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Similarity Classification of Cowen-Douglas
Operators

Chunlan Jiang

Abstract. Let H be a complex separable Hilbert space and L(H) denote the collection of bounded

linear operators on H. An operator A in L(H) is said to be strongly irreducible, if A′(T), the com-

mutant of A, has no non-trivial idempotent. An operator A in L(H) is said to be a Cowen-Douglas

operator, if there exists Ω, a connected open subset of C , and n, a positive integer, such that

(a) Ω ⊂ σ(A) = {z ∈ C | A − z not invertible};

(b) ran(A − z) = H, for z in Ω;

(c)
∨

z∈Ω
ker(A − z) = H and

(d) dim ker(A − z) = n for z in Ω.

In the paper, we give a similarity classification of strongly irreducible Cowen-Douglas operators by

using the K0-group of the commutant algebra as an invariant.

0 Introduction

Let H be a complex separable Hilbert space and L(H) denote the collection of
bounded linear operators on H. A basic problem in operator theory is to determine

when two operators A and B in L(H) are similar, that is when there exists an invert-
ible operator X on H satisfying A = X−1BX. In a real sense the problem has no gen-
eral solution but one restricts attention to special classes of operators. An important
approach to this problem is via spectral theory in which one attempts to synthesize

operators from elementary ‘local operators’, where ‘local’ refers to the spectrum. For
example, an operator on a finite dimensional space can be obtained as the direct sum
of scalar operators plus nilpotent Jordan blocks on generalized eigenspaces, where
the scalars are just the eigenvalues which with their multiplicity determine the op-

erator up to similarity. On infinite dimensional spaces direct sum must be replaced
by a continuous direct sum or direct integral but the result is essentially the same
(cf. [Na-Fo, Ap-Fi-He-Vo, Da-He, Ka]).

Conventional spectral theory attempts to extend such representations to as large

a class of operators as possible. However, there exist operators which cannot be syn-
thesized in this sense from local operators. One example is the backward shift T∗

z on
l2 defined by

T∗
z (α0, α1, α2, . . . ) = (α1, α2, α3, . . . )

for (α0, α1, α2, . . . ) in l2. Since

T∗
z (1, λ, λ2, . . . ) = λ(1, λ, λ2, . . . )
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and (1, λ, λ2, . . . ) is in l2 for |λ| < 1, we see that the open unit disc D consists of
eigenvalues for T∗

z . Such behavior is quite different from that for the finite dimen-

sional case. Moreover, it can easily be shown that one cannot express l2 as M ⊕ N,
where M and N are invariant for T∗

z . Thus one cannot study T∗
z using conventional

spectral theory.
However, we probably know as much about this operator and its adjoint as we

do about any single operator. In the functional representation, the adjoint Tz acts as
multiplication by z on the Hardy space H2(∂D) and an enormous literature exists on
it (cf. [Do, He]).

M. J. Cowen and R. G. Douglas introduced in [Co-Do] a class of operators related

to complex geometry now referred to as Cowen-Douglas operators. The Cowen-
Douglas operators play an important role in studying the structure of non self-
adjoint operators (cf. [He2, Ji-Wa]).

Definition 0.1 For Ω a connected open subset of C and n a positive integer, let
Bn(Ω) denote the operators T in L(H) which satisfy

(a) Ω ⊂ σ(T) = {z ∈ C | T − z not invertible};
(b) ran(T − z) := {(T − z)x | x ∈ H} = H for z in Ω;
(c)

∨

z∈Ω
ker(T − z) = H; and

(d) dim ker(T − z) = n for z in Ω.

We call an operator in Bn(Ω) a Cowen-Douglas operator with index n. The col-
lection Bn(Ω) is void unless H is infinite dimensional. Condition (a) and (b) ensure
that Ω is contained in the point spectrum of T and that T − z is right invertible for z

in Ω. It is easily seen that T∗
z ∈ B1(Ω).

If Ω0 is an open subset of Ω, then Bn(Ω) ⊂ Bn(Ω0) because
∨

z∈Ω0
ker(T − z) =

∨

z∈Ω
ker(T−z), (cf. [Co-Do, Corollary 1.13]). There would seem to be some advan-

tage in choosing Ω as large as possible. One kind of hypothesis implying that is the as-
sumption that the closure of Ω is a spectral set for T. This means that ‖r(T)‖ = ‖r‖∞
for each rational function with poles outside Ω̄, where ‖r‖∞ denotes the supremum
norm on Ω̄.

Now Bn(Ω) is an especially rich class of operators containing the adjoint of many
subnormal, hyponormal and weighted unilateral shift operators. D. A. Herrero, C. L.

Jiang and Z. Y. Wang showed that almost all quasitriangular operators with connected
spectrum can be approximated by Cowen-Douglas operator in the norm topology
(cf. [He1], [Ji-Wa]).

Let T be in Bn(Ω). Since T − z is right invertible for z in Ω and ran(T − z)k
= H

for each positive integer k, it follows that dim ker(T − z)k
= nk, for z in Ω.

Now the generalized eigenspace ker(T − z)k is invariant for T and hence Cowen
and Douglas defined an operator

N(k)
z = (T − z)|ker(T−z)k+1

with Nz = N(n)
z , the local operator associated to T at z in Nz. In [Co-Do], M. J.

Cowen and R. G. Douglas obtained a remarkable result.
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Theorem CD1 Operators T and T̃ in Bn(Ω) are unitary equivalent if and only if Nz

is unitarily equivalent to Ñz for each z in Ω.

Call operators S and T unitarily equivalent, if there exists a unitary operator U

satisfying S = U ∗TU .

In the paper, we attempt to determine when two operators A and B in Bn(Ω) are
similar.

To express our results more carefully we need to introduce the following defini-
tions, notation and theorems.

An operator T in L(H) is called strongly irreducible, if there is no non-trivial
idempotent operator in A ′(T), where A ′(T) denotes the commutant of T, i.e.,

A ′(T) = {B ∈ L(H), TB = BT} (cf. [Co], [Gi], [Ji-Wa], [Ji1]).
From the definition, strongly irreducibility is invariant under similarity. In what

follows, A ∈ (SI) means A is a strongly irreducible operator.

Definition 0.2 Let T ∈ L(H). T is said to have finite (SI) decomposition if there
exist (P1, P2, . . . , Pn), a family of idempotents in A ′(T), satisfying

1. PiP j = δi jPi for 1 ≤ i, j ≤ n < +∞, where δi j =

{

0 i 6= j,

1 i = j;

2.
∑n

i=1 Pi = IH, where IH denotes the identity operator on H;

3. T|PiH ∈ (SI) for i = 1, 2, . . . , n.

We call P = (P1, P2, . . . , Pn) a unit finite (SI) decomposition of T.

It is clear that an operator T in L(H) has finite (SI) decomposition if and only
if T can be written as the direct sum of finitely many strongly irreducible operators.
C. L. Jiang and Z. Y. Wang showed that every Cowen-Douglas operator can be written
as the direct sum of finitely many strongly irreducible Cowen-Douglas operators (cf.

[Ji-Wa, Chapter 3]).
Hence it is very important that one determine when two operators A and B in

Bn(Ω) ∩ (SI) are similar.

Definition 0.3 Let T ∈ L(H) have finite (SI) decomposition and P = {Pi}
n
i=1 and

Q = {Qi}
m
i=1 be two unit finite (SI) decompositions of T. We say T has unique (SI)

decomposition up to similarity if the following conditions are satisfied:

1. m = n.

2. There exists an invertible operator X in A ′(T) and a permutation π ∈ Sn such
that XQπ(i)X

−1
= Pi for 1 ≤ i ≤ n.

For any unital Banach algebra A, its K0-group K0(A) is defined through an
Abelian semi-group V (A). Here we briefly recall the definition of V (A). Two idem-
potent elements p and q in M∞(A), the collection of all finite matrices with entries
from A, are said to be equivalent if there are u and v in M∞(A) such that uv = p and

vu = q. The equivalence class containing p is denoted by [p] and the set of all these
classes is V (A). V (A) is an Abelian semigroup with the addition defined by

[p] + [q] = [diag(p, q)], where
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diag(p, q) is the matrix
[

p 0
0 q

]

(cf. [Bl]). If two unital Banach algebras A and B are iso-

morphic (in short ≈), then V (A) ≈ V (B), in particular, V (Mn(A)) ≈ V (Mn(B)).

Theorem CFJ1 ([Ca-Fa-Ji]) Let T ∈ L(H) and H(n) denote the orthogonal direct

sum of n copies of H and A(n) the operator ⊕n
1A acting on H(n). Then the following

statements are equivalent:

1. T is similar to (in short ∼)
∑k

i=1 ⊕A(ni )
i with respect to the decomposition H =

∑k
i=1 ⊕H

(ni )
i and T(n) has a unique (SI) decomposition up to similarity for each

positive integer n, where 1 ≤ k, ni < +∞; Ai ∈ (SI) and Ai 6∼A j for i 6= j.

2. V (A ′(T)) ≈ N(k), where N = (0, 1, 2, . . . ).

Theorem CFJ1 gives a method of calculating the K0-group. In Section 4, we char-
acterize the K0-group of a class of Banach algebras by using Theorem CFJ1.

For an operator T in L(H), M(A ′(T)) denotes the set of maximal ideals of A ′(T)

and rad A ′(T) the Jacobson radical of A ′(T).
The paper is organized as follows. In Section 1, we discuss certain properties of

operators in B1(Ω) and show that V (A ′(A)) ≈ N for A in B1(Ω). In the Section 2,
we show that A ′(A)/ rad A ′(A) is commutative and V (A ′(A)) ≈ N for A in Bn(Ω)∩
(SI) by using the result of Section 1. In Section 3, we discuss the structure of the
commutant of Cowen-Douglas operators. Using the results of Section 2 and Section
3, we obtain the main result of the paper.

Theorem 4.4 Two strongly irreducible Cowen-Douglas operators A and B are similar

if and only if there is a group isomorphism α : K0(A ′(A)) → K0(A ′(B)) that satisfies

1. α(V (A ′(A))) = V (A ′(B));

2. α[IA ′(A)] = [IA ′(B)];

3. there exist two non-zero idempotent operators,

p ∈ M∞(A ′(A)) and q ∈ M∞(A ′(B)), satisfying α[p] = [q],

where p and q are equivalent in M∞(A ′(A ⊕ B)).

To show the above results, we need to introduce the notation of Hermitian holo-

morphic vector bundle. Let Λ be a manifold with a complex structure and n be a
positive integer. A rank n holomorphic vector bundle over Λ consists of a manifold
E with a complex structure together with a holomorphic map π from E onto Λ such
that each fibre Ez = π−1(z) is isomorphic to Cn and such that for each z0 in Λ there

exists a neighborhood ∆ of λ0 and holomorphic functions e1(z), . . . , en(z) from ∆

to E whose values form a basis for Ez at each z in ∆. The functions e1, . . . , en are said
to be frame for E on ∆. The bundle is said to be trivial if ∆ can be taken to be all
of Λ.

For T an operator in Bn(Ω), the mapping z → ker(T − z) defines a rank n holo-
morphic vector. Let (ET , π) denote the sub-bundle of the trivial bundle Ω×H defined
by

ET = {(z, x) ∈ Ω × H | x ∈ ker(T − z) and π(z, x) = z}.
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That ET is a complex bundle over Ω is due to Šubin (cf. [Su]).

Since all holomorphic bundles over Ω are trivial as holomorphic bundles by
Grauert’s Theorem cf. [Gr] and the fact that all such bundles over Ω are topologi-

cally trivial.

A Hermitian holomorphic vector bundle E over Λ is a holomorphic vector bun-
dle such that each fibre Ez is an inner product space. Obviously, ET is a Hermitian
holomorphic vector bundle over Ω for T in Bn(Ω) cf. [Co-Do, Corollary 1.12].

For H a separable complex Hilbert space and n a positive integer, let Gr(n, H)
denote the Grassmann manifold, the set of all n-dimensional subspaces of H.

For Λ an open connected subspace of Ck, we shall say that a map f : Λ→Gr(n, H)
is holomorphic at λ0 in Λ if there exists a neighborhood of λ0 and n holomorphic

H-valued functions e1(z), . . . , en(z) on ∆ such that f (z) =
∨k

j=1{e j(z)} for z in ∆.

If f : Λ→Gr(n, H) is a holomorphic map, then a natural n-dimensional Hermitian
holomorphic vector E f is induced over Λ, i.e.,

E f = {(x, z) ∈ H × Λ | x ∈ f (z)}

and

Φ : E f → Λ

where

Φ(x, z) = z ∈ Λ.

Now, given two holomorphic maps f and g : Λ → Gr(n, H), we have two bundles
E f and Eg over Λ. If there exists a unitary U on H such that g = U f , then f and g

are said to be congruent. If there exists a holomorphic isometric bundle map from

E f |∆ onto Eg |∆ for some open subset ∆ in Λ, then E f and Eg are said to be locally
equivalent.

Recalling that a bundle map Φ from E to E is a holomorphic map such that Φ(z) =

Φ|Ez
is a linear endomorphism on the fibre Ez over z in Ω and we shall say that Φ

is bounded if supz∈Ω‖Φ(z)‖ < ∞. We denoted the collection of bounded bundle

endomorphisms on E by H∞
L(E)(Ω).

Rigidity Theorem [Co-Do, Theorem 2.2] Let Λ be an open connected subset of

Ck and f and g be holomorphic maps from Λ to Gr(n, H) such that
∨

z∈Λ
f (z) =

∨

z∈Λ
g(z) = H. Then f and g are congruent if and only if E f and Eg are locally equiv-

alent Hermitian holomorphic vector bundle over Λ.

The Rigidity Theorem plays a very important role in this paper.

Important in the study of an operator T is an explicit characterization of its com-
mutant A ′(T). Cowen and Douglas showed that the commutant of an operator in

B1(Ω) can always be identified with a subalgebra of H∞(Ω) of bounded holomor-
phic functions on Ω and for T in Bn(Ω) there is a contractive monomorphism ΓT

from A ′(T) into H∞
L(ET )(Ω), where ΓTX = X|ker(T−z) for X in A ′(T) and z in Ω, or

(ΓTX)(z) = X|ker(T−z) := X(z) for z in Ω.

For T in Bn(Ω), let (e1(z), . . . , en(z)) be a holomorphic frame of ET . Fix z0

in Ω. Let H1 = ker(T − z0), H2 = ker(T − z0)2⊖ ker(T − z0), . . . , Hm =
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ker(T − z0)m⊖ ker(T − z0)m−1, . . . . Cowen and Douglas obtained the following re-
sults:

Theorem CD2

1.
∑m

k=1 ⊕Hk =
∨

{e(k)
j (z0)}n

j=1
m−1
k=1

2.
∑∞

k=1 ⊕Hk = H;

3. {e(k)
j (z0)}n

j=1
m−1
k=1

form a base of ker(T − z0)m, m = 1, 2, . . . .

where e(k)
j (z0) denotes the k-th differential quotient of e j(z) at z = z0.

Theorem CD2 is used in Section 2.

1 The Cowen-Douglas Operators with Index 1

Main result of the Section is the following:

Theorem 1.1 Let A ∈ B1(Ω). Then V (A ′(A)) ≈ N and K0(A ′(A)) ≈ Z, where Z

denotes the group of integers.

By Theorem 1.1 and Theorem CFJ1, we obtain immediately the following:

Corollary 1.2 Let A ∈ B1(Ω) and n be a positive integer. Then A(n) has unique

strongly irreducible decomposition up to similarity.

In order to prove Theorem 1.1, we need the following auxiliary results.

Theorem CFJ2 Let P be an idempotent operator in A ′(T(n)
z∗ ). Then the following

holds ( cf. [Ca-Fa-Ji, Theorem 2.1]).

1. Set A = T(n)
z∗ |ran p and d = dim ker A. Then there exists a unitary operator U

such that

U P∗U ∗
=

[

IH2(∂D)(n−d) R12

0 0

]

H2(∂D)(n−d)

H2(∂D)(d)

2. A is unitarily equivalent to T(d)
z∗ (denoted by A∼=T(d)

z∗ ), where IH2(∂D)(n−d) denotes

the identity operator on H2(∂D)(n−d).

Lemma 1.3 Let e(z) be a holomorphic vector-value function from D to H2(∂D) satis-

fying (Tz∗ − z)e(z) = 0 for z in D, and let

ek(z) = (0, . . . , 0,
(k)

e(z), 0, . . . , 0) ∈ H2(∂D)(n), k = 1, 2, . . . , n.

If the following system of equations


















f1(z) = a11(z)e1(z) + · · · + a1n(z)en(z)

...

fm(z) = am1(z)e1(z) + · · · + amn(z)en(z)

satisfy
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(1) for each z in D, { f1(z), . . . , fm(z)} is linearly independent;

(2) each ai j(z) is a holomorphic function on D, i = 1, 2, . . . , m, j = 1, 2, . . . , n;

(3) for M =
∨

z∈D{ f1(z), . . . , fm(z)}, T(n)
z∗ |M ∈ Bm(D) and there exists an N, the

invariant subspace of T(n)
z∗ such that M + N = H2(∂D)(n) and M ∩ N = {0}.

Then there exist {gi j(z)}m n
i=1 j=1, a family of holomorphic functions on D such that







u1(z)
...

um(z)






=







g11(z) · · · g1m(z)
...

...

gm1(z) · · · gmm(z)













f1(z)
...

fm(z)







is an orthogonal system for z in D.

Proof Since M and N are invariant subspace of T(n)
z∗ , M⊥ and N⊥ are invariant

subspaces of T(n)
z . Hence there exists an idempotent P in A ′(T(n)

z ) such that ran p =

N⊥. By Theorem CFJ2, there exists a unitary operator U such that

(1.1) U PU ∗
=

[

IH2(∂D)(n−m) R12

0 0

]

H2(∂D)(n−m)

H2(∂D)(m)

So

U P∗U ∗
=

[

IH2(∂D)(n−m) 0
R∗

12 0

]

H2(∂D)(n−m)

H2(∂D)(m)

and

(1.2) U (I − P∗)U ∗
=

[

0 0
−R∗

12 IH2(∂D)(m)

]

H2(∂D)(n−m)

H2(∂D)(m)

Note that (I − P∗) ∈ A ′(T(n)
z∗ ) and ran(I − P∗) = M.

The equality (1.2) shows that ran(U (I − P∗)U ∗) = H2(∂D)(m). Set

u j(z) = U ∗e j(z); j = 1, 2, . . . , m and z ∈ D

Then u j(z)m
j=1

are an orthogonal system for each z in D and

∨

z∈D

u1(z), u2(z), . . . , um(z) = M.

Set T1 = T(n)
z∗ |M. A simple computation shows that

∨

(u1(z), u2(z), . . . , um(z)) = ker(T1 − z) for z ∈ D

Thus we can find {gi j(z)}m
i, j=1 satisfying the required properties of Lemma 1.3.
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Lemma 1.4 Let T = T(n)
z∗ ∈ L(H2(∂D)(n)). Then the mapping ΓT determines

an isometric isomorphism from A ′(T) onto Mn(H∞(D)), where (ΓTX)(z) = X(z) =

X|ker(T−z) for X ∈ A ′(T) and z in D.

Proof Since Tz is a subnormal and σ(Tz) = D, D̄ is a spectral set for Tz. Hence D̄ is a
spectral set for Tz∗ . By [Co-Do, Proposition 1.27], ΓTz∗

is an isometric isomorphism
from A ′(Tz∗) onto H∞(D). So ΓT is an isometric isomorphism from A ′(T) onto
Mn(H∞(D)).

Lemma 1.5 Let A ∈ L(H2(∂D)) and A ∈ B1(Ω) and let T = A(n) and P be an

idempotent in A ′(T). If A1 = T|PH2(∂D)(n) ∈ Bd(Ω), then A1
∼=A(d).

Proof Without loss of generality, we may assume that D ⊂ Ω. Let v(z) be a holo-

morphic frame of ker(A − z) and set

vk(z) = (0, . . . , 0,
(k)

v(z), 0, . . . , 0), k = 1, 2, . . . , n.

Suppose that {u1(z), . . . , ud(z)} is a holomorphic frame of EA1
on D. Then

u1(z) = f11(z)v1(z) + · · · + f1n(z)vn(z)

...

ud(z) = fd1(z)v1(z) + · · · + fdn(z)vn(z)

Consider that P(z) = (ΓTP)(z) = P|ker(T−z), z in D. Then

P(z) =







c11(z) · · · c1n(z)
...

...

cn1(z) · · · cnn(z)







ker(A − z)
...

ker(A − z)

.

It is easily seen that each ci j(z) is a holomorphic function on D̄ and P2(z) = P(z)

for z in D, furthermore ran p(z) =
∨

{u1(z), . . . , ud(z)} for z in D̄. Let X(z) be a

holomorphic invertible operator from ker(T − z) onto ker(T(n)
z∗ − z) for z in D such

that X(z)v j (z) = e j(z).

Then P̃(z) := X(z)P(z)X−1(z). Furthermore P̃(z) is an idempotent element of
Mn(H∞(D)) and

ran P̃(z) =

∨

{ũ1(z), . . . , ũd(z)},

where

(1.3)

ũ1(z) = f11(z)e1(z) + · · · + f1n(z)en(z)

...

ũd(z) = fd1(z)e1(z) + · · · + fdn(z)en(z)
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where (e1(z), . . . , en(z)) is given in Lemma 1.3.

Obviously, {ũ1(z), . . . , ũd(z)} is linearly independent for each z in D. By Lemma

1.3, there exist {ki j(z)}d
i=1

d
j=1 such that

(1.4)

g̃1(z) = k11(z)ũ1(z) + · · · + k1d(z)ũd(z)

...

g̃d(z) = kd1(z)ũ1(z) + · · · + kdk(z)ũd(z)

and

〈g̃k(z), g̃k ′(z)〉 = 0, k 6= k ′ and z in D.

Set

(1.5)

g1(z) = k11(z)u1(z) + · · · + k1d(z)ud(z)

...

gd(z) = kd1(z)u1(z) + · · · + kdd(z)ud(z)

By (1.3), (1.4) and (1.5), we have

(1.6)

g̃1(z) = f̃11(z)e1(z) + · · · + f̃1n(z)en(z)

...

g̃d(z) = f̃d1(z)e1(z) + · · · + f̃dn(z)en(z)

and

(1.7)

g1(z) = f̃11(z)v1(z) + · · · + f̃1n(z)vn(z)

...

gd(z) = f̃d1(z)v1(z) + · · · + f̃dn(z)vn(z)

Since 〈g̃k(z), g̃k ′(z)〉 = 0 for k 6= k ′,
∑n

i=1 fki fk ′i = 0 for k 6= k ′. So we can deduce
that 〈gk(z), gk ′(z)〉 = 0 for k 6= k ′. Obviously, (g1(z), . . . , gd(z)) is a holomorphic
frame of EA1

on D.

Set M =
∨

z∈D(g1(z), . . . , gd(z)). Then by (1.3) and (1.4)

M =

∨

z∈D

(ũ1(z), . . . , ũd(z)) = ran P̃(z).

By Lemma 1.4 and Theorem CFJ2, we find an idempotent operator P̃ in A ′(T(n)
z∗ )

and a unitary operator U such that P̃|
ker(T(n)

z∗
−z)

= P̃(z) and U (T∗(n)
Z |M)U ∗

=

https://doi.org/10.4153/CJM-2004-034-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-034-8


Similarity Classification of Cowen-Douglas Operators 751

T(d)
z∗ . This shows that there exists a holomorphic isometric bundle map U (z) from

∨

z∈D(g̃1(z), . . . , g̃d(z)) to
∨

z∈D(e1(z), . . . , ed(z)) and

(1.8) U (z)(g̃1(z), . . . , g̃d(z)) = (e1(z), . . . , ed(z))







Q11(z) · · · Q1d(z)
...

...
Qd1(z) · · · Qdd(z)







where each Qi j(z) is holomorphic function on D.

For each Y (z) = α1(z)g̃1(z) + · · · + αd(z)g̃d(z) ∈ M and using (1.7) and (1.8), we
have

(1.9)

‖Y (z)‖ =

(

n
∑

k=1

|α1(z) f̃1k(z) + · · · + αd(z) f̃dk(z)|2
)

1
2

‖e(z)‖

=

(

d
∑

k=1

|α1(z)Q1k(z) + · · · + αd(z)Qdk(z)|2
)

1
2

‖e(z)‖.

Define a map U ′(z) from ker(A1 − z) onto ker(A(d) − z) below.

U ′(z)(g1(z), . . . , gd(z)) = (v1(z), . . . , vd(z))







Q11(z) · · · Q1d(z)
...

...
Qd1(z) · · · Qdd(z)






for z ∈ D.

Noting that ‖vi(z)‖ = ‖v(z)‖ and using (1.9), we can deduce that U ′(z) is a holo-
morphic isometric bundle map from ker(A1 − z) onto ker(A(d) − z). By the Rigidity
Theorem we have A1

∼=A(d). Now the proof of Lemma 1.5 is completed.

Proof of Theorem 1.1 By Theorem CFJ1, we need only to show that if A1 =

A(n)|PH(n) is strongly irreducible for each positive integer n and idempotent P in
A ′(A(n)), then A1∼A. It is a straightforward conclusion of Lemma 1.5.

Proposition 1.6 Let A ∈ B1(Ω) and T = A(n) ∈ L(H(n)). And let P1, . . . , Pk be

idempotent operators in A ′(T) and dim ran pi(z) = li, i = 1, 2, . . . , k. If PiP j = δi jPi

and
∑k

i=1 Pi = IH(n) , then there exists an invertible operator X in A ′(T) such that

XP jX
−1

= (0H(l1) , . . . , 0
H

(l j−1) , I
H

(l j ) , . . . , 0H(lk) )

where 0H(k) denotes 0 operator on H(k).

Proof It is easily seen that (n)
= ran p1 +̇ ran p2 +̇ · · · +̇ ran pk, where +̇ denotes

direct sum. By Lemma 1.5, there exists a unitary operator ui ∈ (pi
(n), (li )) for each

ai (= t|pi
(n) ) such that

uiaiU
∗
i = A(li ).
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Let X = U1 +̇ U2 +̇ · · · +̇ Uk. Then X ∈ A ′(T) is invertible and

XTX−1
= A(l1) ⊕ A(l2) ⊕ · · · ⊕ A(lk)

= A(n).

A simple computation shows that

XP jX
−1

= (0H(l1) , . . . , I
H

(l j ) , . . . , 0H(lk) ) j = 1, 2, . . . , k

The proof of Proposition 1.6 is complete.

Similar to the proof of Lemma 1.3, we have

Proposition 1.7 Let {Pk(z)}m
k=1 be a family of holomorphic idempotent elements

in Mn(H∞(D)) such that
∑m

k=1 Pk(z) = In and Pi(z)P j (z) = δi jP j(z) for z in Ω.

Then there exists a holomorphic invertible element X(z) in Mn(H∞(Ω)) such that

X−1(z)P j (z)X(z) = I
C

k j ⊕ 0n−k j
and X(z)|ran p j (z) is a holomorphic isometric bundle

map from ran p j(z) onto ker(T
(k j )

z∗ − z), for j = 1, 2, . . . , m, where k j = rank P j(z).

Proposition 1.8 (Kato Theorem [Ka]) Let Ω be a bounded connected open subset of

C and inter Ω̄ = inter Ω. Assume that {Pk(z)}m
k=1 are a family of holomorphic idempo-

tents in Mn(H∞(Ω)) such that
∑m

k=1 Pk(z) = In and Pi(z)P j (z) = δi jPi(z) for z in Ω

and 1 ≤ i, j ≤ m. Then fixing a z0 in Ω, there exists a holomorphic invertible element

X(z) in Mn(H∞(Ω)) such that

X(z)Pk(z)X−1(z) = Pk(z0) and X(z0) = In, k = 1, 2, . . . , m.

Proof Let L2
a(Ω∗) denote the subspace of L2(Ω∗) consisting of those functions that

are analytic. The Bergman operator for Ω
∗ is the operator Bz f = z f defined on

L2
a(Ω∗), where Ω

∗
= {z | z̄ ∈ Ω}. It is not difficult to show that B∗

z ∈ B1(Ω) cf. [Fo-
Ji]. By the Yoshino Theorem [Con], we can show that A ′(Bz) ≈ A ′(B∗

z ) ≈ H∞(Ω).

Since Bz is subnormal, Ω̄ is a spectral set for B∗
z . Set A = B∗

z and T = A(n). Similar
to the proof of Lemma 1.3, we can deduce that ΓT is an isometric isomorphism from
A ′(T) onto Mn(H∞(Ω)). So {Pk(z)}m

k=1 can be viewed as idempotent elements in
Mn(H∞(Ω)). For fixed z0 in Ω, it is not difficult to see that we can find an invertible

X1 matrix in Mn(C) such that

X1Pk(z0)X−1
1 =

(

0ker(A−z0)(l1) , . . . ,
(k)

Iker(A−z0)(lk) , . . . , 0ker(A−z0)(lm)

)

k = 1, 2, . . . , m

where lk = dim ran pk(z0) and l1 + l2 + · · · + lm = n.
Obviously, X1Pk(z)X−1

1 ∈ Mn(H∞(Ω)). By Proposition 1.6, we can find an in-
vertible element X2(z) in Mn(H∞(Ω)) such that

X2(z)X1Pk(z)X−1
1 X−1

2 (z) =
(

0ker(A−z)(l1) , . . . ,
(k)

Iker(A−z)(lk) , . . . , 0ker(A−z)(lm)

)

k = 1, 2, . . . , m

It is easily seen that X2(z0) = Iker(T−z0). This completes the proof of Proposition 1.8.
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2 The Cowen-Douglas Operators with Index n

In the following sections we assume always
∨

z∈Ω
ker(T − z) = H for each T in

Bn(Ω), where H is a complex separable infinite dimensional Hilbert space.

Definition 2.1 Let A ∈ Bn(Ω) and B ∈ A ′(A). If σ(B(z)) is disconnected at
z = z0 ∈ Ω, then there exists a positive number δ such that σ(B(z)) is disconnected

for z ∈ {z ; |z − z0| < δ}
∆
= D(z0, δ). Hence,we can find a positive number ε such

that σ(B(z)) ∩ D̄(λ(z0), ε) = λ(z0), z ∈ D(z0, δ), where λ(z0) is an eigenvalue of

B(z0). Let

P(z) =

∫

∂D(λ(z0),ε)

(B(z) − λ)−1 dλ

Then P(z) is said to be a holomorphic idempotent element defined on D(λ(z0), ε)
induced by A ′(A). If each holomorphic idempotent element defined on connected
open set Φ induced by A ′(A) with dim ker(A|∨

z∈Φ
P(z) − z0) < n, then call n minimal

index of A, or A is said to have minimal index n.

Example 2.2 Let T ∈ B1(Ω). Then 1 is the minimal index of T.

Example 2.3 Let f = z(z− 1
8
) and let T f denote the analytic Teoplitz operator. Then

T f ∗ ∈ B2(Ω) ∩ (SI), where 0 ∈ Ω cf. [Ji-Wa, Chapter 3]. But 2 is not the minimal
index of T f ∗ , and we can find a connected open set Ω1 such that T f ∗ ∈ B1(Ω1).

Example 2.4 Let A1 and A2 be in Bn(Ω) and T = A1 ⊕A2. If n is the minimal index
of A1 and A2, then 2n is the minimal index of T.

By the argument of Section 3 in [Co-Do], we have

Proposition 2.5 Let T ∈ Bn(Ω) ∩ (SI). Then there exists a positive integer m ≤ n

and a connected open set Ω1 such that T ∈ Bm(Ω1) and m is the minimal index of T.

Lemma 2.6 Let A ∈ Bn(Ω) and n be the minimal index of A. And let P(z)

be a holomorphic idempotent element defined on open set Φ induced by A ′(A)and

ran p(z) = k < n, z ∈ Φ. Set H1 =
∨

z∈Φ
ran p(z). Then A|H1

∈ Bk(Ω).

Proof Let P be an orthogonal projection from H onto H1 and A1 = A|H1
, A2 =

(A∗|H⊥
1

)∗. Then

A =

[

A1 A12

0 A2

]

H1

H⊥
1

.

By [He1, Corollary 1.2], σP(A∗) = ∅, where σP(A∗) denotes the point spectrum
of A∗. So dim H⊥

1 = +∞. Since A − z is right invertible for z in Ω, we can find an
operator

B =

[

B1 B12

0 B2

]

H1

H⊥
1
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such that

(A − z)B =

[

A1 − z A12

0 A2 − z

] [

B1 B12

0 B2

]

=

[

IH1
0

0 IH2

]

.

Hence (A2 − z)B2 = IH⊥
1

. This shows that A2 − z is right invertible for z in Ω. It is

easily seen that A2 ∈ Bm(Ω), where m < n. Let π be the canonical map from L(H)
to L(H)/K(H), where L(H)/K(H) denotes the Calkin algebra. Then

π(B)π(A − z) =

[

π(IH1
) 0

0 π(IH⊥
1

)

]

.

This shows that ran(A1 − z) is closed for z in Ω. Let (e1(z), . . . , ek(z)) be a holo-
morphic frame of ran p(z). Then (A1 − z)e j(z) = ze j(z), for 1 ≤ j ≤ k. Note
that H1 =

∨

z∈Φ
ran p(z). Thus ran(A1 − z) = H1, for z ∈ Φ. This shows that

A1 ∈ calBk(Ω) and hence we complete the proof of Lemma 2.6.

Proposition 2.7 Let A ∈ Bn(Ω). Let (e1(z), . . . , en(z)) be a holomorphic frame of EA

on Ω and

M =

∨

z∈Ω

{e1(z), . . . , ek(z)}, k < n.

If A|M ∈ Bk(Ω), then for each z in Ω, e(m)
j (z)6∈M for j > k and positive integer m.

Proof By Lemma 2.6, A1 = A|M ∈ Bk(Ω). So dim ker(A1 − z)m+1
= (m + 1)k.

By Theorem CD2, ker(A1 − z)m+1
=

∨

{e(t)
i (z)}k

i=1
m
t=1 Assume that e(m)

j (z) ∈ M for

j > k. Since M ∈ Lat A and e(m)
j (z) ∈ ker(A−z)m+1, e(m)

j (z) ∈ ker(A1 −z)m+1, where

Lat A denotes the set of all invariant subspaces of A. Since {e(t)
j (z)}n

j=1
m
t=1 are linealyr

independent, dim ker(A1 − z)(m+1) > (m + 1)k. This contradicts A1 in Bk(Ω). The
proof of Proposition 2.7 is complete.

Theorem 2.8 Let A ∈ Bn(Ω)∩(SI) and n be the minimal index of A. Then σ(B(z)) is

connected for each B in A ′(A) and z in Ω. Moreover, A ′(T)/ rad A ′(T) is commutative

for each T in Bn(Ω) ∩ (SI).

Proof Without loss of generality, we may assume that D̄ ⊆ Ω. If Theorem 2.8 is

not true, then we may assume that there exists an operator B in A ′(A) such that
σ(B(0)) = {λ1, λ2} and λ1 6= λ2. Since B(z) is holomorphic for z in Ω, we can find
a positive ε such that

σ(B(z)) = {λ1(z), λ2(z)} for z in D(0, ε) := {z, |z| < ε}

and λ1(z) 6= λ2(z); λ1(0) = λ1 and λ2(0) = λ2.
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Since B(z) is holomorphic on Ω, we can find a positive ε1 such that

D(λ1, ε1) ∩ σ(B(z)) = D̄(λ1, ε1) ∩ σ(B(z)) = {λ1(z)}

and

D(λ2, ε1) ∩ σ(B(z)) = D̄(λ2, ε1) ∩ σ(B(z)) = {λ2(z)}

Set

P(z) =

∫

∂D(λ1,ε1)

(B(z) − λ)−1 dλ, z ∈ D(0, ε).

Then

I − P(z) =

∫

∂D(λ2,ε1)

(B(z) − λ)−1 dλ, z ∈ D(0, ε).

Obviously, P(z) is holomorphic and idempotent and dim ran p(z) = k < n, hence
dim ran(I − P(z)) = n − k for z in D(0, ε). Since n is the minimal index of A, M =
∨

z∈D(λ,ε2) ran p(z)6⊑H. By Lemma 2.6 we may assume that A1 = A|M ∈ Bk(Ω)

and let (e1(z), . . . , ek(z)) be a holomorphic frame of EA1
and (ek+1(z), . . . , en(z)) be a

holomorphic frame of E2 := {(x, z), x ∈ (I − P(z)) ker(A − z), z ∈ D(0, ε)}. Then
(e1(z), . . . , ek(z), ek+1(z), . . . , en(z)) is a holomorphic frame of EA on D(0, ε).

Set

A1 = A|M; A2 = (A∗|M⊥)∗,

B1 = B|M; B2 = (B∗|M⊥)∗.

Note that M ∈ Lat A ∩ Lat B and

A =

[

A1 A12

0 A2

]

M

M⊥ , B =

[

B1 B12

0 B2

]

M

M⊥ .

Since AB = BA, B1A1 = A1B1. By Lemma 2.6, A1 ∈ Bk(Ω) and A2 ∈ Bn−k(Ω).
Set H1 = ker A, H2 = ker A2⊖ ker A, . . . , Hm = ker Am⊖ ker Am−1, . . . . By Theo-

rem CD2, H1 ⊕ H2 ⊕ · · · ⊕ Hm =
∨

{e
( j)
i (0)}n

i=1
m−1
j=1 and

A =







0 A12 A13 · · ·
0 0 A23 · · ·
...

...
...

. . .







H1

H2

...

,

B =







B11 B12 B13 · · ·
0 B22 B23 · · ·
...

...
...

. . .







H1

H2

...

.

Set L1 = ker A1, L2 = ker A2
1⊖ ker A1, . . . , Lm = ker Am

1 ⊖ ker Am−1
1 , . . . . Using

Theorem CD2 again, we can deduce that L1 ⊕ · · · ⊕ Lm =
∨

{e
( j)
i (0)}k

i=1
m−1
j=1 and

A1 =







0 A ′
12 A ′

13 · · ·
0 0 A ′

23 · · ·
...

...
...

. . .







L1

L2

...

,
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B1 =







B ′
11 B ′

12 B ′
13 · · ·

0 B ′
22 B ′

23 · · ·
...

...
...

. . .







L1

L2

...

.

Since B ∈ A ′(A) and B1 ∈ A ′(A1), we can show that Bk+1 k+1∼Bkk and
B ′

k+1 k+1∼B ′
kk, k = 1, 2, . . . . Since B ′

11 = B|∨{e1(0),...,ek(0)}, σ(B ′
11) = {λ1} and

σ(B ′
kk) = {λ1}, k = 1, 2, . . . . Set

(B̄1)m =







B ′
11 · · · B ′

1m

. . .

0 B ′
mm







L1

...
Lm

.

Then σ((B̄1)m) = {λ1}. Since B11 = B|kerA, σ(B11) = {λ1, λ2} and then σ(Bkk) =

{λ1, λ2}. Set

B̄m =







B11 · · · B1m

. . .

0 Bmm







H1

...
Hm

.

Then σ(B̄m) = {λ1, λ2}. Set

P̄m =

∫

∂D(λ1,ε1)

(Bm − λ)−1 dλ

Pm = P̄m ⊕ 0∑

k>m ⊕Hk
.

Then Pm is an idempotent and PmAm = AmPm, where

Am =













0 A12 · · · A1m

. . .
. . .

...
. . . Am−1 m

0













H1

...

Hm−1

Hm

⊕ 0∑

k>m ⊕Hk
.

Set N =
∨∞

m=1 ran pm. Then N ∈ Lat A ∩ Lat B and N 6= {0}.

Claim 1 N = M =
∨

z∈D(0,ε){e1(z), . . . , ek(z)} =
∨∞

m=1 Lm.

Since
∨

{e
( j)
i (0)}k

i=1
m−1
j=1 ⊆

∨

{e
( j)
i (0)}n

i=1
m−1
j=1 L1 ⊕ · · · ⊕ Lm ⊆ H1 ⊕ · · · ⊕ Hm.

Since L1 ⊕ · · · ⊕ Lm ∈ Lat B, L1 ⊕ · · · ⊕ Lm ∈ Lat B̄m. Note that

ker(B̄1 − λ1)n
= ker(B̄1 − λ1)k

= ker A1 =

∨

{e1(0), . . . , ek(0)}.

A simple computation shows that

dim ker(B̄m − λ1)mn
= mk.
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For each x in L1 ⊕L2 ⊕· · ·⊕Lm, we have (B̄m −λ1)mnx = ((B̄1)m −λ1)mnx = 0.
This shows that L1 ⊕ L2 ⊕ · · · ⊕ Lm ⊆ ker(B̄m − λ1)mn

= ran P̄m. Since dim(L1 ⊕
L2 ⊕ · · · ⊕ Lm) = mk, L1 ⊕ L2 ⊕ · · · ⊕ Lm = ran P̄m. So N = M.

Set K =
∨

z∈D(0,ε){ek+1(z), . . . , en(z)}. Then K ∈ Lat A ∩ Lat B.
Set

Q̄m =

∫

∂D(λ2,ε)

(B̄m − λ)−1 dλ

and
Qm = Q̄m ⊕ 0∑

k>m ⊕Hk
.

Similarly, we can obtain that K =
∨∞

m=1 ran Qm.

In order to complete the proof of the lemma, we need to introduce the following
two results.

Lemma CD3 (Lemma 2.4, [C-D]) If f : Ω → Gr(n, H) is a holomorphic curve and

γ1, γ2, . . . , γn are holomorphic cross-sections of the vector bundle E f defined over Ω such

that γ1(z0), . . . , γn(z0) is an orthonormal basis for f (z0), then there exist holomorphic

cross-sections γ̄1, . . . , γ̄n of E f defined on some open set ∆ about z0 such that γ̄i(z0) =

γi(z0) for i = 1, 2, . . . and

〈γ(k)
i (z0), γ̄ j(z0)〉 = 0 for 1 ≤ i, j ≤ n and k = 1, 2, . . .

Lemma JW (Lemma 5.7,[Ji-Wa)] Let T ∈ Bn(Ω). Then (T∗|ker(B−z0)⊥)∗ is similar

to B, where z0 ∈ Ω.

Notice that (e1(z), . . . , ek(z), . . . , en(z)) is a holomorphic frame of EA, we may use
Schmidt orthogonalizing procedure to obtain an orthogonal bases of ker A. Without
loss of generality, we may assume that (e1(0), . . . , ek(0), . . . , en(0)) is an orthonomal
basis for ker(A).

Notice that λ1(z) 6= λ2(z), z ∈ D(0, ε1), imitating the argument of the Claim 1,
we can obtain the following conclusion by using Lemma CD2 and Lemma JW.

Claim 2 For each Hi , there exist two subspace E1
i and E2

i of Hi satisfying

a. Hi = E1
i + E2

i and E1
i ∩ E2

i
= 0,

b. σ(Bii |E1
i ) = λ1(0), σ(Bii |E2

i ) = λ2(0),
c.

∨m
i=1E j

i ∈ Lat B, j = 1, 2,
d.

∨∞
i=1E1

i
= M, and

∨∞
i=1E2

i
= K.

e. Let (g i
1, . . . , g i

k) and (g ′i
k+1, . . . , g ′i

n ) be orthogonal basis of Ei
1 and Ei

2 respectively.

By the Schmidt orthogonalizing procedure we can obtain an orthogonal basis
(g i

1, . . . , g i
k, g i

k+1, . . . , g i
n) of Hi, i = 1, 2, . . . . Using Properties (a) and (c) and a sim-

ple computation, then we have

A =







0 A12 A13 · · ·
0 0 A21 · · ·
...

...
. . .

. . .







H1

H2

...

and B =







B11 B12 · · ·
0 B22 · · ·
...

. . .
. . .







H1

H2

...
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where

Ai j =

[

a
i j
11 a

i j
12

0 a
i j
22

]

, Bi j =

[

b
i j
11 b

i j
12

0 b
i j
22

]

.

Now, we have the folowing:

Claim 3 K + M = H and K ∩ M = {0}.

By Claim 2, we may assume that
∨n

j=1e(m)
j (0) = Hm+1 Set

A(d) =







0 A12 0 · · ·
0 0 A23 · · ·
...

...
...

. . .







H1

H2

...

, B(d) =







B11 0 · · ·
0 B22 · · ·
...

...
. . .







H1

H2

...

.

Then A(d) ∈ Bn(Ω1) (cf. [Ji-Li, Proposition 2.1]) and 0 ∈ Ω1 ⊂ Ω. Since AB =

BA, A(d)B(d) = B(d)A(d). Since σ(B11) = {λ1, λ2} and Bk+1 k+1∼Bkk, σ(B(d)) =

{λ1, λ2} and (B(d) − λ1)k(B(d) − λ2)n−k
= 0. Set

P =

∫

∂D(λ1,ε1)

(B(d) − λ)−1 dλ.

Then P is idempotent. In order to verify Claim 3, we need to verify the following:

Claim 4 ran p = M.

Set

B̄m(d) =







B11 · · · 0
. . .

0 Bmm







H1

...

Hm

;

P̄m(d) =

∫

∂D(λ1,ε1)

(B̄m(d) − λ)−1 dλ;

and

Pm(d) = P̄m(d) ⊕ 0∑

k>m ⊕Hk
.

Then Pm(d)∞m=1 are uniformly bounded. By the Banach-Alaoglu Theorem, we have

Pm(d)
W OT
−→ P. It is easily seen that

ran P̄1(d) = ran P̄1 =

∨

{e1(0), . . . , ek(0)}.

Note that from
∨

{e(i)
j (0)}k

j=1
m
i=0 ∈ Lat B,

∨

{e(m)
j (0)}n

j=1 = Hm+1 and property (e)

we can deduce that ran P̄2 ⊆ ran P̄2(d). Note that dim ran p2 = 2k = dim ran p2(d),

so ran P̄2 = ran p2(d). By the inductive method, we can show that ran P̄m(d) =

ran P̄m and then ran p = M. So Claim 4 is true. Similarly, we can show that ran(I −
P) = K and hence Claim 3 is true. Since n is the minimal index of A, M and K are
non-trivial subspace of H, but it is a contradiction with strong irreducibility of A.
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Thus σ(B(z)) is connected for each B in A ′(A) and z in Ω and we obtain the first part
of the Theorem.

For T in Bn(Ω)∩(SI) we can find a positive integer m ≤ n and a connected open
set Ω1 such that T ∈ Bm(Ω1) and m is the minimal index of T following from Propo-
sition 2.5. Let A and B in A ′(T). Then AB−BA ∈ A ′(T). By the first part of Theorem

2.8, we can show that

σ
(

(AB − BA)(z)
)

= σ
(

(A(z)B(z) − B(z)A(z)
)

= {0}, z ∈ Ω1

Hence
(

(A(z)B(z) − B(z)A(z)
) m

= 0 and z in Ω1.

Since
∨

z∈Ω1
ker(T − z) = H, (AB − BA)m

= 0. So A ′(T)/ rad A ′(T) is commuta-
tive [Au], completing the proof of Theorem 2.8.

By Proposition 3.10 we have the following:

Lemma 2.9 Let A ∈ Bn(Ω) ∩ (SI) and T = A(l) and let (P1, . . . , Pm) be a unit (SI)
decomposition of T. Then m = l and T|PiH

(l) ∈ Bn(Ω).

Lemma 2.10 Let A ∈ Bn(Ω) ∩ (SI) and T = A(l). Let P be an idempotent operator

in A ′(T) satisfying T|PH(l) ∈ (SI). Then A1 = T|PH(l) is similar to A.

Proof Without loss of generality, we may assume that Ω = D and n is the minimal
index of A, we will show Lemma 2.10 only for case of n = 2. Now T = A ⊕ A. Note

that P is an idempotent in A ′(T). By Theorem 2.8 and Lemma 3.4 (see Section 3). We
can find an idempotent P1 in A ′(T) and B in rad A ′(T) such that P(z) = P1(z)+B(z),
where

P1(z) =

[

f11(z) f12(z)
f21(z) f22(z)

]

ker(A − z)
ker(A − z)

, B(z) =

[

B11(z) B12(z)
B21(z) B22(z)

]

ker(A − z)
ker(A − z)

,

where scalar function fi j(z) ∈ H∞(D) and Bi j(z) ∈ rad(A ′(A)). Let G = −IH(2) +
(2P1 + B). Since B ∈ rad A ′(T), G is an invertible operator in A ′(T) and PG = GP1.

This shows that G−1PG = P1 ∈ A ′(T). Without loss of generality, we now assume
that P = P1. That is,

P(z) =

[

f11(z) f12(z)
f21(z) f22(z)

]

ker(A − z)
ker(A − z)

.

Also set

P ′(z) =

[

f11(z) f12(z)

f21(z) f22(z)

]

ker(Tz∗ − z)

ker(Tz∗ − z)
.
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By T|PH(2) ∈ (SI) and Lemma 2.9, we can show that A1 ∈ Bn(D) and tr(P ′(z)) = 1
for each z in D. By Proposition 1.7, we can find a holomorphic invertible element

X(z) in M2(H∞(D)) such that

X(z)P ′(z)X−1(z) =

[

IC 0
0 0

]

X(z)(I − P ′(z))X−1(z) =

[

0 0
0 IC

]

and X(z)|ran p ′(z) and X(z)|(I−ran p ′(z)) are holomorphic isometric bundle maps from

ran p ′(z) and ran(I − P ′(z)) onto ker(Tz∗ − z), respectively. Set

X(z) =

[

u11(z) u12(z)
u21(z) u22(z)

]

and

X̄(z) =

[

u11(z)Iker(A−z) u12(z)Iker(A−z)

u21(z)Iker(A−z) u22(z)Iker(A−z)

]

.

Then

X̄(z)P(z)X̄−1(z) =

[

Iker(A−z) 0

0 0

]

.

Note that X̄(z) ker(T − z) = ker(T − z). Now we claim that Ḡ(z) = X̄(z)|ran p(z) is a

holomorphic isometric bundle map from ran p(z) onto ker(A − z).
Note that G(z) = X(z)|ran p ′(z) is a holomorphic isometric bundle map from

ran p ′(z) onto ker(Tz∗ − z). Let e(z) be a holomorphic frame of ker(Tz∗ − z) and let
t1(z) = e(z) ⊕ 0 and t2(z) = 0 ⊕ e(z). Then (t1(z), t2(z)) is a holomorphic frame

of ker(T(2)
z∗ − z). Let Ā1 = T(2)

z∗ |P ′(z)H2(D)(2) and let l(z) be a holomorphic frame of
ker(Ā1 − z). Then

l(z) = α(z)t1(z) + β(z)t2(z),

where α(z) and β(z) are analytic functions on D.
Since G(z) is a holomorphic isometry, we can find a holomorphic function C(z)

on D such that G(z)l(z) = C(z)e(z) and

‖l(z)‖2
=

(

|α(z)|2 + |β(z)|2
)

‖e(z)|

= |C(z)|2‖e(z)‖, z ∈ D

Let (S1(z), . . . , Sn(z)) be a holomorphic frame of ker(A− z) and let v j(z) = S j(z)⊕0
and u j(z) = 0 ⊕ S j(z), j = 1, 2, . . . , m. Then (v1(z), . . . , vn(z), u1(z), . . . , un(z)) is a
holomorphic frame of ker(T − z).

Set f j(z) = α(z)v j (z) + β(z)u j (z), j = 1, 2, . . . , n. Then ( f1(z), . . . , fn(z)) is a

holomorphic frame of ker(A1 − z) and set Ḡ(z) f j (z) = C(z)v j (z).
Let k1(z), . . . , kn(z) be analytic functions on D and let

g(z) = k1(z) f1(z) + · · · + kn(z) fn(z)

= k1(z)(α(z)v1(z) + β(z)u1(z)) + · · · + kn(z)(α(z)vn(z) + β(z)un(z)).
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Then

Ḡ(z)g(z) = C(z)(k1(z)v1(z) + k2(z)v2(z) + · · · + kn(z)vn(z))
∆
= g ′(z).

Note that 〈vi(z), v j(z)〉 = 〈ui(z), u j (z)〉 = 〈Si(z), S j (z)〉, z ∈ D. So

〈g(z), g(z)〉 =

∑n

i=1
|ki(z)|2(|α(z)|2 + |β(z)|2)‖Si(z)‖2

+
∑n

i, j=1
ki(z) ¯k j(z)(|α(z)|2 + |β(z)|2)〈Si , S j〉;

also

〈g ′(z), g ′(z)〉 =

∑n

i=1
|ki(z)|2|C(z)|2‖Si(z)‖2 +

∑n

i, j=1
ki(z) ¯k j (z)|C(z)|2〈Si , S j〉.

This shows that ‖Ḡ(z)g(z)‖ = ‖g(z)‖, and then our claim is verified.

Similarly, we can deduce X̄(z)|ran(I−P(z)) is a holomorphic isometric bundle map
from ran(I − P(z)) onto ker(A − z). By the Rigidity Theorem, we can find two
isometric operators U1 ∈ L(PH(2), H ⊕ 0) and U2 ∈ L((I − P)H(2), 0 ⊕ H), such
that X = U1 + U2 ∈ A ′(T) and XPX−1

=
[

IH 0
0 0

]

. By [Ca-Fo-Ji, Lemma 1.12], we

have A1∼A. This completes the proof of the lemma.

Using Theorem CFJ1 and Lemma 2.10, we can obtain immediately the following:

Theorem 2.11 Let A ∈ Bn(Ω) ∩ (SI) and T = A(l). Then T has unique (SI)

decomposition up to similarity and

V (A ′(A)) ≈ N, K0(A ′(A)) ≈ Z.

3 The Commutant of Cowen-Douglas Operators

In this section, we assume always that T = ⊕n
k=1Tk, where Tk ∈ Bnk

(Ωk) ∩ (SI) and
∨

z∈Ωk
ker(Tk − z) = Hk. By basic knowledge of operator theory, we can deduce the

following properties.

(3.1) A ′(T) = {(Si j )n×n | Si j ∈ ker τ
Ti ,T j

, 1 ≤ i, j ≤ n} is a unital Banach algebra,

where τ
Ti ,T j

is the Rosenblum operator defined by τ
Ti ,T j

(C) = TiC − CT j for

C ∈ L(H j , Hi).
(3.2) ker τ

Ti ,T j
is a linear space and ker τ

Ti ,Ti
= A ′(Ti) is a unital Banach algebra.

(3.3) Let e
A ′(T)

denote the unit of A ′(T). Then e
A ′(T)

= e
A ′(T1)

⊕ · · · ⊕ e
A ′(Tn)

.
(3.4) If Si j ∈ ker τ

Ti ,T j
and S jk ∈ ker τ

T j ,Tk
, then Si jS jk ∈ ker τ

Ti ,Tk
. Particularly, if

Si j ∈ ker τ
Ti ,T j

and S ji ∈ ker τ
T j ,Ti

, then Si jS ji ∈ A ′(Ti).
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(3.5) If S = (Si j )n×n ∈ A ′(T), then

S(i, j)
∆
=

















0 · · · 0 · · · 0
...

...
...

0 · · · Si j · · · 0
...

...
...

0 · · · 0 · · · 0

















∈ A ′(T).

By property 3.5, we can define a canonical map Φi j from A ′(T) onto ker τ
Ti ,T j

by Φi j(S) = Si j for S = (Si j )n×n in A ′(T).

(3.6) Φi j is a linear map and Φii(S) ∈ A ′(Ti) for S in A ′(T). Throughout this paper,
an ideal J means a proper two-sided ideal.

(3.7) Let J be an ideal of A ′(T). Define

Ji j =

{

Si j

∣

∣

∣
Si j ∈ ker τ

Ti ,T j
and

















0 · · · 0 · · · 0
...

...
...

0 · · · Si j · · · 0
...

...
...

0 · · · 0 · · · 0

















∈ J

}

Then

(3.7.1) Jii is an ideal of A ′(Ti) or Jii = A ′(Ti);
(3.7.2) Ji j is a subspace of ker τ

Ti ,T j
;

(3.7.3) S(i, j) ∈ J for S = (Si j)n×n ∈ J.

By property (3.7), we can define a canonical map from ker τ
Ti ,T j

onto ker τ
Ti ,T j

/Φi j(J)

by Si j → [Si j]J, where ker τ
Ti ,T j

/Φi j(J) is the quotient space of ker τ
Ti ,T j

by subspace

Φi j(J). If J is closed, then

A ′(T)/J = {([Si j ]J)n×n | Si j ∈ ker τ
Ti ,T j

}

is a unital Banach algebra. It is easy to see the canonical map ΦJ from A ′(T) onto

A ′(T)/J is:
ΦJ((Si j )n×n) = ([Si j ]J)n×n.

Let J be a closed ideal of A ′(T). If ([Si j]J)n×n = ΦJ(S) ∈ A ′(T)/J, then

















0 · · · 0 · · · 0
...

...
...

0 · · · [Si j ]J · · · 0
...

...
...

0 · · · 0 · · · 0

















= ΦJ(S(i, j)) ∈ A ′(T)/J.
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Lemma 3.1 (Lifting Lemma) Let T = ⊕2
k=1Tk and J1 be an ideal of A ′(T1). Then

there exists an ideal J of A ′(T) such that Φ11(J) = J1, and if there exists another ideal

J ′ of A ′(T) such that Φ11(J ′) = J1, then J ⊆ J ′, where Φ11 is defined by property (3.5).

Proof Let

χ =

{

[

R1 R2A12

A21R3 B21R4B12

]

∣

∣

∣
Ri ∈ J1, i = 1, 2, 3, 4, Bi j,

and Ai j in ker τ
Ti ,T j

, i, j = 1, 2
}

and set
J = {x1 + x2 + · · · + xn; 1 ≤ n < ∞, xi ∈ χ}.

Claim J is an ideal of A ′(T). It is clear that J is an additive group.
Set

W =

[

W11 W12

W21 W22

]

∈ A ′(T)

and

X =

[

R1 R2A12

A21R3 B21R4B12

]

∈ χ.

Then

W X =

[

W11R1 (W11R2)A12

W21R1 W21R2A12

]

+

[

(W12A21)R3 (W12B21R4)B12

(W22A21)R3 (W22B21)R4B12

]

.

Note that

[

W11R1 (W11R2)A12

W21R1 W21R2A12

]

,

[

(W12A21)R3 (W12B21R4)B12

(W22A21)R3 (W22B21)R4B12

]

∈ χ.

Hence W X ∈ J. Similarly, we can deduce that XW ∈ J. Furthermore, we can show
that W X and XW are in J for W in A ′(T) and X in J. Since Φ11(X) ∈ J1 for each
X ∈ J, e

A ′(T)
/∈ J. Thus J is a proper ideal of A ′(T) and Φ11(J) = J1. Suppose that

there exists another ideal J ′ of A ′(T) such that Φ11(J ′) = J1. By property (3.4) and
property (3.7), we can deduce that J ⊆ J ′.

Corollary 3.2 Let T = ⊕n
k=1Tk and J1 be an ideal of A ′(T1). Then there exists an

ideal J of A ′(T) such that Φ11(J) = J1, and if there exists another ideal J ′ of A ′(T)
such that Φ11(J ′) = J1, then J ⊆ J ′.

Corollary 3.3 Let T = ⊕n
k=1Tk and let J ∈ M(A ′(T)). Then Φkk(J) = A ′(Tk) or

Φkk(J) ∈ M(A ′(Tk)) for k = 1, 2, . . . , n.

Lemma 3.4 Let T = ⊕n
k=1Tk and S = (Si j)n×n ∈ A ′(T). If for each R ji ∈ ker τ

T j ,Ti

such that R jiSi j = 0, then S(i, j) ∈ rad(A ′(T)).
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Proof If

R =







R11 · · · R1n

...
...

Rn1 · · · Rnn






,

then

RS(i, j) =

















0 · · · R1iSi j · · · 0
...

...
...

0 · · · R jiSi j · · · 0
...

...
...

0 · · · RniSi j · · · 0

















.

Since R jiSi j = 0, (RS(i, j))n
= 0. This shows that S(i, j) ∈ rad A ′(T).

Corollary 3.5 Let T = ⊕n
k=1Tk. Then Φkk(rad A ′(T)) = rad(A ′(Tk)) for k =

1, 2, . . . , n.

Corollary 3.6 Let T = ⊕n
k=1Tk and J ∈ M(A ′(T)) and Si j ∈ ker τ

Ti ,T j
/Φi j(J). If

Si jr ji = 0 for each r ji ∈ ker τ
T j ,Ti

/Φ ji(J), then Si j = 0.

Theorem 3.7 Let T = ⊕n
k=1Tk. Then for each J ∈ M(A ′(T)), there exists a positive

integer lJ ≤ n such that A ′(T)/J ≈ MlJ(C). Furthermore, if Tk ∼ T1 for k =

1, 2, . . . , n, then A ′(T)/J ≈ Mn(C) for every J in M(A ′(T)).

Proof By Corollary 3.3, Φkk(J) ∈ M(A ′(Tk)) or Φkk(J) = A ′(Tk) for k =

1, 2, . . . , n. By Theorem 2.8, A ′(Tk)/ rad A ′(Tk) is commutative for k = 1, 2, . . . , n.

So A ′(Tk)/Φkk(J) ≈ C or A ′(Tk)/Φkk(J) = {0} for k = 1, 2, . . . , n. Without loss of
generality, we may assume that there exists an integer lJ ≤ n such that

A ′(Tk)/Φkk(J) ≈ C, k = 1, 2, . . . , lJ

and

A ′(Tk)/Φkk(J) = {0}, k = lJ + 1, . . . , n.

Now

A ′(T)/J = {([Si j ]J)n×n; Si j ∈ ker τ
Ti ,T j

and [Skk]J = 0, for lJ < i ≤ n}.

By property (3.4), 0 = [Si j R ji]J = [Si j ]J[R ji]J ∈ A ′(T)/Φii(J) for arbitrary
Si j ∈ ker τ

Ti ,T j
, R ji ∈ ker τ

T j ,Ti
, lJ < i ≤ n. By Corollary 3.6, [Si j ]J = [R ji]J = 0 for

lJ < i ≤ n. Hence lJ ≥ 1 and

A ′(T)/J =

{[

([Si j ]J)lJ×lJ 0

0 0

]

n×n

∣

∣

∣
Si j ∈ ker τ

Ti ,T j

}

.
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Claim 1 For 1 ≤ i, j, k ≤ lJ, if ker τ
Ti ,T j

/Φi j(J) 6= {0} and ker τ
T j ,Tk

/Φ jk(J) 6= {0},

then ker τ
Ti ,Tk

/Φik(J) 6= {0}.

Note that A ′(Ti)/Φii(J) ≈ C and A ′(T j)/Φ j j (J) ≈ C for 1 ≤ i, j ≤ lJ. If
ker τ

Ti ,T j
/Φi j(J) 6= {0}, by Corollary 3.6, there exists Si j ∈ ker τ

Ti ,T j
/Φi j(J) and

S ji ∈ ker τ
T j ,Ti

/Φ ji(J) such that Si j S ji = [e
A ′(Ti )

]J = 1. Similarly, there exists

S jk ∈ ker τ
T j ,Tk

/Φ jk(J) and Sk j ∈ ker τ
Tk ,T j

/Φk j(J) such that S jkSk j = [e
A ′(T j )

]J = 1.

So Si jS jk 6= 0, and then ker τ
Ti ,Tk

/Φik(J) 6= {0}.

Claim 2 For 1 ≤ i ≤ lJ, Φ1i 6= ker τ
T1 ,Ti

.

Otherwise, we may assume that 1 ≤ j0 < lJ such that

ker τ
T1 ,Ti

/Φ1i(J) 6= {0}, 1 ≤ i ≤ j0

and
ker τ

T1 ,T j
/Φ1 j(J) = {0}, j0 < j ≤ lJ.

By Claim 1, we can deduce that

ker τ
T j ,Ti

/Φ ji(J) = {0}, 1 ≤ i ≤ j0, j0 < j ≤ lJ.

By Corollary 3.6, we can deduce that

ker τ
T j ,Ti

/Φ ji(J) = {0}, 1 ≤ i ≤ j0, j0 < j ≤ lJ.

Therefore

A ′(T)/J =

{

[

∆ 0
0 0

]

n×n

∣

∣

∣

∣

∆ = diag(([Si j ]J) j0× j0
, ([Si j ]J)(lJ− j0)×(lJ− j0)),

Si j ∈ ker τ
Ti ,T j

}

.

It contradicts J ∈ M(A ′(T)).

Claim 3 A ′(T)/J ≈ MlJ(C).

For 1 ≤ i ≤ lJ, let eii = [e
A ′(Ti )

]J = 1. By Claim 1 and Claim 2, there exist

e1i ∈ ker τ
T1 ,Ti

/Φ1i(J) and ei1 ∈ ker τ
Ti ,T1

/Φi1(J) such that e1iei1 = e11 for 1 ≤ i ≤ lJ.
Since A ′(Ti)/Φii(J) ≈ C, ei1e1i = eii . Let ei j = ei1e1 j , then

ei je ji = ei1e1 je j1e1i = eii ,

e jiei j = e j1e1iei1e1 j = e j j .

For arbitrary Si j ∈ ker τ
Ti ,T j

/Φi j(J), (1 ≤ i, j ≤ lJ), there exists λi j ∈ C such that

λi j = Si je ji .

Note that

Si j − λi jei j = (Si j − λi jei j)e j j = (Si j − λi jei j)e jiei j

= (Si j e ji − λi jeii)ei j = (λi j − λi j)eiiei j

= 0

So Si j = λi jei j . Therefore A ′(T)/J ≈ MlJ(C).
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Now we complete the first part of Theorem 3.7.

If Tk∼T1 for k = 1, 2, . . . , n. It is not difficult to show that A ′(Tk)/Φkk(J) ≈ C

for k = 1, 2, . . . , n following from property (3.4) and property (3.5) and Corollary
3.3. Repeating the proof of the first part, we can deduce that A ′(T)/J ≈ Mn(C) for
every J ∈ M(A ′(T)). Now we complete the proof of Theorem 3.7.

Theorem 3.7 implies the following properties:

(3.8) If A ′(Ti)/Φii(J) 6= {0} and A ′(T j)/Φ j j(J) 6= {0} for J ∈ M(A ′(T)), then

ker τ
Ti ,T j

/Φi j(J) ≈ ker τ
T j ,Ti

/Φ ji(J) ≈ C.

(3.9) If A ′(Ti)/Φii(J) = {0} for some 1 ≤ i ≤ n and J ∈ M(A ′(T)), then

ker τ
Ti ,Tk

/Φik(J) = ker τ
Tk ,Ti

/Φki(J) = {0} for k = 1, 2, . . . , n.

Theorem 3.8 Let T = ⊕n
k=1Tk. Then for each J1 ∈ M(A ′(T1)), there exists a

unique J ∈ M(A ′(T)) such that Φ11(J) = J1.

Proof Without loss of generality, we only discuss the case of n = 2. Now T =

T1 ⊕ T2. By Lemma 3.1, there exists an ideal J0 of A ′(T) such that Φ11(J0) = J1.
Set J ′

= J0 + rad A ′(T), then J ′ is still an ideal of A ′(T) and Φ11(J ′) = J1. By
the Corollary 3.5, rad A ′(T2) ⊆ Φ22(J ′). So we may assume that J0 = J ′, hence
A ′(T1)/Φ11(J0) ≈ C and A ′(T2)/Φ22(J0) are semisimple and commutative since

A ′(Tk)/ rad A ′(Tk) is commutative (see Theorem 2.8).

Note that

A ′(T)/J0 =

{[

S11 S12

S21 S22

]
∣

∣

∣
Si j ∈ ker τ

Ti ,T j
/Φi j(J0); 1 ≤ i, j ≤ 2

}

.

Let ekk = [e
A ′(Tk)

]J for k = 1, 2. Note that A ′(T1)/Φ11(J0) ≈ C and then e11 = 1.

Case 1: Suppose that there exist e12 ∈ ker τ
T1 ,T2

/Φ12(J0) and e21 ∈ ker τ
T2 ,T1

/Φ21(J0)
such that e12e21 = e11 = 1. Set Q1 = e21e12 and Q2 = e22 − Q1. Then Q1 and Q2 are
idempotents in A ′(T2)/Φ22(J0) and Q1Q2 = Q2Q1 = 0. Set

A ′
=

{[

S11 S12

S21 Q1S22

]
∣

∣

∣
Si j ∈ ker τ

Ti ,T j
/Φi j(J0); 1 ≤ i, j ≤ 2

}

A ′′
=

{[

0 0

0 Q2S22

] ∣

∣

∣
S22 ∈ A ′(T2)/Φ22(J0)

}

Claim 1 A ′(T)/J0 = A ′ ⊕ A ′ ′.

It is obvious that for S = (Si j )2×2 ∈ A ′(T)/J0,

S =

[

S11 S12

S21 Q1S22

]

+

[

0 0

0 Q2S22

]

,
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where
[

S11 S12

S21 Q1S22

]

∈ A ′ and

[

0 0
0 Q2S22

]

∈ A ′′.

For

t =

[

S11 S12

S21 Q1S22

]

∈ A ′ and r =

[

0 0
0 Q2S22

]

∈ A ′ ′

we have

tr =

[

0 S12Q2S22

0 0

]

, rt =

[

0 0

Q2S22S21 0

]

.

To verify Claim 1, we need only to show that S12Q2 = Q2S21 = 0. For arbitrary
S12 ∈ ker τ

T1 ,T2
/Φ12(J0) and S21 ∈ ker τ

T2 ,T1
/Φ21(J0), we can find a λ in C such that

S12Q2 = λe12 by property (3.4).

So (S12Q2 − λe12)e21 = 0, and σ(e21(S12Q2 − λe12)) = {0}.
Noting that A ′(T2)/Φ22(J0) is semi-simple and commutative,

e21(S12Q2 − λe12) = 0.

That is (e21S12)Q2 = λQ1. This implies that λ = 0 and S12Q2 = 0.
Similarly, we can prove that Q2S21 = 0. So rt = tr = 0. We verify Claim 1.

Claim 2 A ′ ≈ M2(C).
Set A1 = {S11 | S11 ∈ A ′(T1)/Φ11(J0)} and A ′

2 = {Q1S22 ; S22 ∈
A ′(T2)/Φ22(J0)}. Note that A1 ≈ C . We will show that A2 ≈ C . Define a map Φ

from A2 to A1 by Φ(b) = e12be21 for b ∈ A2. It is clear that Φ is a homomorphism.
Since Φ(Q1) = e11 = 1, Φ is a surjective homomorphism. If Φ(b) = Φ(b ′) for b and
b ′ in A2, then e21Φ(b)e12 = e21Φ(b ′)e12. Thus Q1bQ1 = Q1b ′Q1, so A2 ≈ A1 ≈ C .

Similar to the proof of Theorem 3.7, we can deduce that A ′ ≈ M2(C).

Now we define a map π from A ′(T) onto A ′ by

π((Si j )2×2) =

[

[S11]J0
[S12]J0

[S21]J0
Q1[S22]J0

]

.

Then π is a homomorphism. Since A ′ ≈ M2(C), J = ker π ∈ M(A ′(T)) and

Φ11(J) = J1.
Case 2: If we can not find e12 ∈ ker τ

T1 ,T2
/Φ12(J0) and e21 ∈ ker τ

T2 ,T1
/Φ21(J0) such

that e12e21 = e11 = 1. By A ′(T1)/Φ11(J0) ≈ C , we can deduce that S12S21 = 0 for
S12 ∈ ker τ

T1 ,T2
/Φ12(J0) and S21 ∈ ker τ

T2 ,T1
/Φ21(J0). By Lemma 3.4,

ker τ
T1 ,T2

/Φ12(J0) = {0} and ker τ
T2 ,T1

/Φ21(J0) = {0}.

Thus

A ′(T)/J0 ≈ A ′(T1)/Φ11(J0) ⊕ A ′(T2)/Φ22(J0) ≈ C ⊕ A ′(T2)/Φ22(J0).

Similar to the proof of Case 1, there exists a J ∈ M(A ′(T)) such that Φ11(J) = J1.
Now we prove the uniqueness. Let J and J ′ be in M(A ′(T)) such that Φ11(J) =

Φ11(J ′) = J1. Set J̄ = J+J ′
= {S + S ′ ; S ∈ J; S ′ ∈ J ′}. Then J̄ is an ideal of A ′(T).

Since Φ11(J̄) = J1, so J = J ′
= J̄. The proof of Theorem 3.8 is complete.
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Lemma 3.9 Let A ∈ Bm(Ω) ∩ (SI) and B ∈ Bn(Ω) ∩ (SI), where m > n. And let

Xi ∈ ker τA,B and Yi ∈ ker τB,A, i = 1, 2, . . . , k. Then

k
∑

i=1

XiYi 6= I.

Furthermore, set

J1 =
{

k
∑

i=1

XiYi, Xi ∈ ker τA,B | Yi ∈ ker τB,A, i = 1, 2, . . . , k and k = 1, 2, . . .
}

and

J2 =
{

k
∑

i=1

YiXi, Xi ∈ ker τA,B | Yi ∈ ker τB,A, i = 1, 2, . . . , k and k = 1, 2, . . .
}

.

Then J1 ⊂ rad A ′(A) and J2 ⊂ rad A ′(B).

Proof Obviously, the second part of the Lemma implies the first part. Without loss
of generality, we may assume that m is the minimal index of A. Note that XiYi ∈
A ′(A) and m > n. By Theorem 3.8, we can deduce that

σ((ΓAXiYi)(z)) = σ(Xi(z)Yi(z))

= {0}; z ∈ Ω, i = 1, 2, . . . , k.

Since tr
(

∑k
i=1 Xi(z)Yi(z)

)

=
∑k

i=1 tr(Xi(z)Yi(z)) = 0, σ
(

∑k
i=1 Xi(z)Yi(z)

)

=

{0}.

Set B(z) =
∑k

i=1 Xi(z)Yi(z). By dim ker(A − z) = m, z ∈ Ω, we have B(z)m
= 0.

Since
∨

z∈Ω
ker(A − z) = H, (

∑k
i=1 XiYi)

m
= 0. This shows that J1 ⊆ rad A ′(A).

For X in ker τA,B and Y in ker τB,A, since σ(XY ) = {0}, σ(Y X) = {0}. Hence

σ(
∑k

i=1 Yi(z)Xi(z)) = {0} and (
∑k

i=1 Yi(z)Xi(z))n
= 0. This shows that J2 ⊆

rad A ′(B), completing the proof of Lemma 3.9.

Proposition 3.10 Let T = A(l) and A ∈ Bn(Ω) ∩ (SI). And let {P1, . . . , Pm} be an

(SI) decomposition of T. Then m = n and Ai = A(l)|PiH
(l) ∈ Bn(Ω).

Proof First we show that m ≤ l. By Theorem 2.8, A ′(A)/ rad A ′(A) is commuta-
tive. By the Gelfand Theorem, there exists a continuous natural homomorphism ϕ
from A ′(A) into C(M(A ′(A))). So ϕ can induce a continuous homomorphism Ψ

from A ′(T) into Ml(M(A ′(A))) defined by

Ψ(S)(J) = (ϕ(Si j)(J))l×l for S = (Si j)l×l ∈ A ′(T) and J ∈ M(A ′(A)).
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Set Pk = (Pk
i j)l×l for k = 1, 2, . . . , m. Then Ψ(Pk)(J) = (ϕ(Pk

i j)(J))l×l.

Set

tr(Ψ(Pk)(J)) :=

l
∑

i=1

ϕ(Pk
ii)(J).

Then tr(·) defines a continuous function on M(A ′(A)). Since A ′(A)/ rad A ′(A)) is
commutative and A ∈ (SI), M(A ′(A)) is connected, by Proposition 1.17 of [Ji-Wa].
Since Ψ(Pk)(J) is idempotent, tr(Ψ(Pk)(J)) ≡ nk ≥ 1. Note that

∑m
k=1 Pk = I and

PkPk ′ = δkk ′Pk, we have
∑m

k=1 tr(Ψ(Pk)(J)) = l. Hence

m
∑

k=1

tr(Ψ(Pk)(J)) =

m
∑

k=1

nk = l.

So m ≤ l.

Now we show that Ai ∈ Bn(Ω). Otherwise, we may assume that A1 ∈ Bk(Ω) and
k < n. Let S = A ⊕ A1. By Lemma 3.9 and the proof of Theorem 3.7, we can find

an J1 ∈ M(A ′(S)) such that A ′(S)/J1 ≈ C . Let T1 = A ⊕ T = A(l+1). By Theorem
3.7, A ′(T1)/J ≈ Ml+1(C) for J ∈ M(A ′(T1)). Note that T1∼A ⊕ A1 ⊕ · · · ⊕ Am

and m ≤ l. Repeating the proof of Theorem 3.7 and using Lemma 3.9, we can find
J2 ∈ M(A ′(T1)) such that A ′(T1)/J2 ≈ Md(C) and d < l + 1 This contradicts

A ′(T1)/J ≈ Ml+1(C) for J ∈ M(A ′(T1)). Similarly, we can show that it is impossible
for k > n. So k = n and m = l. We complete the proof of Proposition 3.10.

Summarizing the above argument, we have

Theorem 3.11 Let T ∈ Bn(Ω). Then for J ∈ M(A ′(T)) there exists a natural

number l ≤ n such that

A ′(T)/J ≈ Ml(C).

4 The Similar Classification of Cowen-Douglas Operators

In order to obtain the main result, we need the following results.

Lemma 4.1 Let A ∈ Bm(Ω) ∩ (SI) and B ∈ Bn(Ω) ∩ (SI) and A ≁ B. And let

J =
{

k
∑

i=1

XiYi

∣

∣ Xi ∈ ker τA,B, Yi ∈ ker τB,A, 1 ≤ i ≤ k, k = 1, 2, . . .
}

Then J is a proper ideal of A ′(A).

Proof We need only to show that
∑k

i=1 XiYi 6= I for Xi ∈ ker τA,B and Yi ∈ ker τB,A

and k = 1, 2, . . . . Otherwise, there exists a positive integer k ≥ 1, Xi ∈ ker τA,B and

Yi ∈ ker τB,A such that
∑k

i=1 XiYi = I. Set
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P =







Y1

...
Yk







[

X1 · · · Xk

]

=







Y1X1 · · · Y1Xk

...
...

YkX1 · · · YkXk







Then P is an idempotent operator in A ′(B(k)). Let T = A ⊕ B(k) and let

a =











0 X1 · · · Xk

0 0 · · · 0
...

...
...

...
0 0 · · · 0











and

b =











0 0 · · · 0

Y1 0 · · · 0
...

...
...

...
Yk 0 · · · 0











.

Then a and b are in A ′(T) and ab =
[

I 0
0 0

]

and ba =
[

0 0
0 P

]

. By [Bl, Proposition 2.21],
there exists an invertible operator X in M2(A ′(T)) = A ′(T ⊕ T) such that

X

( [

0 0

0 P

]

⊕

[

0 0

0 0

] )

X−1
=

[

I 0

0 0

]

⊕

[

0 0

0 0

]

.

By [Ca-Fa-Ji, Lemma 1.9],

A ∼ B(k)|R := B1 where R = ran

[

0 0
0 P

]

.

By A ∈ (SI) and Lemma 2.10, B1 ∼ B ∼ A. This contradicts A ≁ B. We complete
the proof of Lemma 4.1.

Proposition 4.2 Let A ∈ Bm(Ω) ∩ (SI) and B ∈ Bn(Ω) ∩ (SI) and A ≁ B. And let

T = A(n1) ⊕ B(n2), where n1 and n2 are two fixed positive integers. Then the following

holds:

1. There exists J1 and J2 in M(A ′(T)) such that

A ′(T)/J1 ≈ Mn1
(C)

and

A ′(T)/J2 ≈ Mn2
(C).
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2. min{n1, n2} = min{lJ, A ′(T)/J ≈ MlJ(C), J ∈ M(A ′(T))}.

3. For each J ∈ M(A ′(T)), A ′(T)/J ≈ Mk(C), where k ∈ {n1, n2} if m 6= n and

k ∈ {n1, n2, n1 + n2} if m = n.

Proof Let S1 =
⊕n1

i=1 Bi and S2 =
⊕n1+n2

i=n1+1 Bi , where

Bi =

{

A if 1 ≤ i ≤ n1,

B if n1 + 1 ≤ i ≤ n1 + n2.

Then T =
⊕n1+n2

i=1 Bi . Set

ε1 =
{

k
∑

i=1

XiYi, Xi ∈ ker τA,B | Yi ∈ ker τB,A, k = 1, 2, . . .
}

.

By Lemma 4.1, ε1 is proper ideal of A ′(B1). So we can find an ε2 in M(A ′(B1))
such that ε1 ⊆ ε2. By Theorem 3.8, there exists a unique J1 in M(A ′(T)) such that
Φ11(J1) = ε2. By B1 = B2 = · · · = Bn1

and property (3.7), we have Φi j(J1) =

ε2, 1 ≤ i, j ≤ n1. Define a new subset in A ′(T) by

J ′
1 :=





















ε2 · · · ε2 ker τA,B · · · ker τA,B

...
...

...
...

ε2 · · · ε2 ker τA,B · · · ker τA,B

ker τB,A · · · ker τB,A A ′(B) · · · A ′(B)
...

...
...

...
ker τB,A · · · ker τB,A A ′(B) · · · A ′(B)





















,

where ε2 appears n1 × n1 times and A ′(B) appears n2 × n2 times. By ε1 ⊆ ε2, J
′
1

is a proper ideal in A ′(T) and Φ11(J ′
1) = ε2. It is easy to see that J1 ⊆ J ′

1, so
J1 ∈ M(A ′(T)) and J1 = J ′

1. Repeating the proof of Theorem 3.7, we can de-

duce that A ′(T)/J1 ≈ Mn1
(C). Similarly, we can find an J2 in M(A ′(T)) such that

A ′(T2)/J2 ≈ Mn2
(C). This complete the proof of the part one.

Now, to show part (ii), we may assume that n1 = min{n1, n2}. We need only to
verify that

n1 ≤ min{lJ; A ′(T)/J ≈ MlJ(C) for J ∈ M(A ′(T))}.

Otherwise, there exists a J in M(A ′(T)) such that A ′(T)/J ≈ Ml(C) and l < n1.
By Properties (3.8) and (3.9) of Theorem 3.7, there exist i and j (1 ≤ i, j ≤ n1 or

n1 + 1 ≤ i, j ≤ n1 + n2) such that Φii(J) = A ′(Bi), but Φ j j(J) ∈ M(A ′(B j)). By
A = Bk, k = 1, 2, . . . , n1, B = Bk, k = n1 + 1, . . . , n1 + n2, and property (3.7), we
have Φ11(J) = · · · = Φn1n1

(J) and Φn1+1 n1+1(J) = · · · = Φn1+n2 n1+n2
(J). This is a

contradiction.
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Proof of Part Three First, we consider the case of m 6= n. For J ∈ M(A ′(T)). It
follows from the proof of part two, we can deduce that

Φ11(J) = Φkk(J), k = 1, 2, . . . , n1

and

Φn1+1 n1+1(J) = Φkk(J), k = n1 + 1, . . . , n1 + n2.

Then Φ11(J) ∈ M(A ′(A)) or Φn1+1 n1+1(J) = A ′(B). Without loss of generality, we

may assume that Φ11(J) ∈ M(A ′(A)). Then we can claim that

Φn1+1 n1+1(J) = A ′(B).

Otherwise, by Lemma 3.9, XY ∈ rad A ′(A) and Y X ∈ rad A ′(B) for X in ker τA,B

and Y in ker τB,A. Set

J1 =























Φ11(J) · · · Φ11(J) ker τA,B · · · ker τA,B

...
...

...
...

Φ11(J) · · · Φ11(J) ker τA,B · · · ker τA,B

ker τB,A · · · ker τB,A A ′(B) · · · A ′(B)
...

...
...

...
ker τB,A · · · ker τB,A A ′(B) · · · A ′(B)























,

where Φ11(J) appears n1 × n1 times and A ′(B) appears n2 × n2 times. Then J1 is a

proper ideal of A ′(T) and J ⊂ (6=)J1. It contradicts J ∈ M(A ′(T)). Repeating the
proof of Theorem 3.7, we have A ′(T)/J ≈ Mn1

(C).

If Φn1+1 n1+1(J) ∈ M(A ′(B)). Similarly we can show that A ′(T)/J ≈ Mn2
(C).

Secondly, we consider the case of m = n. By part one, we can find J1 and J2 in
M(A ′(T)) such that A ′(T)/J1 ≈ Mn1

(C) and A ′(T)/J2 ≈ Mn2
(C). For arbitrary

J in A ′(T), we can not determine whether Φn1+1 n1+1(J) = A ′(B) when Φ11(J) ∈
M(A ′(A)). That means that A ′(T)/J ≈ Mn1+n2

(C) is possible. This completes the

proof of Proposition 4.2.

By Theorem 3.8 and Proposition 4.2, we obtain immediately the following con-
clusion.

Theorem 4.3 Let A and B be strongly irreducible Cowen-Douglas operators. Then

A ∼ B if and only if

A ′(A ⊕ B)/J ≈ M2(C)

for each J in M(A ′(A ⊕ B)).
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Theorem 4.4 Two strongly irreducible Cowen-Douglas operators A and B are similar

if and only if there is a group isomorphism α : K0(A ′(A)) → K0(A ′(B)) that satisfies

1. α(V (A ′(A))) = V (A ′(B));

2. α[IA ′(A)] = [IA ′(B)];

3. there exist two non-zero idempotent operators,

p ∈ M∞(A ′(A)) and q ∈ M∞(A ′(B)), satisfying α[p] = [q],

where p and q are equivalent in M∞(A ′(A ⊕ B)).

Proof of the “if ” part By Theorem 2.11, V (A ′(A)) ≈ V (A ′(T)) ≈ N and

K0(A ′(A)) ≈ K0(A ′(B)) ≈ Z. Suppose that A ∼ B. Then there exists an invert-
ible operator X such that A = X−1BX. Note that for each P in A ′(A), (X−1PX)(m)

is idempotent in A ′(B(m)). Hence the map α : [p] → [X−1PX] defines a group iso-
morphism from K0(A ′(A)) to K0(A ′(B)) and α is as desired.

Proof of the “only if ” part Suppose that α is a group isomorphism with properties
1, 2 and 3 given by Theorem 4.4. Then there exist two positive integers m and n

and two non-zero idempotent operators p in A ′(A(n)) and q in A ′(B(m)) and two

operators X in ker τA(n),B(m) and Y in ker τB(m),A(n) such that XY = p and Y X = q and
α[p] = [q]. Let

T = A(n) ⊕ B(m), a =

[

0 X

0 0

]

H(n)

H(m) , b =

[

0 0

Y 0

]

H(n)

H(m) .

Then a and b are in A ′(T) such that

ab =

[

p 0
0 0

]

H(n)

H(m) , ba =

[

0 0
0 q

]

H(n)

H(m) .

By [Bl, Proposition 2.21], there exists an invertible operator G in A ′(T ⊕ T) such
that

G

( [

0 0
0 q

]

⊕

[

0 0
0 0

] )

G−1
=

[

p 0
0 0

]

⊕

[

0 0
0 0

]

.

By [Ca-Fa-Ji, Lemma 1.9],

A(n)|ran p∼B(m)|ran q.

So rank(ΓA(n) p)(z) = rank(ΓB(m) q)(z) = k for z ∈ Ω, where we assume that A ∈
Bn1

(Ω) and B ∈ Bn2
(Ω).

By Theorem 2.11 and Theorem CFJ1, we have A(n)|ran p ∼ A(k) and B(m)|ran q ∼
B(k). This implies A(k) ∼ B(k).

Let R = A(k) ⊕ B(k). Then R ∼ A(2k) and
∨

(A ′(R)) ≈ N . Using Theorem CFJ1
again, we have A ∼ B. This complete the proof of Theorem 4.4.
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Similar to the argument of Theorem 4.4, we have the following conclusions:

Theorem 4.5 Two strongly irreducible Cowen-Douglas operators A and B are similar

if and only if there exist two positive integers m and n and two operators X in ker τA(n),B(m)

and Y in ker τB(m),A(n) such that XY is an idempotent operator in A ′(A(n)).

Theorem 4.6 Two strongly irreducible Cowen-Douglas operators A and B are similar

if and only if there exists a positive integer n such that

A(n) ∼ B(n)

We now calculate the K0-group of a class unital Banach algebras.

Theorem 4.7 Let Ω be a bounded connected open subset of C and inter Ω̄ = inter Ω.

Then
∨

(H∞(Ω)) ≈ N and K0(H∞(Ω)) ≈ Z.

Proof Let Bz be the Bergman operator on L2
a(Ω∗) and let A = B∗

z . Then
K0(A ′(A)) ≈ H∞(Ω) (cf. [Co-Do]). By Theorem 2.11, we can complete the proof

of Theorem 4.7.
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[Su] M. A. Šubin, Factorization of matrix functions dependent on a parameter in normed rings,
and related questions in the theory of Noetherian operators. Mat. Sb.113(1967), 610–629.

Department of Mathematics

Hebei Normal University

Shijiazhuang 050016

P.R. China

e-mail: cljiang@mail.hebtu.edu.cn

https://doi.org/10.4153/CJM-2004-034-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-034-8

