A MULTIPLICITY THEOREM FOR A PERTURBED SECOND-ORDER NON-AUTONOMOUS SYSTEM

FRANCESCA FARACI AND ANTONIO IANNIZZOTTO
Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
(ffaraci@dmi.unict.it; iannizzotto@dmi.unict.it)

(Received 6 December 2004)

Abstract In this paper we establish a multiplicity result for a second-order non-autonomous system. Using a variational principle of Ricceri we prove that if the set of global minima of a certain function has at least k connected components, then our problem has at least k periodic solutions. Moreover, the existence of one more solution is investigated through a mountain-pass-like argument.

Keywords: multiple periodic solutions; second-order non-autonomous system; critical point theory
2000 Mathematics subject classification: Primary 34C25; 35A15

1. Introduction

In this paper we consider the second-order non-autonomous system

$$
\left\{\begin{array}{c}
\ddot{u}=\alpha(t)(A u-\nabla F(u))+\lambda \nabla_{x} G(t, u), \quad \text { a.e. in }[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

where A is an $N \times N$ symmetric matrix satisfying

$$
\begin{equation*}
A x \cdot x \geqslant c|x|^{2} \quad \text { for all } x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where c is some positive constant. Assume that $\lambda>0, \alpha \in L^{\infty}([0, T]), a=\operatorname{ess}^{\inf }{ }_{[0, T]} \alpha>$ $0, F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is continuously differentiable, and that $G:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is measurable in t for all $x \in \mathbb{R}^{N}$ and continuously differentiable in $x \in \mathbb{R}^{N}$ for a.e. $t \in[0, T]$. Moreover, assume

$$
\begin{equation*}
\sup _{|x| \leqslant s}\left|\nabla_{x} G(\cdot, x)\right| \in L^{1}([0, T]) \quad \text { for every } s>0, \quad G(\cdot, 0) \in L^{1}([0, T]) \tag{1.2}
\end{equation*}
$$

It is well known (see $[\mathbf{3}]$) that a solution of $\left(P_{\lambda}\right)$ is a function $u \in C^{1}\left([0, T], \mathbb{R}^{N}\right)$, with \dot{u} absolutely continuous, such that

$$
\left\{\begin{array}{c}
\ddot{u}(t)=\alpha(t)(A u(t)-\nabla F(u(t)))+\lambda \nabla_{x} G(t, u(t)), \quad \text { a.e. in }[0, T], \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 .
\end{array}\right.
$$

For the more general problem

$$
\left\{\begin{array}{c}
\ddot{u}=\nabla_{x} \phi(t, u), \quad \text { a.e. in }[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

the existence of at least three solutions has previously been studied in $[\mathbf{1}],[\mathbf{6}],[\mathbf{7}]$ and $[\mathbf{9}]$ under the following assumption, firstly introduced by Brezis and Nirenberg: there exist $r>0$ and an integer $k \geqslant 0$ such that

$$
\begin{equation*}
-\frac{1}{2}(k+1)^{2} w^{2}|x|^{2} \leqslant \phi(t, x)-\phi(t, 0) \leqslant-\frac{1}{2} k^{2} w^{2}|x|^{2} \tag{1.3}
\end{equation*}
$$

for each $|x| \leqslant r$, a.e. $t \in[0, T]$, where $w=2 \pi / T$.
The perturbed problem

$$
\left\{\begin{array}{c}
\ddot{u}=\nabla_{x} \phi(t, u)+\lambda \psi(t), \quad \text { a.e. in }[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

was studied in [8], in which Tang proves the existence of at least three solutions, for $\lambda>0$ small enough, under the stronger condition that there exist $r>0$ and an integer $k \geqslant 0$ such that

$$
\begin{equation*}
-\mu|x|^{2} \leqslant \phi(t, x)-\phi(t, 0) \leqslant-\nu|x|^{2} \tag{1.4}
\end{equation*}
$$

for each $|x| \leqslant r$, a.e. $t \in[0, T]$, where $\nu>\frac{1}{2} k^{2} w^{2}, \mu<\frac{1}{2}(k+1)^{2} w^{2}$ and $w=2 \pi / T$.
In this paper we prove a multiplicity result of the following type: for each integer $k>1$, $\left(P_{\lambda}\right)$ has, for λ small enough, at least k solutions.

Our main tool is a recent theorem by Ricceri [4, Theorem 6], which, for the convenience of the reader, we state here.

Theorem A. Let X be a reflexive and separable real Banach space and let Ψ, Φ : $X \rightarrow \mathbb{R}$ be two functionals. Assume that there exists $r>\inf _{X} \Psi$ such that the set $\Psi^{-1}(]-\infty, r[)$ is bounded. Moreover, suppose that the functional Φ is bounded below in $\left(\overline{\Psi^{-1}(]-\infty, r[)}\right)_{w}$ and the functional $\Psi+\lambda \Phi$ is sequentially weakly lower semicontinuous for each $\lambda \geqslant 0$ small enough. Finally, assume that the set $\Psi^{-1}\left(\inf _{X} \Psi\right)$ has at least k weakly connected components.

Then, there exists $\lambda_{r}>0$ such that, for each $\left.\lambda \in\right] 0, \lambda_{r}[$, the functional $\Psi+\lambda \Phi$ has at least $k \tau_{\Psi}$-local minima lying in $\Psi^{-1}(]-\infty, r[)$, where τ_{Ψ} is the smallest topology on X which contains both the weak topology and the family of sets $\left\{\Psi^{-1}(]-\infty, \rho[)\right\}_{\rho \in \mathbb{R}}$.

2. A multiplicity theorem

Let us introduce the space

$$
H_{T}^{1}=\left\{u:[0, T] \rightarrow \mathbb{R}^{N} \text { absolutely continuous, } u(0)=u(T), \dot{u} \in L^{2}\left([0, T], \mathbb{R}^{N}\right)\right\}
$$

For all $u, v \in H_{T}^{1}$, define the scalar product as follows:

$$
(u, v)=\int_{0}^{T} \dot{u}(t) \cdot \dot{v}(t) \mathrm{d} t+\int_{0}^{T} \alpha(t) A u(t) \cdot v(t) \mathrm{d} t
$$

The norm

$$
\|u\|=\left(\int_{0}^{T}|\dot{u}(t)|^{2} \mathrm{~d} t+\int_{0}^{T} \alpha(t) A u(t) \cdot u(t) \mathrm{d} t\right)^{1 / 2}
$$

in H_{T}^{1} is equivalent to the usual one thanks to condition (1.1).
Let us observe that H_{T}^{1} is compactly embedded in $C^{0}\left([0, T], \mathbb{R}^{N}\right)$. Define, for each $u \in H_{T}^{1}$,

$$
\begin{aligned}
& \Psi(u)=\frac{1}{2}\|u\|^{2}-\int_{0}^{T} \alpha(t) F(u(t)) \mathrm{d} t \\
& \Phi(u)=\int_{0}^{T} G(t, u(t)) \mathrm{d} t
\end{aligned}
$$

Clearly, Ψ is well defined, sequentially weakly continuous, and continuous together with its Gâteaux derivative. Moreover, from (1.2) we have

$$
\sup _{|x| \leqslant s}|G(\cdot, x)| \in L^{1}([0, T]) \quad \text { for every } s>0
$$

Thus, it is easy to prove that Φ satisfies the same properties of Ψ.
We recall that u is a solution of $\left(P_{\lambda}\right)$ if and only if $u \in H_{T}^{1}$ and it satisfies
$\int_{0}^{T}[\dot{u}(t) \cdot \dot{v}(t)+\alpha(t) A u(t) \cdot v(t)-\alpha(t) \nabla F(u(t)) \cdot v(t)] \mathrm{d} t+\lambda \int_{0}^{T} \nabla_{x} G(t, u(t)) \cdot v(t) \mathrm{d} t=0$
for all $v \in H_{T}^{1}$, that is, if u is a critical point of $\Psi+\lambda \Phi$ in H_{T}^{1}.
Our result reads as follows.
Theorem 2.1. Let α, A, F, G be as in \S 1. Assume that
(i) $\limsup _{|x| \rightarrow+\infty} \frac{F(x)}{|x|^{2}}<\frac{1}{2} c$;
(ii) the set of global minima of the function $H(x)=\frac{1}{2} A x \cdot x-F(x)$ has at least k connected components in $\mathbb{R}^{N}(k \geqslant 2)$.

Then, for every $r>\|\alpha\|_{L^{1}} \inf _{\mathbb{R}^{N}} H$, there exists $\lambda_{r}>0$ such that, for every $\left.\lambda \in\right] 0, \lambda_{r}[$, $\left(P_{\lambda}\right)$ has at least k solutions in $\Psi^{-1}(]-\infty, r[)$.

Proof. Set $X=H_{T}^{1}$. Let us show that the functionals Ψ and Φ defined above satisfy the hypotheses of Theorem A. The functional $\Psi+\lambda \Phi$ is sequentially weakly continuous for each $\lambda \geqslant 0$. We now prove that Ψ is coercive: let σ be a positive number such that

$$
\limsup _{|x| \rightarrow+\infty} \frac{F(x)}{|x|^{2}}<\sigma<\frac{1}{2} c .
$$

Then $F(x)<\sigma|x|^{2}+m$ for all $x \in \mathbb{R}^{N}$, for some constant m, and

$$
\begin{aligned}
\Psi(u) & \geqslant \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} \mathrm{~d} t+\frac{1}{2} \int_{0}^{T} \alpha(t) A u(t) \cdot u(t) \mathrm{d} t-\int_{0}^{T} \alpha(t)\left(\sigma|u(t)|^{2}+m\right) \mathrm{d} t \\
& \geqslant \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} \mathrm{~d} t+\left(\frac{1}{2}-\frac{\sigma}{c}\right) \int_{0}^{T} \alpha(t) A u(t) \cdot u(t) \mathrm{d} t-m\|\alpha\|_{L^{1}} \\
& \geqslant\left(\frac{1}{2}-\frac{\sigma}{c}\right)\|u\|^{2}-m\|\alpha\|_{L^{1}},
\end{aligned}
$$

which implies that $\Psi(u)$ tends to infinity as $\|u\|$ goes to infinity.
Specifically, from the coercivity of Ψ it follows that for every $r>\|\alpha\|_{L^{1}} \inf _{\mathbb{R}^{N}} H$ the set $\Psi^{-1}(]-\infty, r[)$ is bounded. Moreover, we note that the restriction of Φ to the sequentially weakly compact set $\left(\overline{\Psi^{-1}(]-\infty, r[)}\right)_{w}$ has a global minimum.

We claim that

$$
\inf _{X} \Psi=\|\alpha\|_{L^{1}} \inf _{\mathbb{R}^{N}} H
$$

In fact, for all $u \in X$ we have

$$
\begin{aligned}
\Psi(u) & \geqslant \frac{1}{2} \int_{0}^{T} \alpha(t) A u(t) \cdot u(t) \mathrm{d} t-\int_{0}^{T} \alpha(t) F(u(t)) \mathrm{d} t \\
& =\int_{0}^{T} \alpha(t) H(u(t)) \mathrm{d} t \geqslant\|\alpha\|_{L^{1}} \inf _{\mathbb{R}^{N}} H .
\end{aligned}
$$

Let us denote by M the set of global minima of H in \mathbb{R}^{N}. If $x_{0} \in M$, then the function defined by putting $u_{0}(t)=x_{0}$ belongs to X and

$$
\Psi\left(u_{0}\right)=\int_{0}^{T} \alpha(t) H\left(u_{0}(t)\right) \mathrm{d} t=\|\alpha\|_{L^{1}} \inf _{\mathbb{R}^{N}} H .
$$

Thus, our claim is proved.
We note that, if $u \in X$ is not constant, then $|\dot{u}|>0$ on some set of positive measure, hence it cannot be a global minimum of Ψ, and the same is true for constant functions whose value does not belong to M.
Let $\gamma: \mathbb{R}^{N} \rightarrow X$ be the function that maps $x \in \mathbb{R}^{N}$ into the constant function $u(t)=x$ in $X: \gamma$ is then a homeomorphism between \mathbb{R}^{N} and $\gamma\left(\mathbb{R}^{N}\right)$ (endowed with the relativization of the weak topology). The set of global minima of Ψ is equal to $\gamma(M)$; hence it has at least k weakly connected components.

By applying Theorem A we deduce for every $r>\|\alpha\|_{L^{1}} \inf _{\mathbb{R}^{N}} H$ the existence of $\lambda_{r}>0$ such that, for every $\lambda \in] 0, \lambda_{r}\left[\right.$, the functional $\Psi+\lambda \Phi$ has at least $k \tau_{\Psi}$-local minima lying in $\Psi^{-1}(]-\infty, r[)$.

Since Ψ is continuous, the topology τ_{Ψ} is weaker than the strong topology in X, and every τ_{Ψ}-local minimum is also a strong local minimum, and so a critical point of $\Psi+\lambda \Phi$. The proof is now complete.

Theorem 2.2. Let α, A, F, G be as in $\S 1$, and let assumptions (i) and (ii) of Theorem 2.1 be satisfied. Moreover, assume that
(iii) $\left.\liminf _{|x| \rightarrow+\infty} \frac{\operatorname{ess}^{\inf }[0, T]}{|x|^{2}} G(t, x) \right\rvert\,-\infty$.

Then, for every $r>\inf _{\mathbb{R}^{N}} H\|\alpha\|_{L^{1}}$ there exists $\lambda_{r}^{\star}>0$ such that, for every $\left.\lambda \in\right] 0, \lambda_{r}^{\star}[$, (P_{λ}) has at least $k+1$ solutions, k of which lie in $\Psi^{-1}(]-\infty, r[)$.

Proof. Let us show that, for $\lambda>0$ small enough, $\Psi+\lambda \Phi$ is coercive. From the proof of Theorem 2.1 we already know that

$$
\Psi(u) \geqslant\left(\frac{1}{2}-\frac{\sigma}{c}\right)\|u\|^{2}-m\|\alpha\|_{L^{1}} .
$$

Then, there exist $b<0$ and $s>0$ such that

$$
G(t, x)>b|x|^{2}
$$

for $|x|>s$ and a.e. $t \in[0, T]$, while

$$
g=\sup _{|x| \leqslant s}|G(\cdot, x)| \in L^{1}([0, T]) .
$$

Summarizing, for all $x \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$ we have

$$
G(t, x) \geqslant b|x|^{2}-g(t),
$$

which implies that

$$
\begin{aligned}
\Phi(u) & \geqslant \int_{0}^{T}\left(b|u(t)|^{2}-g(t)\right) \mathrm{d} t \\
& \geqslant \frac{b}{a c} \int_{0}^{T} \alpha(t) A u(t) \cdot u(t) \mathrm{d} t-\|g\|_{L^{1}} \\
& \geqslant \frac{b}{a c}\|u\|^{2}-\|g\|_{L^{1}}
\end{aligned}
$$

and so

$$
\Psi(u)+\lambda \Phi(u) \geqslant\left[\left(\frac{1}{2}-\frac{\sigma}{c}\right)+\lambda \frac{b}{a c}\right]\|u\|^{2}-m\|\alpha\|_{L^{1}}-\lambda\|g\|_{L^{1}} .
$$

Set

$$
\lambda_{r}^{\star}=\min \left\{\lambda_{r},-\frac{a c}{b}\left(\frac{1}{2}-\frac{\sigma}{c}\right)\right\},
$$

where λ_{r} is as in Theorem 2.1. Then, for all $\left.\lambda \in\right] 0, \lambda_{r}^{\star}[$, the functional $\Psi+\lambda \Phi$ admits at least k local minima and is coercive. Thus, $\Psi+\lambda \Phi$ satisfies the Palais-Smale condition, as it is the sum of $\frac{1}{2}\|u\|^{2}$, whose derivative is a homeomorphism between H_{T}^{1} and its dual, and of a functional with compact derivative. From [2] it follows that $\Psi+\lambda \Phi$ admits one more critical point.

Remark 2.3. As seen in the proof of Theorem 2.2, the existence of $k+1$ solutions follows essentially from the Palais-Smale condition, and the latter is proved through the coercivity of the functional. By using another standard argument, we could assume that there exist $q>2$ and $R>0$ such that, for λ small enough,

$$
\begin{equation*}
0<q[\alpha(t) F(x)-\lambda G(t, x)] \leqslant\left[\alpha(t) \nabla F(x)-\lambda \nabla_{x} G(t, x)\right] \cdot x \tag{2.1}
\end{equation*}
$$

for a.e. $t \in[0, T]$ and for every x with $|x|>R$. This implies, as λ tends to zero, that

$$
0 \leqslant q F(x) \leqslant \nabla F(x) \cdot x
$$

Now, if there is some x_{1} such that $\left|x_{1}\right|>R, F\left(x_{1}\right)>0$ and

$$
\begin{equation*}
F(x)<\frac{1}{2} c|x|^{2} \tag{2.2}
\end{equation*}
$$

for all $|x|>\left|x_{1}\right|$, then it is easy to prove that the function

$$
\mu \rightarrow\left|\mu x_{1}\right|^{-q} F\left(\mu x_{1}\right)
$$

is non-decreasing for $\mu \geqslant 1$ and so

$$
F\left(\mu x_{1}\right) \geqslant\left|x_{1}\right|^{-q} F\left(x_{1}\right)\left|\mu x_{1}\right|^{q}
$$

which together with (2.2) gives a contradiction.
No contradiction arises, however, if we assume that $F(x)=0$ for all $x \in \mathbb{R}^{N},|x|>R$ (so condition (i) is obviously satisfied), together with (ii) and condition (2.1), which becomes

$$
\nabla_{x} G(t, x) \cdot x \leqslant q G(t, x)<0
$$

In this case we get $k+1$ solutions for $\lambda>0$ small enough.
In the case $N=1,\left(P_{\lambda}\right)$ becomes

$$
\left\{\begin{array}{c}
u^{\prime \prime}=\alpha(t)\left(u-F^{\prime}(u)\right)+\lambda G_{x}(t, u), \quad \text { a.e. in }[0, T] \\
u(0)-u(T)=u^{\prime}(0)-u^{\prime}(T)=0
\end{array}\right.
$$

The following result, whose proof is analogous (with minor changes) to that of Theorem 1 in [5], yields the existence of $k+1$ solutions with no additional hypotheses on G.

Theorem 2.4. Let α, F, G be as in $\S 1$ (with $N=1$). Assume that
(iv) $\lim _{|x| \rightarrow+\infty} \frac{F^{\prime}(x)}{x}=0$;
(v) the set of global minima of the function $H(x)=\frac{1}{2} x^{2}-F(x)$ has at least k connected components in $\mathbb{R}(k \geqslant 2)$.

Then, for every $r>\|\alpha\|_{L^{1}} \inf _{\mathbb{R}} H$ there exists $\lambda_{r}>0$ such that, for every $\left.\lambda \in\right] 0, \lambda_{r}[$, $\left(P_{\lambda}^{\prime}\right)$ has at least $k+1$ solutions, k of which satisfy

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{T}\left|u^{\prime}(t)\right|^{2} \mathrm{~d} t+\int_{0}^{T} \alpha(t)\left(\frac{1}{2}|u(t)|^{2}-F(u(t))\right) \mathrm{d} t<r \tag{2.3}
\end{equation*}
$$

3. Examples

In the following examples α and G are as in $\S 1$, while the function F is chosen in order to satisfy assumptions (i) and (ii).

Example 3.1. Let A be the identity matrix $(c=1)$, let $f \in C^{1}([0,+\infty[)$ be a periodic function such that $f(0)>b=\inf _{\mathbb{R}} f$, and let $\left.q \in\right] 0,1[$ and $p \in[2,+\infty[$. Define F as follows:

$$
F(x)= \begin{cases}\frac{1}{2}|x|^{2}-\left(f\left(|x|^{-q}\right)-b\right)|x|^{p} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Clearly, $F \in C^{1}\left(\mathbb{R}^{N}\right)$. If $p=2$, we get

$$
\limsup _{|x| \rightarrow+\infty} \frac{F(x)}{|x|^{2}}=\frac{1}{2}-f(0)+b<\frac{1}{2}
$$

while, if $p>2$,

$$
\limsup _{|x| \rightarrow+\infty} \frac{F(x)}{|x|^{2}}=-\infty
$$

So (i) is satisfied.
The function H, here, is given by

$$
H(x)=\left(f\left(|x|^{-q}\right)-b\right)|x|^{p} .
$$

H is non-negative and the set of its global minima is $\left\{x \in \mathbb{R}^{N}: f\left(|x|^{-q}\right)=b\right\} \cup\{0\}$, which has infinitely many connected components.

Then, for every $k \geqslant 2,\left(P_{\lambda}\right)$ has at least k solutions for λ small enough.
Remark 3.2. The function F in Example 3.1 depends only on the norm of vector x. The thesis holds if we replace $|x|^{p}$ with $\left(\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{N}\right|\right)^{p}$ in the definition of F.

Remark 3.3. It is also clear that the problem considered in Example 3.1 does not satisfy condition (1.4). In fact, in this case, $\phi(t, x)=\alpha(t)\left(\frac{1}{2}|x|^{2}-F(x)\right)$. So, specifically, for all $x \in \mathbb{R}^{N}, x \neq 0$,

$$
\frac{\phi(t, x)-\phi(t, 0)}{|x|^{2}} \geqslant a\left(f\left(|x|^{-q}\right)-b\right)|x|^{p-2} \geqslant 0
$$

Example 3.4. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k} \in C^{1}([0,+\infty[, \mathbb{R})$ be functions such that
(1) for all $i \in\{1,2, \ldots k\}, \varphi_{i}^{-1}(0) \neq \emptyset$;
(2) for all $i, j \in\{1,2, \ldots k\}, i \neq j, \varphi_{i}^{-1}(0) \bigcap \varphi_{j}^{-1}(0)=\emptyset$;
(3) $\lim _{\rho \rightarrow \infty} \frac{1}{\rho} \prod_{i=1}^{k}\left(\varphi_{i}(\rho)\right)^{2}=+\infty$.

Then the problem

$$
\left\{\begin{array}{c}
\ddot{u}=4 \alpha(t)\left(\sum_{i=1}^{k} \varphi_{i}\left(|u|^{2}\right) \varphi_{i}^{\prime}\left(|u|^{2}\right) \prod_{j \neq i}\left(\varphi_{j}\left(|u|^{2}\right)\right)^{2}\right) u+\lambda \nabla_{x} G(t, u), \quad \text { a.e. in }[0, T], \quad\left(P_{\lambda}\right) \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

has at least k solutions for $\lambda>0$ small enough. It can immediately be seen that parts (i) and (ii) of Theorem 2.1 are satisfied: specifically, $x \in \mathbb{R}^{N}$ is a global minimum of the function $H(x)=\prod_{i=1}^{k}\left(\varphi_{i}\left(|x|^{2}\right)\right)^{2}$ if and only if $\varphi_{i}\left(|x|^{2}\right)=0$ for some $i \in\{1,2, \ldots k\}$.

We would like to emphasize that, for λ not sufficiently small, with all the other assumptions of our theorem fulfilled, the thesis may fail, as the following counterexample shows.

Example 3.5. Let us consider the one-dimensional problem

$$
\left\{\begin{array}{c}
u^{\prime \prime}=u-F^{\prime}(u)+\lambda G^{\prime}(u), \quad \text { a.e. in }[0, T] \\
u(0)-u(T)=u^{\prime}(0)-u^{\prime}(T)=0
\end{array}\right.
$$

where the function F is defined by

$$
F(x)=\frac{1}{2} x^{2}-\frac{1}{4} d_{1} x^{4}-\frac{1}{2} d_{2} x^{2}
$$

and $d_{1}>0, d_{2}<0$. Clearly, F satisfies (i), as

$$
\lim _{|x| \rightarrow+\infty} \frac{F(x)}{x^{2}}=-\infty
$$

The function

$$
H(x)=\frac{1}{4} d_{1} x^{4}+\frac{1}{2} d_{2} x^{2}
$$

admits two global minima. Choose

$$
G(x)=\frac{1}{2} x^{2} .
$$

The problem $\left(Q_{\lambda}\right)$ reads as follows:

$$
\left\{\begin{array}{c}
u^{\prime \prime}=d_{1} u^{3}+\left(d_{2}+\lambda\right) u, \quad \text { a.e. in }[0, T] \\
u(0)-u(T)=u^{\prime}(0)-u^{\prime}(T)=0
\end{array}\right.
$$

Theorem 2.2 provides the existence of at least three solutions for λ small enough. Specifically, if $\lambda<-d_{2},\left(Q_{\lambda}\right)$ has at least three solutions (the constant functions corresponding to the critical points of $H+\lambda G)$. If $\lambda \geqslant-d_{2},\left(Q_{\lambda}\right)$ has only the trivial solution $u=0$, since no non-constant function u can be a solution. In fact, if there exists $\left.t_{1} \in\right] 0, T$ [such that $u\left(t_{1}\right)>0$, then we get

$$
\max _{[0, T]} u=u\left(t^{*}\right)>0
$$

hence

$$
0 \geqslant u^{\prime \prime}\left(t^{*}\right)=u\left(t^{*}\right)\left[d_{1} u\left(t^{*}\right)^{2}+\left(d_{2}+\lambda\right)\right]>0,
$$

a contradiction (analogously, a contradiction is reached if $u\left(t_{1}\right)<0$).
Acknowledgements. The authors thank Professor Ricceri for useful suggestions.

References

1. H. Brezis and L. Nirenberg, Remarks on finding critical points, Commun. Pure Appl. Math. 44 (1991), 939-963.
2. N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Annls Inst. H. Poincaré Analyse Non Linéaire 6 (1989), 321330.
3. J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems (Springer, 1989).
4. B. Ricceri, Sublevel sets and global minima of coercive functionals and local minima of their perturbations, J. Nonlin. Convex Analysis 5(2) (2004), 157-168.
5. B. Ricceri, A multiplicty theorem for the Neumann problem, Proc. Am. Math. Soc., in press.
6. C. L. TANG, Existence and multiplicity of periodic solutions of nonautonomous second order systems, Nonlin. Analysis 32 (1998), 299-304.
7. C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Am. Math. Soc. 126(11) (1998), 3263-3270.
8. C. L. Tang, Multiplicity of periodic solutions for second order systems with a small forcing term, Nonlin. Analysis 38(4) (1999), 471-479.
9. C. L. Tang and X. P. Wu, Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Analysis Applic. 259(2) (2001), 386-397.
