ORIGINAL ARTICLE

Diabetes and Risk of Surgical Site Infection: A Systematic Review and Meta-analysis

Emily T. Martin, MPH, PhD;¹ Keith S. Kaye, MD, MPH;² Caitlin Knott, PharmD;³ Huong Nguyen, PharmD;³ Maressa Santarossa, PharmD;³ Richard Evans, BS;¹ Elizabeth Bertran, PharmD;³ Linda Jaber, PharmD³

OBJECTIVE. To determine the independent association between diabetes and surgical site infection (SSI) across multiple surgical procedures. DESIGN. Systematic review and meta-analysis.

METHODS. Studies indexed in PubMed published between December 1985 and through July 2015 were identified through the search terms "risk factors" or "glucose" and "surgical site infection." A total of 3,631 abstracts were identified through the initial search terms. Full texts were reviewed for 522 articles. Of these, 94 articles met the criteria for inclusion. Standardized data collection forms were used to extract study-specific estimates for diabetes, blood glucose levels, and body mass index (BMI). A random-effects meta-analysis was used to generate pooled estimates, and meta-regression was used to evaluate specific hypothesized sources of heterogeneity.

RESULTS. The primary outcome was SSI, as defined by the Centers for Disease Control and Prevention surveillance criteria. The overall effect size for the association between diabetes and SSI was odds ratio (OR) = 1.53 (95% predictive interval [PI], 1.11-2.12; I^2 , 57.2%). SSI class, study design, or patient BMI did not significantly impact study results in a meta-regression model. The association was higher for cardiac surgery 2.03 (95% PI, 1.13-4.05) compared with surgeries of other types (P = .001).

CONCLUSIONS. These results support the consideration of diabetes as an independent risk factor for SSIs for multiple surgical procedure types. Continued efforts are needed to improve surgical outcomes for diabetic patients.

Infect. Control Hosp. Epidemiol. 2016;37(1):88–99

Diabetes prevalence is increasing in the United States,¹ and the appropriate management of patients with diabetes has become increasingly important for the prevention of hospital-acquired infections. Much has been published in recent years about the impact of diabetes on increased rates of surgical site infection (SSI) and the potentially related impact of hyperglycemia on SSI. Surgical site infections are estimated to have an annual financial impact of more than \$3 billion dollars nationally and are the largest contributor to the overall cost of healthcare-associated infections.² Efforts to reduce the rates of SSIs are becoming more urgent since the introduction of Centers for Medicare and Medicaid Services penalties for hospital readmission rates. An understanding of patient risk factors for SSI is key to these efforts because hospitals with a more vulnerable case mix are more likely to incur readmission penalties.³ Furthermore, the substantial prevalence of hospital-associated infections due to antibiotic resistant pathogens⁴ highlights the importance of prevention in individuals at high risk of infection. To gain a greater understanding of the impact of pre-existing diabetes on the incidence of SSI, we performed a meta-analysis of risk factors for SSIs among patients undergoing surgery in US hospitals. We hypothesize that preexisting diabetes is a significant contributor to the development of SSI, independently of hyperglycemia at the time of surgery. Secondarily, we hypothesize that hyperglycemia is itself an independent contributor to increased risk of SSI in surgical patients.

METHODS

A systematic literature search and meta-analysis was performed following MOOSE guidelines⁵ (Online Supplementary Material).

Data Sources and Searches

A systematic literature search was performed by 4 study investigators (M.S., C.K., H.N., R.E.) with questions referred to an

Affiliations: 1. Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan; 2. Division of Infectious Diseases, Wayne State University and Detroit Medical Center, Detroit, Michigan; 3. Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan.

PREVIOUS PRESENTATION. We presented these findings in part at the 2014 American Diabetes Association annual meeting in San Francisco, California (June 13–17, 2014), and the 2014 Society for Epidemiology Research conference in Seattle, Washington (June 24–27, 2014).

Received May 6, 2015; accepted August 30, 2015; electronically published October 27, 2015

^{© 2015} by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2016/3701-0014. DOI: 10.1017/ice.2015.249

adjudication team consisting of the study principal investigator (E.T.M.), 1 investigator with expertise in diabetes epidemiology (L.J.), and 1 investigator with expertise in infectious diseases and infection prevention (K.S.K.). The search was performed in PubMed and EMBASE using combinations of the search terms "risk factors," "diabetes," "glucose," and "surgical site infections" from December 1985 to July 2015 (see Online Supplementary Material: Search Strategy). The starting date of the search, December 1985, was selected to correspond with the wide implementation of the Centers for Disease Control and Prevention (CDC) SSI surveillance guidelines. The search was inclusive of all study designs unless interventional control of glucose during the study prevented an assessment of the association between diabetes and SSI.

Study Selection

All abstracts were reviewed for eligibility, and the full-article texts of potentially relevant studies were reviewed in depth. Reference lists for all reviewed articles were hand-searched to identify additional eligible articles. Eligibility criteria for study inclusion were the following: (1) original US data; (2) adult participants; (3) utilized the CDC definition for SSIs; and (4) included measurable risk estimates of the association between diabetes and risk of SSI with 95% confidence intervals or provided adequate information to calculate risk estimates and their 95% confidence intervals. Review articles, meta-analyses, or non-English studies were excluded (Online Supplementary Material: List of Excluded Studies).

Eligible studies included adult patients undergoing surgical procedures of any type, using NHSN operative procedure categories to define surgical procedures. All comparative study designs (including observational, randomized controlled, retrospective, or prospective studies) were considered for inclusion provided they presented an assessment for the association between diabetes and SSI or the absolute patient numbers needed for the calculation of the measure. Each eligible study was required to include both diabetic and non-diabetic patients in the study population. Multiple publications on the same subject population were reviewed together and were restricted such that each patient population was included only once; this is notable particularly for multiple publications from large surveillance databases (eg, National Surgical Quality Improvement Program; see Online Supplementary Material: Excluded Studies). SSI was defined using criteria specified by the CDC for the purposes of surveillance and reporting.

Data Extraction

Measures for the association between pre-existing diabetes and SSI were collected from studies that ascertained the presence of diabetes prior to the time of surgery either through the patient's medical record or hemoglobin A1c testing (HbA1c). Assessments of HbA1c levels were noted; however, not enough studies were identified to merit a separate meta-analysis based on this measure. Measures of the association between peri- or post-operative blood glucose levels were collected from studies that assessed thresholds of glucose levels. Studies that presented only comparisons of mean or median blood glucose levels were excluded from the analysis of peri- or postoperative hyperglycemia due to our inability to define the absolute number of patients with hyperglycemia in the infected and uninfected groups.

Data were abstracted onto standardized forms that included study characteristics, study population, type of SSI (superficial, deep incisional, or organ/space), crude and adjusted estimates, and confidence intervals. For each study, we recorded how diabetes was determined and whether blood glucose was measured prior to, during, or after surgery. Studies were assigned to the following categories based on the type of surgery: obstetrical and gynecological, colorectal, arthroplasty, breast, cardiac, spinal, or other. The abstraction team received training by the principal investigator, including the abstraction of multiple practice cases, before performing data abstraction. A subset of studies included was re-reviewed by 2 study investigators to ensure consistency.

Data Synthesis and Analysis

The most-adjusted estimate (ie, the adjusted odds ratio for the multivariate regression with the most variables) was used to generate summary estimates.⁶ Summary estimates and predictive intervals were calculated using a DerSimonian and Laird random-effects model for each estimate type. Confidence intervals were used for smaller analyses of diabetes and glucose combined models. The use of random-effects models was based on I² values exceeding 30% in each overall fixed-effects analysis.⁷ Funnel plots were generated to assess publication bias (data not shown) (Stata 11, StataCorp, College Station, TX). Sensitivity analysis was performed through the generation of stratified estimates and the use of multiple meta-regression analyses to assess the presence of meta-confounding by study characteristics including surgery type, study type, inclusion of body mass index (BMI) in the adjusted estimate, and diabetes prevalence in the study population. We determined a priori that the primary confounder of concern was BMI.

RESULTS

The combined search strategies identified 3,631 abstracts. All of these abstracts were reviewed, and the full texts of 522 articles were reviewed in depth; 3,109 studies were excluded during abstract review (Figure 1), and 428 studies were excluded during full-text review (Online Supplementary Material: List of Excluded Studies).

Meta-analysis for Diabetes and SSI

A total of 90 studies provided estimates for the association between diabetes and SSI, including 2 studies that provided

FIGURE 1. Flow diagram of search and selection processes.

multiple estimates (Appendix Table 1). Included studies comprised a total of 866,427 procedures and 32,067 SSIs meeting CDC surveillance criteria. All studies were observational with the exception of 3 randomized controlled trials. We identified 14 studies (16%) that used prospectively collected data. Diabetes prevalence among included study populations ranged from 2% to 39% (median 17%). History of diabetes was ascertained by medical record review in all but 2 studies.^{8,9} No included studies differentiated between Type 1 and Type 2 diabetes.

The overall effect size for the association between diabetes and SSI was an odds ratio (OR) of 1.53 (95% predictive interval [PI], 1.11-2.12; I^2 , 57.2%) (Figure 2). Of the included studies, 38 (42%) provided estimates that were adjusted for potential confounding factors. When stratifying the metaanalysis by the availability of crude versus adjusted measures, the effect size was similar (OR, 1.68; 95% PI, 1.03-2.72; I^2 , 63.6%) for all available crude measures (71 studies); OR was 1.77 (95% PI, 1.13-2.78); I^2 , 71.1%) for all adjusted measures (38 studies). Funnel plots demonstrated greater evidence of potential publication bias for adjusted estimates (data not shown).

Evaluation of Sources of Heterogeneity for Diabetes Estimate

Study design did not have a significant impact on the overall pooled estimate (P = .13 for retrospective vs prospective data collection; P = .41 for case-control vs cohort or interventional design). Prevalence of diabetes among study participants was also not a significant source of heterogeneity (P = .80). Among studies presenting estimates restricted to specific SSI classes,

the combined OR was 1.95 (95% PI, 0.65–5.87) for deep SSIs (7 estimates from 6 studies) and the OR was 1.38 (95% PI, 0.66–2.88) for superficial SSIs (6 estimates from 5 studies).

Among studies reporting on a single surgical category, the most common category was cardiac (15 studies) followed by spinal (14 studies) (Table 1). Estimates by surgery type for the association between diabetes and SSI ranged from 1.16 for colorectal surgeries (95% PI, 0.93-1.44) to 2.03 for cardiac surgeries (95% PI, 1.13-4.05) (Table 1). Meta-regression for impact of surgery type on the association between diabetes and SSI indicated that the combined SSI effect was higher for cardiac surgery than for all other surgery categories (P = .001). BMI was hypothesized a priori to be an important confounder in the association between diabetes and SSI. Study estimates were stratified according to whether the presented measure controlled for the effect of BMI. The estimate pooled from the 20 studies that controlled for BMI was higher than that pooled from those that did not; however, this factor was not significant when evaluated by meta-regression (P=.79).

Meta-analysis for Blood Glucose and SSI

In total, 16 studies were available to assess the association between hyperglycemia and SSI, with 10 papers (n = 27,844 procedures) including pre- or intraoperative assessments of blood glucose levels and 11 papers (n = 32,625 procedures) including postoperative assessments of blood glucose levels. We observed a wide range in the threshold for defining hyperglycemia. Of 10 studies assessing pre-operative blood glucose, 6 used a threshold of 200 mg/dL, and the remaining 3 studies used thresholds of 125 mg/dL (2 studies), 180 mg/dL

DIABETES AND SURGICAL SITE INFECTION 91

Author	Year	Cardiac	ES (95% CI)	Weight
Bundy	2006	-+-	2.15 (1.67, 2.75)	8.80
Fakih	2007	-	2.31 (1.44, 3.71)	6.14
Fowler	2005	•	1.43 (1.38, 1.49)	10.50
Haas	2005	*	1.45 (0.31, 5.64)	1.36
Haley	2012		2.48 (1.67, 3.67)	7.05
Haley	2012	•	2.98 (2.02, 4.41)	7.08
Haley	2012		1.87 (1.22, 2.87)	6.65
Harbarth	2000		2.20 (1.70, 2.90)	8.59
Latham	2001	+	2.76 (1.64, 4.66)	5.63
Marschall	2007 —		1.80 (0.60, 5.40)	2.16
Nash	2011		1.30 (1.07, 1.59)	9.37
Olsen	2002	-	2.85 (1.42, 5.70)	4.14
Sharma	2009	+	2.45 (1.56, 3.84)	6.39
Townsend	1993		2.07 (1.24, 3.46)	5.72
Trick	2000	*	2.60 (1.00, 6.70)	2.70
Trussell	2008	*	4.71 (2.39, 9.28)	4.26
Wilson	2003		1.77 (0.80, 3.93)	3.48
Overall (I-	squared = 78.2%, p = 0.000)		2.14 (1.78, 2.56)	100.00
with estima	ted predictive interval		(1.13, 4.05)	
	100	1	0.00	
	.108	1	9.28	

FIGURE 2. Meta-analysis of diabetes and surgical site infection, by surgery type.

(1 study), and 100 mg/dL (1 study). Of the 11 studies assessing post-operative blood glucose, 5 used thresholds of 200 mg/dL, with the remaining studies using lower thresholds ranging from 125 mg/dL to 180 mg/dL. One paper presented a composite exposure of pre- or postoperative hyperglycemia, and this estimate was included in both pooled calculations.¹⁰ The overall estimate for the association between elevated blood glucose and SSI in the pre- or intraoperative period was OR = 1.88 (95% Predictive Interval [PI], 0.66–5.34) (Figure 3). The overall estimate for the association between elevated blood glucose in the post-operative period and SSI was 1.45 (95% PI, 0.77–3.04) (Figure 4).

Only 3 studies presented multivariate models adjusting for blood glucose levels and diabetes in the same model.^{8,10,11}

 TABLE 1. Pooled Estimates of the Association between Diabetes

 and Surgical Site Infection by Surgery Type

Surgery Type	No. of Studies	Pooled Estimate	95% Prediction Interval	I ² , %
Gynecological	6	1.61	1.15-2.24	4.0
Colorectal	7	1.16	0.93-1.44	9.5
Arthroplasty	6	1.26	1.01-1.66	11.7
Breast	5	1.58	0.91-2.72	2.7
Cardiac	15	2.03	1.13-4.05	22.4
Spinal	14	1.66	1.10-2.32	8.1
Other/Multiple surgery types combined	37	1.46	1.07-2.00	41.5

These studies used thresholds of $\geq 200 \text{ mg/dL}^8$ and $\geq 126 \text{ mg/dL}^{11}$ to define elevated preoperative glucose levels or combined preand postoperative thresholds into a single definition.¹⁰ Pooled estimates of the association between diabetes and SSI, controlling for glucose level was OR = 2.55 (95% confidence interval [CI], 1.70–3.82). Pooled estimates of the association between elevated glucose level and SSI, controlling for a history of diabetes was OR = 2.22 (95% CI, 1.36–3.60).

DISCUSSION

Consistency of Included Studies

We limited our analysis to studies performed at U.S. hospitals after 1985 in an effort to narrow our review to surgeries evaluated with the standard SSI surveillance methods and definitions required by the CDC. We observed some variation in the definitions for hyperglycemia among included studies. Approximately half of the studies used thresholds that met or were more conservative than those proposed by the Society of Thoracic Surgeons¹² and the American Diabetes Association.¹³ The remaining studies used a slightly higher threshold of 200 mg/dL to define hyperglycemia, and it is possible that this variation may have introduced heterogeneity into our combined estimates for hyperglycemia.

Almost all included studies used medical record review to assess a patient's reported history of diabetes. This data may be prone to error and may not reliably identify all patients with diabetes or assess the degree to which an individual patient's

Author	Year		ES (95% CI)	% Weight
Anaya	2012	*	3.23 (0.80, 12.30)	4.89
Chiang	2014		1.60 (0.90, 2.80)	12.55
Jackson	2012	-	1.00 (0.73, 1.36)	16.25
Jeon	2012	-	1.21 (0.77, 1.91)	14.21
Koutsoumbelis	2011		2.60 (1.17, 5.74)	9.55
Latham	2001		1.11 (0.54, 2.28)	10.47
Olsen	2008		3.30 (1.40, 7.50)	9.05
Park	2009		2.25 (1.26, 4.03)	12.35
Trick	2000	*	- 5.00 (1.00, 26.00)	3.73
Wilson	2003		5.25 (1.82, 15.11)	6.94
Overall (I-square	ed = 62.3%, p = 0.005)		1.88 (1.32, 2.67)	100.00
with estimated pro	edictive interval		(0.66, 5.34)	
NOTE: Weights a	re from random effects analysis			
	.0385	1	1 26	

Preoperative Hyperglycemia

FIGURE 3. Meta-analysis of pre-operative hyperglycemia and surgical site infection.

Author	Year			ES (95% CI)	% Weight	
Boston	2009			1.20 (0.53, 2.67)	6.08	
Caputo	2013			2.11 (1.17, 3.86)	8.84	
Chen	2010			0.89 (0.54, 1.45)	10.68	
Hardy	2010			1.63 (0.67, 3.92)	5.36	
Hendren	2013			1.52 (1.14, 2.01)	15.30	
Jackson	2012			0.91 (0.65, 1.29)	13.93	
Jeon	2012	-		1.72 (0.97, 3.06)	9.21	
Koutsoumbelis	2011			2.22 (1.30, 3.78)	9.93	
Latham	2001			2.02 (1.21, 3.37)	10.33	
Olsen	2008			3.30 (1.40, 7.50)	5.77	
Pastor	2010 -			1.27 (0.45, 3.21)	4.58	
Overall (I-square	d = 52.2%, p = 0.022)			1.53 (1.20, 1.94)	100.00	
with estimated pre	dictive interval			(0.77, 3.04)		
NOTE: Weights are from random effects analysis						
	.133	1	1	і 7.5		

Postoperative Hyperglycemia

FIGURE 4. Meta-analysis of post-operative hyperglycemia and surgical site infection.

diabetic condition is adequately controlled. Likewise, the assessment of diabetes for use with the revised surgical risk index from the Centers of Disease Control does not recommend the use of HbA1c or other markers of severity of diabetes to gather risk information.¹⁴

Generalizability of Study Estimate

Our requirement that all studies be based in the United States excluded available data from other countries; however, it allowed us to strictly assess SSIs using CDC definitions from hospitals participating in standardized surveillance procedures. While specific quality ratings were not performed for each study, we explored several potential sources of heterogeneity in our pooled estimates through the use of meta-regression. Our stratum-specific estimates show a very consistent association between diabetes and SSIs across categories, including study characteristics, and after controlling for BMI. We were unable to assess variation due to SSI surveillance practices in different hospitals. While studies using active follow-up protocols would be expected to have increased SSI rates, we do not expect that this effect would be differential by diabetes status. Our pooled estimates are based on the use of the most adjusted estimate available in each study.⁶ To assess the impact of this rule, summary estimates were generated separately for all available crude effects and all available adjusted effects, and the findings in these models were similar to the most-adjusted models.

The funnel plot for the adjusted estimates indicates the possible presence of publication bias for these estimates in this body of literature (data not shown). This bias is likely due to the tendency of authors to publish only those variables that are significant in multivariate analyses. Given our findings of an association between diabetes and SSI in almost every category of surgery type, it is likely that non-significant findings for diabetes in smaller studies may be due to insufficient sample size in individual studies, rather than a lack of underlying impact. For that reason, it may be prudent to include diabetes as an a priori hypothesized risk factor in future studies with the inclusion of diabetes in adjusted models for risk of SSIs.

Interpretation of Findings

Our finding of increased SSI among patients with diabetes was consistent across surgery types, with the exception of obstetrical and gynecological surgery which was based on 2 studies conducted at the same hospital. The surgery-specific findings were statistically significant for arthroplasty, breast, cardiac, and spinal surgeries; the actual pooled estimate was highest among patients undergoing cardiac surgery. These findings contrast with the analysis of National Healthcare Safety Network data that served as the basis for the revised procedure-specific SSI risk-adjustment calculations. This analysis found diabetes to only be associated with SSI for spinal fusion or refusion.¹⁴ In patients with diabetes receiving

colorectal resection, glucose levels were consistently higher in patients with an SSI compared with uninfected patients, even when mean glucose levels were below 200 mg/dL in those with or without SSI.¹⁵ Similar findings have been reported in patients undergoing laminectomy.¹⁶ Elevated blood glucose has been found to be associated with increased rates of infection in orthopaedic spine surgery,¹⁷ cardiac surgery,^{11,18,19} and colorectal and bariatric surgery²⁰; however, this association has not been consistently found.^{21,22}

The notion that diabetes is a significant contributor to SSI risk through mechanisms other than hyperglycemia at the time of surgery is supported by the few studies that included both glucose levels and history of diabetes in the multivariate models. In the pooled estimate from these studies, the magnitude of the effect of diabetes was stronger than that of our primary analysis that included all eligible studies. The results of an interventional study by Trussel et al²³ corroborates this finding. Diabetes remained a significant risk factor for SSI with an odds ratio of 4.71 despite the implementation of a patient care pathway targeting glucose control during the time of surgery and resulting in successfully reducing the overall rates of infection. However, we identified few studies suitable for analysis of potential independent effects of diabetes and hyperglycemia on SSI.

CONCLUSIONS

In our study, we found a significant association between diabetes and SSI that was consistent across multiple types of surgeries and after controlling for BMI. While we also confirmed an association between both pre- and post-operative hyperglycemia and SSI, history of diabetes remained a significant risk factor in meta-analyses of studies that controlled for hyperglycemia.

Furthermore, we found diabetes to be a significant contributor to the risk of SSIs, potentially beyond its role in causing hyperglycemia during or after surgery. The reasons for this finding are unclear. It is possible that diabetes is a marker for other conditions that may put a patient at risk of infection, including vascular changes and white blood cell dysfunction. In addition, the occurrence of perioperative hyperglycemia and subsequent immune suppression is affected by the complex contributions of factors in addition to the diabetic history of the patient, including physiologic stressors and exogenous glucose administration.²⁴ Although we were able to assess the confounding effect of body mass index and found no effect on our conclusions, our ability to fully assess potential confounders in the current meta-analysis is limited by the variables assessed in the original studies. However, the most adjusted estimate from each study was used in the final analysis, which should benefit from control of other confounding variables at the individual study level. Our findings point to several directions for future research. Few studies have assessed whether a more detailed assessment of diabetes severity would improve the management of SSI risk in these patients. Secondly, few studies address the cause of the infection, and thus we are unable to rule out whether the increased risk of SSI among diabetics is related to differences in bacterial etiology.

Overall, these results support the consideration of diabetes as an independent risk factor for SSIs for multiple procedure types and continued efforts are needed to improve surgical outcomes for diabetic patients.

ACKNOWLEDGMENTS

Financial support. This work was supported by the National Institutes of Health (grant no. K01AI099006 to E.T.M.).

Potential conflicts of interest. All authors report no conflicts of interest relevant to this article.

Address correspondence to Emily T. Martin, MPH, PhD, Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, Michigan, USA 48109-2029 (etmartin@umich.edu).

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/ice.2015.249

REFERENCES

- Cheng YJ, Imperatore G, Geiss LS, Wang J, Saydah SH, Cowie CC, et al. Secular changes in the age-specific prevalence of diabetes among US adults: 1988–2010. *Diabetes Care* 2013;36: 2690–2696.
- Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK, et al. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. *JAMA Intern Med* 2013;173:2039–2046.
- Joynt KE, Jha AK. Characteristics of hospitals receiving penalties under the Hospital Readmissions Reduction Program. JAMA 2013;309:342–343.
- Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, et al. Antimicrobial-resistant pathogens associated with healthcareassociated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. *Infect Control Hospital Epidemiol* 2013;34:1–14.
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA* 2000;283:2008–2012.
- Petitti DB. Meta-analysis, decision analysis, and cost-effectiveness analysis: methods for quantitative synthesis in medicine. 2nd ed. New York: Oxford University Press; 2000. x, 306 p.
- Higgins JPT, Green S, Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions. Chichester, England; Hoboken, NJ: Wiley-Blackwell; 2008. xxi, 649 p.
- Latham R, Lancaster AD, Covington JF, Pirolo JS, Thomas CS, Jr. The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients. *Infect Control Hospital Epidemiol* 2001;22:607–612.

- Liang MK, Li LT, Avellaneda A, Moffett JM, Hicks SC, Awad SS. Outcomes and predictors of incisional surgical site infection in stoma reversal. *JAMA Surg* 2013;148:183–189.
- Olsen MA, Nepple JJ, Riew KD, Lenke LG, Bridwell KH, Mayfield J, et al. Risk factors for surgical site infection following orthopaedic spinal operations. *J Bone Joint Surg Am* 2008;90:62–69.
- Wilson SJ, Sexton DJ. Elevated preoperative fasting serum glucose levels increase the risk of postoperative mediastinitis in patients undergoing open heart surgery. *Infect Control Hospital Epidemiol* 2003;24:776–778.
- Lazar HL, McDonnell M, Chipkin SR, Furnary AP, Engelman RM, Sadhu AR, et al. The Society of Thoracic Surgeons practice guideline series: Blood glucose management during adult cardiac surgery. *Ann Thorac Surg* 2009;87:663–669.
- 13. American Diabetes A. Standards of medical care in diabetes—2008. *Diabetes Care* 2008;31:S12–S54.
- Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK. Improving risk-adjusted measures of surgical site infection for the national healthcare safety network. *Infect Control Hospital Epidemiol* 2011;32:970–986.
- 15. Sehgal R, Berg A, Figueroa R, Poritz LS, McKenna KJ, Stewart DB, et al. Risk factors for surgical site infections after colorectal resection in diabetic patients. *J Am Coll Surg* 2011;212:29–34.
- Friedman ND, Sexton DJ, Connelly SM, Kaye KS. Risk factors for surgical site infection complicating laminectomy. *Infect Control Hospital Epidemiol* 2007;28:1060–1065.
- Caputo AM, Dobbertien RP, Ferranti JM, Brown CR, Michael KW, Richardson WJ. Risk factors for infection after orthopaedic spine surgery at a high-volume institution. J Surg Orthopaed Adv 2013;22:295–298.
- Furnary AP, Zerr KJ, Grunkemeier GL, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. *Ann Thorac Surg* 1999;67:352–360; discussion 60–62.
- Zerr KJ, Furnary AP, Grunkemeier GL, Bookin S, Kanhere V, Starr A. Glucose control lowers the risk of wound infection in diabetics after open heart operations. *Ann Thorac Surg* 1997;63: 356–361.
- Kwon S, Thompson R, Dellinger P, Yanez D, Farrohki E, Flum D. Importance of perioperative glycemic control in general surgery: a report from the Surgical Care and Outcomes Assessment Program. *Ann Surg* 2013;257:8–14.
- Hardy SJ, Nowacki AS, Bertin M, Weil RJ. Absence of an association between glucose levels and surgical site infections in patients undergoing craniotomies for brain tumors. *J Neurosurg* 2010;113:161–166.
- 22. Jeon CY, Furuya EY, Berman MF, Larson EL. The role of pre-operative and post-operative glucose control in surgical-site infections and mortality. *PloS One* 2012;7:e45616.
- Trussell J, Gerkin R, Coates B, Brandenberger J, Tibi P, Keuth J, et al. Impact of a patient care pathway protocol on surgical site infection rates in cardiothoracic surgery patients. *Am J Surg* 2008; 196:883–889; discussion 9.
- 24. Russo N. Perioperative glycemic control. *Anesthesiol Clin* 2012;30:445–466.
- 25. Abdul-Jabbar A, Takemoto S, Weber MH, Hu SS, Mummaneni PV, Deviren V, et al. Surgical site infection in spinal surgery: description of surgical and patient-based risk factors for postoperative infection using administrative claims data. *Spine* 2012;37:1340–1345.

- Anaya DA, Cormier JN, Xing Y, Koller P, Gaido L, Hadfield D, et al. Development and validation of a novel stratification tool for identifying cancer patients at increased risk of surgical site infection. *Ann Surg* 2012;255:134–139.
- 27. Anthony T, Murray BW, Sum-Ping JT, Lenkovsky F, Vornik VD, Parker BJ, et al. Evaluating an evidence-based bundle for preventing surgical site infection: a randomized trial. *Arch Surg* 2011;146:263–269.
- Apisarnthanarak A, Jones M, Waterman BM, Carroll CM, Bernardi R, Fraser VJ. Risk factors for spinal surgical-site infections in a community hospital: a case-control study. *Infect Control Hospital Epidemiol* 2003;24:31–36.
- 29. Bachoura A, Guitton TG, Smith RM, Vrahas MS, Zurakowski D, Ring D. Infirmity and injury complexity are risk factors for surgical-site infection after operative fracture care. *Clin Orthopaed Rel Res* 2011;469:2621–2630.
- Bertin ML, Crowe J, Gordon SM. Determinants of surgical site infection after breast surgery. Am J Infect Control 1998;26: 61–65.
- Boston KM, Baraniuk S, O'Heron S, Murray KO. Risk factors for spinal surgical site infection, Houston, Texas. *Infect Control Hospital Epidemiol* 2009;30:884–889.
- 32. Bundy JK, Gonzalez VR, Barnard BM, Hardy RJ, DuPont HL. Gender risk differences for surgical site infections among a primary coronary artery bypass graft surgery cohort: 1995–1998. *Am J Infect Control* 2006;34:114–121.
- 33. Bykowski MR, Sivak WN, Cray J, Buterbaugh G, Imbriglia JE, Lee WP. Assessing the impact of antibiotic prophylaxis in outpatient elective hand surgery: a single-center, retrospective review of 8,850 cases. *J Hand Surg* 2011;36:1741–1747.
- Cannon JA, Altom LK, Deierhoi RJ, Morris M, Richman JS, Vick CC, et al. Preoperative oral antibiotics reduce surgical site infection following elective colorectal resections. *Dis Colon Rectum* 2012;55:1160–1166.
- 35. Chaichana KL, Kone L, Bettegowda C, Weingart JD, Olivi A, Lim M, et al. Risk of surgical site infection in 401 consecutive patients with glioblastoma with and without carmustine wafer implantation. *Neurol Res* 2015;37:717–726.
- 36. Chapman JS, Roddy E, Westhoff G, Simons E, Brooks R, Ueda S, et al. Post-operative enteral immunonutrition for gynecologic oncology patients undergoing laparotomy decreases wound complications. *Gynecol Oncol* 2015;137:523–528.
- 37. Chen S, Anderson MV, Cheng WK, Wongworawat MD. Diabetes associated with increased surgical site infections in spinal arthrodesis. *Clin OrthopaedRel Res* 2009;467:1670–1673.
- Chen TY, Anderson DJ, Chopra T, Choi Y, Schmader KE, Kaye KS. Poor functional status is an independent predictor of surgical site infections due to methicillin-resistant *Staphylococcus aureus* in older adults. *J Am Geriatr Soc* 2010;58:527–532.
- 39. Chiang HY, Kamath AS, Pottinger JM, Greenlee JDW, Howard IMA, Cavanaugh JE, et al. Risk factors and outcomes associated with surgical site infections after craniotomy or craniectomy clinical article. *J Neurosurg* 2014;120:509–521.
- 40. Chopra T, Marchaim D, Lynch Y, Kosmidis C, Zhao JJ, Dhar S, et al. Epidemiology and outcomes associated with surgical site infection following bariatric surgery. *Am J Infect Control* 2012;40:815–819.
- 41. Chu DI, Schlieve CR, Colibaseanu DT, Simpson PJ, Wagie AE, Cima RR, et al. Surgical site infections (SSIs) after stoma

reversal (SR): risk factors, implications, and protective strategies. *J Gastrointest Surg Tract* 2015;19:327–334.

- 42. Chung CU, Wink JD, Nelson JA, Fischer JP, Serletti JM, Kanchwala SK. Surgical site infections after free flap breast reconstruction: an analysis of 2,899 patients from the ACS-NSQIP datasets. *J Reconstruct Microsurg* 2015;31:434–441.
- Coakley BA, Divino CM. Identifying factors predictive of surgical-site infections after colectomy for fulminant ulcerative colitis. *Am Surgeon* 2012;78:481–484.
- 44. Coleman JS, Green I, Scheib S, Sewell C, Lee JM, Anderson J. Surgical site infections after hysterectomy among HIV-infected women in the HAART era: a single institution's experience from 1999–2012. Am J Obstet Gynecol 2014;210:117.e1–117.e7.
- Davies SW, Turza KC, Sawyer RG, Schirmer BD, Hallowell PT. A comparative analysis between laparoscopic and open ventral hernia repair at a tertiary care center. *Am Surgeon* 2012;78:888–892.
- deFreitas DJ, Kasirajan K, Ricotta JJ 2nd, Veeraswamy RK, Corriere MA. Preoperative inpatient hospitalization and risk of perioperative infection following elective vascular procedures. *Ann Vasc Surg* 2012;26:46–54.
- Deierhoi RJ, Dawes LG, Vick C, Itani KMF, Hawn MT. Choice of intravenous antibiotic prophylaxis for colorectal surgery does matter. J Am Coll Surg 2013;217:763–769.
- Elfenbein DM, Schneider DF, Chen H, Sippel RS. Surgical site infection after thyroidectomy: a rare but significant complication. *J Surg Res* 2014;190:170–176.
- Everhart JS, Altneu E, Calhoun JH. Medical comorbidities are independent preoperative risk factors for surgical infection after total joint arthroplasty. *Clin Orthopaed Rel Res* 2013;471:3112–3119.
- Fakih MG, Sharma M, Khatib R, Berriel-Cass D, Meisner S, Harrington S, et al. Increase in the rate of sternal surgical site infection after coronary artery bypass graft: a marker of higher severity of illness. *Infect Control Hospital Epidemiol* 2007;28:655–660.
- Farrow B, Awad S, Berger DH, Albo D, Lee L, Subramanian A, et al. More than 150 consecutive open umbilical hernia repairs in a major Veterans Administration Medical Center. *Am J Surg* 2008;196:647–651.
- Fowler VG Jr., O'Brien SM, Muhlbaier LH, Corey GR, Ferguson TB, Peterson ED. Clinical predictors of major infections after cardiac surgery. *Circulation* 2005;112:I358–I365.
- George AK, Srinivasan AK, Cho J, Sadek MA, Kavoussi LR. Surgical site infection rates following laparoscopic urological procedures. *J Urol* 2011;185:1289–1293.
- Haas JP, Evans AM, Preston KE, Larson EL. Risk factors for surgical site infection after cardiac surgery: the role of endogenous flora. *Heart Lung* 2005;34:108–114.
- 55. Haley VB, Van Antwerpen C, Tsivitis M, Doughty D, Gase KA, Hazamy P, et al. Risk factors for coronary artery bypass graft chest surgical site infections in New York State, 2008. Am J Infect Control 2012;40:22–28.
- 56. Harbarth S, Samore MH, Lichtenberg D, Carmeli Y. Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. *Circulation* 2000;101:2916–2921.
- Harness NG, Inacio MC, Pfeil FF, Paxton LW. Rate of infection after carpal tunnel release surgery and effect of antibiotic prophylaxis. *J Hand Surg* 2010;35:189–196.
- 58. Hellinger WC, Heckman MG, Crook JE, Taner CB, Willingham DL, Diehl NN, et al. Association of surgeon with surgical site

infection after liver transplantation. *Am J Transplant* 2011;11: 1877–1884.

- Hendren S, Fritze D, Banerjee M, Kubus J, Cleary RK, Englesbe MJ, et al. Antibiotic choice is independently associated with risk of surgical site infection after colectomy: a population-based cohort study. *Ann Surg* 2013;257:469–475.
- Jackson RS, Amdur RL, White JC, Macsata RA. Hyperglycemia is associated with increased risk of morbidity and mortality after colectomy for cancer. J Am Coll Surg 2012;214:68–80.
- 61. Kaafarani HMA, Kaufman D, Reda D, Itani KMF. Predictors of surgical site infection in laparoscopic and open ventral incisional herniorrhaphy. *J Surg Res* 2010;163:229–234.
- Kalra L, Camacho F, Whitener CJ, Du P, Miller M, Zalonis C, et al. Risk of methicillin-resistant *Staphylococcus aureus* surgical site infection in patients with nasal MRSA colonization. *Am J Infect Control* 2013;41:1253–1257.
- 63. Koutsoumbelis S, Hughes AP, Girardi FP, Cammisa FP Jr., Finerty EA, Nguyen JT, et al. Risk factors for postoperative infection following posterior lumbar instrumented arthrodesis. *J Bone Joint Surg Am* 2011;93:1627–1633.
- Kuy S, Dua A, Desai S, Dua A, Patel B, Tondravi N, et al. Surgical site infections after lower extremity revascularization procedures involving groin incisions. *Ann Vasc Surg* 2014;28:53–58.
- Lim S, Edelstein AI, Patel AA, Kim BD, Kim JY. Risk factors for postoperative infections following single level lumbar fusion surgery. *Spine* 2014 [Epub ahead of print].
- Liu DZ, Dubbins JA, Louie O, Said HK, Neligan PC, Mathes DW. Duration of antibiotics after microsurgical breast reconstruction does not change surgical infection rate. *Plastic Reconstr Surg* 2012;129:362–367.
- Lovecchio F, Beal M, Kwasny M, Manning D. Do patients with insulin-dependent and noninsulin-dependent diabetes have different risks for complications after arthroplasty? *Clin Orthopaed Rel Res* 2014;472:3570–3575.
- Lynch RJ, Ranney DN, Shijie C, Lee DS, Samala N, Englesbe MJ. Obesity, surgical site infection, and outcome following renal transplantation. *Ann Surg* 2009;250:1014–1020.
- Mahajan SN, Ariza-Heredia EJ, Rolston KV, Graviss LS, Feig BW, Aloia TA, et al. Perioperative antimicrobial prophylaxis for intraabdominal surgery in patients with cancer: a retrospective study comparing ertapenem and nonertapenem antibiotics. *Ann Surg Oncol* 2014;21:513–519.
- Mahdi H, Gojayev A, Buechel M, Knight J, SanMarco J, Lockhart D, et al. Surgical site infection in women undergoing surgery for gynecologic cancer. *Int J Gynecol Cancer* 2014;24:779–786.
- Maragakis LL, Cosgrove SE, Martinez EA, Tucker MG, Cohen DB, Perl TM. Intraoperative fraction of inspired oxygen is a modifiable risk factor for surgical site infection after spinal surgery. *Anesthesiology* 2009;110:556–562.
- Marschall J, Hopkins-Broyles D, Jones M, Fraser VJ, Warren DK. Case-control study of surgical site infections associated with pacemakers and implantable cardioverter-defibrillators. *Infect Control Hospital Epidemiol* 2007;28:1299–1304.
- 73. Mehta AI, Babu R, Karikari IO, Grunch B, Agarwal VJ, Owens TR, et al. 2012 Young Investigator Award winner: the distribution of body mass as a significant risk factor for lumbar spinal fusion postoperative infections. *Spine* 2012;37:1652–1656.
- 74. Mehta AI, Babu R, Sharma R, Karikari IO, Grunch BH, Owens TR, et al. Thickness of subcutaneous fat as a risk factor for

infection in cervical spine fusion surgery. J Bone Joint Surg Am 2013;95:323–328.

- Miransky J, Ruo L, Nicoletta S, Eagan J, Sepkowitz K, Margetson N, et al. Impact of a surgeon-trained observer on accuracy of colorectal surgical site infection rates. *Dis Colon Rectum* 2001;44:1100–1105.
- Namba RS, Inacio MC, Paxton EW. Risk factors associated with surgical site infection in 30,491 primary total hip replacements. *J Bone Joint Surg Brit* 2012;94:1330–1338.
- Namba RS, Inacio MC, Paxton EW. Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees. J Bone Joint Surg Am 2013;95:775–782.
- Nash MC, Strom JA, Pathak EB. Prevalence of major infections and adverse outcomes among hospitalized. ST-elevation myocardial infarction patients in Florida, 2006. *BMC Cardiovasc Disord* 2011;11:69.
- Neumayer L, Hosokawa P, Itani K, El-Tamer M, Henderson WG, Khuri SF. Multivariable predictors of postoperative surgical site infection after general and vascular surgery: results from the patient safety in surgery study. *J Am Coll Surg* 2007;204:1178–1187.
- Nguyen TJ, Costa MA, Vidar EN, Shahabi A, Peric M, Hernandez AM, et al. Effect of immediate reconstruction on postmastectomy surgical site infection. *Ann Surg* 2012;256:326–333.
- Olsen MA, Lock-Buckley P, Hopkins D, Polish LB, Sundt TM, Fraser VJ. The risk factors for deep and superficial chest surgicalsite infections after coronary artery bypass graft surgery are different. *J Thorac Cardiovasc Surg* 2002;124:136–145.
- Olsen MA, Lefta M, Dietz JR, Brandt KE, Aft R, Matthews R, et al. Risk factors for surgical site infection after major breast operation. J Am Coll Surg 2008;207:326–335.
- Olsen MA, Butler AM, Willers DM, Devkota P, Gross GA, Fraser VJ. Risk factors for surgical site infection after low transverse cesarean section. *Infect Control Hospital Epidemiol* 2008;29: 477–484; discussion 485–486.
- Olsen MA, Higham-Kessler J, Yokoe DS, Butler AM, Vostok J, Stevenson KB, et al. Developing a risk stratification model for surgical site infection after abdominal hysterectomy. *Infect Control Hospital Epidemiol* 2009;30:1077–1083.
- Park C, Hsu C, Neelakanta G, Nourmand H, Braunfeld M, Wray C, et al. Severe intraoperative hyperglycemia is independently associated with surgical site infection after liver transplantation. *Transplantation* 2009;87:1031–1036.
- 86. Paryavi E, Stall A, Gupta R, Scharfstein DO, Castillo RC, Zadnik M, et al. Predictive model for surgical site infection risk after surgery for high-energy lower-extremity fractures: development of the risk of infection in orthopedic trauma surgery score. *J Trauma Acute Care Surg* 2013;74:1521–1527.
- Pastor C, Baek JH, Varma MG, Kim E, Indorf LA, Garcia-Aguilar J. Validation of the risk index category as a predictor of surgical site infection in elective colorectal surgery. *Dis Colon Rectum* 2010;53:721–727.
- Ponce B, Raines BT, Reed RD, Vick C, Richman J, Hawn M. Surgical site infection after arthroplasty: comparative effectiveness of prophylactic antibiotics: do surgical care improvement project guidelines need to be updated? *J Bone Joint Surg Am* 2014;96:970–977.
- 89. Rao SB, Vasquez G, Harrop J, Maltenfort M, Stein N, Kaliyadan G, et al. Risk factors for surgical site infections following spinal fusion procedures: a case-control study. *Clin Infect Dis* 2011;53:686–692.

- Saleh K, Olson M, Resig S, Bershadsky B, Kuskowski M, Gioe T, et al. Predictors of wound infection in hip and knee joint replacement: results from a 20-year surveillance program. *J Orthopaed Res* 2002;20:506–515.
- Segal CG, Waller DK, Tilley B, Piller L, Bilimoria K. An evaluation of differences in risk factors for individual types of surgical site infections after colon surgery. *Surgery* 2014;156:1253–1260.
- 92. Senekjian L, Nirula R. Tailoring the operative approach for appendicitis to the patient: a prediction model from national surgical quality improvement program data. *J Am Coll Surg* 2013;216:34–40.
- 93. Sharma M, Fakih MG, Berriel-Cass D, Meisner S, Saravolatz L, Khatib R. Harvest surgical site infection following coronary artery bypass grafting: risk factors, microbiology, and outcomes. *Am J Infect Control* 2009;37:653–657.
- 94. Shields RK, Clancy CJ, Minces LR, Shigemura N, Kwak EJ, Silveira FP, et al. Epidemiology and outcomes of deep surgical site infections following lung transplantation. *Am J Transplant* 2013;13:2137–2145.
- 95. Shuman AG, Shuman EK, Hauff SJ, Fernandes LL, Light E, Chenoweth CE, et al. Preoperative topical antimicrobial decolonization in head and neck surgery. *Laryngoscope* 2012;122:2454–2460.
- 96. Singh R, Mesh CL, Aryaie A, Dwivedi AK, Marsden B, Shukla R, et al. Benefit of a single dose of preoperative antibiotic on surgical site infection in varicose vein surgery. *Ann Vasc Surg* 2012;26:612–619.
- 97. Smith RL, Bohl JK, McElearney ST, Friel CM, Barclay MM, Sawyer RG, et al. Wound infection after elective colorectal resection. *Ann Surg* 2004;239:599–605.
- Spaniolas K, Kasten KR, Mozer AB, Sippey ME, Chapman WH, Pories WJ, et al. Synchronous ventral hernia repair in patients undergoing bariatric surgery. *Obes Surg* 2015;25:1864–1868.
- Suzuki T, Morgan SJ, Smith WR, Stahel PF, Gillani SA, Hak DJ. Postoperative surgical site infection following acetabular fracture fixation. *Injury* 2010;41:396–399.
- 100. Talbot TR, D'Agata EM, Brinsko V, Lee B, Speroff T, Schaffner W. Perioperative blood transfusion is predictive of poststernotomy surgical site infection: marker for morbidity or true immunosuppressant? *Clin Infect Dis* 2004;38:1378–1382.
- 101. Tomov M, Mitsunaga L, Durbin-Johnson B, Nallur D, Roberto R. Reducing surgical site infection in spinal surgery with betadine irrigation and intrawound vancomycin powder. *Spine* 2015;40:491–499.
- Townsend TR, Reitz BA, Bilker WB, Bartlett JG. Clinical trial of cefamandole, cefazolin, and cefuroxime for antibiotic prophylaxis in cardiac operations. *J Thorac Cardiovasc Surg* 1993;106: 664–670.
- 103. Trick WE, Scheckler WE, Tokars JI, Jones KC, Smith EM, Reppen ML, et al. Risk factors for radial artery harvest site infection following coronary artery bypass graft surgery. *Clin Infect Dis* 2000;30:270–275.
- 104. Trinh JV, Chen LF, Sexton DJ, Anderson DJ. Risk factors for gram-negative bacterial surgical site infection: do allergies to antibiotics increase risk? *Infect Control Hospital Epidemiol* 2009;30:440–446.
- 105. Tserenpuntsag B, Haley V, Van Antwerpen C, Doughty D, Gase KA, Hazamy PA, et al. Surgical site infection risk factors identified for patients undergoing colon procedures, New York State 2009–2010. *Infect Control Hospital Epidemiol* 2014;35: 1006–1012.

- 106. Walcott BP, Neal JB, Sheth SA, Kahle KT, Eskandar EN, Coumans JV, et al. The incidence of complications in elective cranial neurosurgery associated with dural closure material. *J Neurosurg* 2014;120:278–284.
- 107. Woods BI, Rosario BL, Chen A, Waters JH, Donaldson W 3rd, Kang J, et al. The association between perioperative allogeneic transfusion volume and postoperative infection in patients following lumbar spine surgery. *J Bone Joint Surg Am* 2013;95: 2105–2110.
- Wooldridge AN, Kolovich GP, Crist MK, Mayerson JL, Scharschmidt TJ. Predictors of local recurrence in high-grade soft tissue sarcomas: hydrogen peroxide as a local adjuvant. *Orthopedics* 2013;36:e207–e215.
- 109. Young B, Ng TM, Teng C, Ang B, Tai HY, Lye DC. Nonconcordance with surgical site infection prevention guidelines and rates of surgical site infections for general surgical, neurological, and orthopedic procedures. *Antimicrob Agents Chemother* 2011;55:4659–4663.

APPENDIX TABLE 1. Articles Included in 3 Meta-analyses of Diabetes and Pre- and Postoperative Hyperglycemia

	Study	No. of	No. of				Postoperative
Author	Year	Procedures	SSIs	Surgery Type	Diabetes		Glucose
Abdul-Jabbar et al ²⁵	2012	6,628	193	Spinal	Х		
Anaya et al ²⁶	2012	503	122	Any elective	Х	Х	
Anthony et al ²⁷	2011	197	69	Elective transabdominal colorectal	Х		
Apisarnthanarak et al ²⁸	2003	60	13	Spinal	Х		
Bachoura et al ²⁹	2011	1,783	75	Orthopaedic trauma	Х		
Bertin et al ³⁰	1998	55	18	Breast	Х		
Boston et al ³¹	2009	234	55	Spinal	Х		Х
Bundy et al ³²	2006	3,878	322	CABG	Х		
Bykowski et al ³³	2011	8,850	31	Elective hand	Х		
Cannon et al ³⁴	2012	9,940	1,497	Elective colorectal resection	Х		
Caputo et al ¹⁷	2013	3,138	115	Orthopaedic spine	Х		Х
Chaichana et al ³⁵	2015	401	21	Tumor resection	Х		
Chapman et al ³⁶	2015	338	89	Gynecologic oncology	Х		
Chen et al ³⁷	2009	195	27	Elective posterior instrumented lumbar arthrodesis	Х		
Chen et al ³⁸	2010	253	86	Any	Х		Х
Chiang et al ³⁹	2014	416	104	Craniotomy or craniectomy	Х	Х	
Chopra et al ⁴⁰	2012	751	91	Roux-en-Y gastric bypass surgery (RYGBS)	Х		
Chu et al ⁴¹	2015	528	36	Stoma reversal	Х		
Chung et al ⁴²	2015	2,899	143	Free flap breast reconstruction	Х		
Coakley et al43	2012	59	16	Colectomy for fulminant ulcerative colitis (UC)	Х		
Coleman et al44	2014	77	17	Hysterectomy	Х		
Davies et al ⁴⁵	2012	268	49	Ventral hernia repair	Х		
deFreitas et al ⁴⁶	2012	40,669	1301	Elective vascular procedures	Х		
Deierhoi et al ⁴⁷	2013	5,750	709	Colorectal	Х		
Elfenbein et al ⁴⁸	2014	49,326	179	Thyroidectomy	Х		
Everhart et al ⁴⁹	2012	1875	29	Total joint arthroplasty	Х		
Fakih et al ⁵⁰	2007	3,578	144	Coronary artery bypass graft (CABG)	Х		
Farrow et al ⁵¹	2008	152	30	Umbilical hernia repairs	Х		
Fowler et al ⁵²	2005	370,133	11,636	Cardiac	Х		
Friedman et al ¹⁶	2007	123	41	Laminectomy	Х		
George et al ⁵³	2011	556	14	Laproscopic urological procedures	Х		
Haas et al ⁵⁴	2005	12	14	Cardiac	Х		
Haley et al ⁵⁵	2012	13,894	303	CABG	Х		
Harbarth et al ⁵⁶	2000	2,641	231	CABG	Х		
Hardy et al ²¹	2010	114	57	Craniotomy	Х		Х
Harness et al ⁵⁷	2010	2,336	11	Carpal tunnel release	Х		
Hellinger et al ⁵⁸	2011	1,036	166	Liver transplantation	Х		
Hendren et al ⁵⁹	2013	4,331	380	Colectomy			Х
Jackson et al ⁶⁰	2012	7,576 ^a 5,773 ^b	N/A	Colectomy		Х	Х
Jeon et al ²²	2012	13,800	260	Any		Х	Х
Kaafarani et al ⁶¹	2010	145	21	Ventral hernia repair	Х		
Kalra et al ⁶²	2013	9,006	27	Multiple	Х		
Koutsoumbelis et al ⁶³	2011	3,218	84	Posterior lumbar	Х	Х	Х
Kuy et al ⁶⁴	2014	106	33	Lower extremity revascularization	Х		

APPENDIX TABLE 1. Continued

Author	Study Year	No. of Procedures	No. of SSIs	Surgery Type	Diabetes		Posto Gluce	operative ose
Latham et al ⁸	2001	1 000	74	Cardiothoracic	x	x		x
Liang et al ⁹	2001	1,000	46	Stoma reversal	X	1		Α
Lim et al ⁶⁵	2013	3 353	86	Single level lumbar fusion	X			
Linet al ⁶⁶	2014	256	44	Microsurgical breast reconstruction	X			
Lovecchio et al ⁶⁷	2012	43 299	468	Arthroplasty	X			
Lovecenio et al	2014	869	162	Renal transplant	X			
Mahajan et al ⁶⁹	2005	615	47	Intra-abdominal	X			
Mahdi et al ⁷⁰	2013	6854	369	Gynecologic cancer	X			
Maragakis et al ⁷¹	2011	208	104	Spinal	X			
Marschall et al ⁷²	2007	76	19	Pacemaker and implantable cardioverter- defibrillator	X			
Mehta et al ⁷³	2012	298	24	Lumbar spine fusion	х			
Mehta et al ⁷⁴	2012	213	22	Cervical spine fusion	X			
Miransky et al ⁷⁵	2001	209	15	Colorectal	X			
Namba et al ⁷⁶	2012	30.491	155	Total hip replacement	X			
Namba et al ⁷⁷	2013	56.216	404	Total knee arthroplasty	X			
Nash et al ⁷⁸	2011	11,879	491	Cardiac	X			
Neumaver et al ⁷⁹	2007	163.624	7.035	Multiple	X			
Nguyen et al ⁸⁰	2012	9,315	330	Mastectomy with or without immediate reconstruction	X			
Olsen et al ⁸¹	2002	1,980	83	CABG	Х			
Olsen et al ⁸²	2008	325	57	Major breast	X			
Olsen et al ⁸³	2008	1,605	81	Low transverse cesarean section	X			
Olsen et al ¹⁰	2008	273	46	Spinal	X	Х		Х
Olsen et al ⁸⁴	2009	807	85	Hysterectomy	X			
Park et al ⁸⁵	2009	680	76	Hepatic transplant	X	Х		
Parvavi et al ⁸⁶	2013	235	33	Lower extremity fracture	X			
Pastor et al ⁸⁷	2010	491	95	Elective colorectal resection				Х
Ponce et al ⁸⁸	2014	18,830	264	Arthroplasty	Х			
Rao et al ⁸⁹	2011	1,587	57	Spinal fusion	Х			
Saleh et al ⁹⁰	2002	97	33	Total knee and hip arthroplasty	Х			
Segal et al ⁹¹	2014	51,644	7,721	Colon resesection	Х			
Senekjian and Nirula ⁹²	2013	61,830	802	Appendectomy	Х			
Sharma et al ⁹³	2009	3,578	86	CABG	Х			
Shields et al ⁹⁴	2013	586	31	Lung transplantation	Х			
Shuman et al ⁹⁵	2012	84	14	Head and neck	Х			
Singh et al ⁹⁶	2012	902	78	Varicose vein surgery	Х			
Smith et al ⁹⁷	2004	176	45	Elective colorectal resection	Х			
Spaniolas et al ⁹⁸	2014	503	23	Ventral hernia repair	Х			
Suzuki et al ⁹⁹	2010	326	17	Acetabular fracture fixation	Х			
Talbot et al ¹⁰⁰	2004	153	39	Median sternotomy for CABG, valve repair, and/ or replacement	Х			
Tomov et al ¹⁰¹	2015	311	16	Orthopedic spinal	Х			
Townsend et al ¹⁰²	1993	2,759	241	Non-emergent median sternotomy for cardiac operation	Х			
Trick et al ¹⁰³	2000	120	30	CABG	Х	Х		
Trinh et al ¹⁰⁴	2009	202	101	Any	Х			
Trussell et al ²³	2008	808 ^a , 647 ^b	28/10	CABG	Х			
Tserenpuntsa et al ¹⁰⁵	2014	2,656	698	Colon	Х			
Walcott et al ¹⁰⁶	2014	399	17	Cranial neurosurgery	Х			
Wilson and Sexton ¹¹	2003	258	129	Open heart surgery	Х	Х		
Woods et al ¹⁰⁷	2013	1,799	56	Lumbar surgery	Х			
Wooldridge et al ¹⁰⁸	2013	106	11	High-grade soft tissue sarcoma	Х			
Young et al ¹⁰⁹	2011	216	18	Elective total abdominal hysterectomy	Х			