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COMPARABLE CHARACTERISATIONS OF TWO CLASSES OF
BANACH SPACES BY SUBDIFFERENTIALS

J.R. GILES

We characterise Banach spaces not containing l\ and Banach spaces which are
Asplund spaces by continuity properties of the subdifferential mappings of their
equivalent norms.

Recently, comparable characterisations were given for two classes of Banach spaces
in terms of differentiability properties of equivalent norms on the space [2, Theorem 1,
p.265 and Theorem 2, p.268]. Here we reduce these differentiability properties to give
comparable weaker sufficiency conditions determining spaces of the two classes.

THEOREM 1 . A Banach space X does not contain a subspace topologically iso-
morphic to l\ if and only if for every equivalent norm p on X, given F € X**\{0} the
subdifferential mapping x >-» dp(x) is Hausdorff F -upper semi-continuous and dp(x)
is F-compact at some point x e SP(X).

THEOREM . 2 . A Banach space X is an Asplund space if and only if for every
equivalent norm p on X, the subdifferential mapping x i-» dp(x) is Hausdorff weak
upper semi-continuous and dp(x) is weakly compact at some point x € SP(X).

Given a continuous convex function (j> on an open convex subset A of a Banach
space X, the subdifferential of <f> at x 6 A is the set

d(j>{x) = {feX*: f(y) < <f>'+(x)(y) for all y £ X}.

Given the dual X* with a locally convex topology T , the subdifferential mapping
x t-t d<j>(x) of A into subsets of X* is Hausdorff r -upper semi-continuous at
x e A if given a r-neighbourhood W of 0 in X* there exists a 6 > 0 such that
d<f>(y) C d<p(x) + W for all ||x -y\\ < 6. The subdifferential mapping is always Haus-
dorff weak* upper semi-continuous, [5, pl9]. Given F S X**\{0}, by the F-topology
on X* we mean the locally convex topology induced by the semi-norm \F\.
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Given a subset A of the dual X* we say that a subset S of A is a weak* exposed
subset of A if there exists a n i e l such that x(S) is constant and x(S) > x(g) for
all g £ A\S. A weak* slice of A by x £ X is a subset of A of the form

S(A, x,S) = {feA: f(x) > sup f(A) - 5} for 6 > 0.

For the dual X* with a locally convex topology r we say that 5 is a weak* T-exposed
subset of A if it is weak* exposed by some x £ X and given a r-neighbourhood W of
0 there exists a 5 > 0 such that S(A, z, <$) C S + W.

LEMMA 1. [3, Theorem 2.1, p.102] Given a Banach space X and dual X* with a
locally convex topology r , the subdifferential mapping i 4 9 ||x|| is Hausdorff r -upper
semi-continuous at x £ S(X) if and only if x weak* r-exposes the subset d\\x\\ of
B(X*).

While this result is used to prove Lemma 2, it will be used directly in the proof of
Theorem 2. For the proof of Theorem 1, we use the following characterisation.

LEMMA 2 . [3, Theorem 3.2, p.104] Given a Banach space X and F £ X**\{0},
the subdifferential mapping x i-> d \\x\\ is Hausdorff F-upper semi-continuous at x £
S(X) and d \\x\\ is F-compact if and only if F restricted B(X*) is weak* continuous
at points of d \\x\\.

PROOF OF THEOREM 1: One way follows from [2, Theorem 1, (i) =»• (v), p.265].
Conversely, it has been shown [1, Corollary 3.3 (ii) => (i), p.112] that if X contains
a subspace topologically isomorphic to £i then there exists an F € X**\{0} and
an equivalent norm p on X such that F restricted to BP(X*) is nowhere weak*
continuous. -_ D

LEMMA 3 . A Banach space X is an Asplund space if every non-empty weak*
compact convex subset of X* has a weak* weakly exposed subset which is weakly
compact.

PROOF: Consider K a non-empty closed bounded convex subset of X* and co"1"K
with weakly compact subset 5 weak* weakly exposed by x £ X\{0}. Suppose that
S (~l K = 0. Then since 5 is also convex and K is weakly closed they can be strongly
separated by a weakly closed hyperplane. Then there exists a weakly open set W such
that S Q W and W (1 K = 0. Since 5 is weakly compact there exists a weak open
neighbourhood N of 0 such that S + N CW. But since 5 is a subset of co"1* K weak*
weakly exposed by x there exists a S > 0 such that Slco™*K,x,5) C. S + N. But
then (S + N) n K ^ 0, a contradiction. So there exists /o £ SDK. Now 5 is an
extreme subset of cl?" K so there exists a nonempty closed convex extreme subset SK
of if in S. Since 5 is weakly compact, the Krein-Milman Theorem gives us that 5 ^
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has an extreme point which is then an extreme point of K. We conclude that X* has
the Krein-Milman property [4] which implies that X is an Asplund space. D

Using the duality given in Lemma 1, we can now proceed.

P R O O F OF T H E O R E M 2: One way follows from [2, Theorem 2, (i) = > (v), p.268].
Conversely, suppose there exists a non-empty weak* compact convex subset A of X*,
(we may suppose 0 6 A), such that given x € X\{0} any subset of A weak* exposed
by x is not both weak* weakly exposed and weakly compact. Writing C = AL) (—A)
and K = C + B(X*) we have that K is weak* compact and convex and any subset
of K weak* exposed by x is not both weak* weakly exposed and weakly compact.
The equivalent norm p on X denned by p(x) = sup{/(a;) : / € K} has K as its
corresponding dual ball. So from Lemma 1 we conclude that the subdifferential mapping
x H-> dp(x) is nowhere at points of SP(X) both Hausdorff weakly upper semi-continuous
with weakly compact images. U

Given a Banach space X and dual X* with a locally convex topology T , it is
instructive to see that the subdifferential mapping x i-> d \\x\\ being Hausdorff r -upper
semi-continuous with r-compact images has a geometrical characterisation.

LEMMA 4 . Consider a Banach space X and x € S(X).

(i) Given F £ S(X**), the subdifferential mapping x \-¥ d \\x\\ is Hausdorff
F -upper semi-continuous at x if and only if d \\x\\ is F-dense in d \\x\\.

(ii) The subdifferential mapping x *-¥ d\\x\\ is Hausdorff weak upper semi-
continuous at x if and only if d ||x|| is weak* dense in d \\x\\, [3, Theorem
3.1, p.103].

PROOF OF (i): Suppose that 9||x|| is not F-dense in 9||x||. Then there exists
an T e d \\x\\ such that F strongly separates T from d \\x\\. Then there exists r > 0
such that

d(F(T),F(d\\x\\))>r.

Since B(XA is weak* dense in B(X***), for each n € N there exists /„ € B{X*)

± and \(fn-?){F)
such that

1
n

Now |/n(a;) — 1| < 1/n for all n e N. By the Bishop-Phelps Theorem there exist
sequences {yn} in S(X) and {/„„} in S{X*) where fVn € 9||yn|| such that {yn}
is norm convergent to x and {fn — fyn} is norm convergent to 0. Then since the
subdifferential mapping x i-¥ d \\x\\ is Hausdorff ,F-upper semi-continuous at x we
have

_ / . \ _ „ . . . , - as n ̂  co.
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But since \(fn - Fj(F) < 1/n for all n € N we have contradicted our separation

inequality.

Conversely, suppose that d \\x\\ is F-dense in d \\x\\. Consider an F-neighbourhood
W of 0 in X*. Now W is the restriction to X* of an F-neighbourhood W* of 0
in X***. Since the subdifferential mapping G >-> d\\G\\ is Hausdorff weak* upper
semi-continuous on X**, there exists a 6 > 0 such that

W*
d\\y\\Qd\\x\\ + — for all \\x - y\\ < 6.

So d \\y\\ C d \\x\\ + W for all \\x - y\\ <5. D

Using Lemma 4 we can restate our characterisation theorems as follows:

THEOREM 1' . A Banach space X does not contain a subspace topologically iso-

morphic to l\ if and only if for every equivalent norm p on X, given F e X**\{0}

F{dp{x))=F(dp»{x))

at some point x G SP(X).

THEOREM 2 ' . A Banach space X is an Asplund space if and only if for every
equivalent norm p on X,

at some point x € SP(X).
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