− b, a+ b]).

Now, we are ready to construct a martingale sequence that coincides with X′
k − k with proba-

bility very close to 1, but is more suitable for applying Theorem 4.1. For every k� 2, consider the
event

Bk :=
⎧⎨
⎩n−

k−2∑
j=0

Xj � X′
k−1

⎫⎬
⎭ .

For ω ∈ Bk, denote

Ik := I

⎛
⎝n−

k−2∑
j=0

Xj, X′
k−1,

√
X′
k−1 log n

⎞
⎠ ,

fk := f

⎛
⎝n−

k−2∑
j=0

Xj, X′
k−1,

√
X′
k−1 log n

⎞
⎠ .

Let

Ek := Bk ∩
⎛
⎝ k⋂

j=1
{X′

j − 1 ∈ Ij}
⎞
⎠ .

Define the sequence (Yk)k∈[n] as follows. Let Y0 := X′
0 = 1. For k� 1, set

Yk := [fk(X′
k − 1)− (k− 1)]1Ek + Yk−11Ek .
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Using Lemmas 6.2 and 6.3, we find that (Y0, Y1, . . . , Yn) is a martingale sequence with respect to
the filtration Fi = σ (Xj, X′

j : 0� j� i) for all i ∈ {0, 1, . . . , n}.
Lemma 6.4. Let c> 0 be a fixed constant. Then, the following bounds hold:

a. P
(∃k ∈ [n]: Yk > k log4n

)
� e−ω(log n),

b. P
(∃k ∈ [n]: Yk �= X′

k − k
)
� e−ω(log n).

Proof. For (a), we apply Theorem 4.1. First, we estimate the conditional ranges. From Lemma 6.3,
we get that, for all k ∈ [n]

rank[Yk+1]� 2
√
X′
k log n 1Ek = 2

√
Yk + k log n 1Ek .

We prove by induction on k that P(Yk > k log4 n)� exp [− c log2n], where c> 0 does not
depend on k and n. For k= 1, we have P(Y1 > log4 n)� P(Y1 > log n)= 0.

Assume that P(Yj > j log4 n− j)� exp [− log2n(1+ o(1))] for all j� k. Then, with a probabil-
ity at least 1− n exp [−log2n(1+ o(1))]= 1− exp [−log2n(1+ o(1))],

k+1∑
j=1

(ranj−1[Yj])2 � 4 log2n
k∑

j=0
(Yj + j)� 2k2 log6n.

Therefore, by Theorem 4.1,

P

(
Yk+1 >(k+ 1) log4 n− (k+ 1)

)

� 2 exp
[
− (k+ 1)2

k2
log2n(1+ o(1))

]
+ 2 exp

[−log2n(1+ o(1))
]

= exp
[−log2n(1+ o(1))

]
.

This proves (a).
For (b), observe that, by the definition of Yk,

P(∃k Yk �= X′
k)= P

(⋃
k

Bk\Ek
)
�

n∑
k=1

P
(
X′
k − 1 /∈ Ik | Bk

)
.

Each term in the sum above is e−ω(log n) by Lemma 6.5 and the difinition ofX′
k given in Lemma 6.2.

Part (b) follows.

Lemma 6.5. For n large enough and all positive integers a�N, a random variable ξ ∼ Bin(N, a/N)
satisfies the following:

P(|ξ − a| > √
a log n)� exp

(
−1
5
log n log log n

)
.

Proof. By the Chernoff bounds,

P(ξ � a+ √
a log n)� exp

[√
a log n− (a+ √

a log n) ln
(
1+ log n√

a

)]
,

P(ξ � a− √
a log n)� exp

[
−1
2
log2n

]

It is straightforward to check that the stated bound holds for all possible values of a.
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