
Proceedings of the Edinburgh Mathematical Society (2006) 49, 267–275 c©
DOI:10.1017/S001309150400149X Printed in the United Kingdom

A MULTIPLICITY THEOREM FOR A PERTURBED
SECOND-ORDER NON-AUTONOMOUS SYSTEM

FRANCESCA FARACI AND ANTONIO IANNIZZOTTO

Department of Mathematics and Computer Science,
University of Catania, Viale A. Doria 6, 95125 Catania, Italy

(ffaraci@dmi.unict.it; iannizzotto@dmi.unict.it)

(Received 6 December 2004)

Abstract In this paper we establish a multiplicity result for a second-order non-autonomous system.
Using a variational principle of Ricceri we prove that if the set of global minima of a certain function
has at least k connected components, then our problem has at least k periodic solutions. Moreover, the
existence of one more solution is investigated through a mountain-pass-like argument.
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1. Introduction

In this paper we consider the second-order non-autonomous system{
ü = α(t)(Au − ∇F (u)) + λ∇xG(t, u), a.e. in [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,
(Pλ)

where A is an N × N symmetric matrix satisfying

Ax · x � c|x|2 for all x ∈ R
N , (1.1)

where c is some positive constant. Assume that λ > 0, α ∈ L∞([0, T ]), a = ess inf [0,T ]α >

0, F : R
N → R is continuously differentiable, and that G : [0, T ]×R

N → R is measurable
in t for all x ∈ R

N and continuously differentiable in x ∈ R
N for a.e. t ∈ [0, T ]. Moreover,

assume

sup
|x|�s

|∇xG(· , x)| ∈ L1([0, T ]) for every s > 0, G(· , 0) ∈ L1([0, T ]). (1.2)

It is well known (see [3]) that a solution of (Pλ) is a function u ∈ C1([0, T ], RN ), with
u̇ absolutely continuous, such that{

ü(t) = α(t)(Au(t) − ∇F (u(t))) + λ∇xG(t, u(t)), a.e. in [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0.
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For the more general problem{
ü = ∇xφ(t, u), a.e. in [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

the existence of at least three solutions has previously been studied in [1], [6], [7] and [9]
under the following assumption, firstly introduced by Brezis and Nirenberg: there exist
r > 0 and an integer k � 0 such that

− 1
2 (k + 1)2w2|x|2 � φ(t, x) − φ(t, 0) � − 1

2k2w2|x|2 (1.3)

for each |x| � r, a.e. t ∈ [0, T ], where w = 2π/T .
The perturbed problem{

ü = ∇xφ(t, u) + λψ(t), a.e. in [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0

was studied in [8], in which Tang proves the existence of at least three solutions, for
λ > 0 small enough, under the stronger condition that there exist r > 0 and an integer
k � 0 such that

−µ|x|2 � φ(t, x) − φ(t, 0) � −ν|x|2 (1.4)

for each |x| � r, a.e. t ∈ [0, T ], where ν > 1
2k2w2, µ < 1

2 (k + 1)2w2 and w = 2π/T .
In this paper we prove a multiplicity result of the following type: for each integer k > 1,

(Pλ) has, for λ small enough, at least k solutions.
Our main tool is a recent theorem by Ricceri [4, Theorem 6], which, for the convenience

of the reader, we state here.

Theorem A. Let X be a reflexive and separable real Banach space and let Ψ, Φ :
X → R be two functionals. Assume that there exists r > infX Ψ such that the set
Ψ−1(]−∞, r[) is bounded. Moreover, suppose that the functional Φ is bounded below in
(Ψ−1(]−∞, r[))w and the functional Ψ + λΦ is sequentially weakly lower semicontinuous
for each λ � 0 small enough. Finally, assume that the set Ψ−1(infX Ψ) has at least k

weakly connected components.
Then, there exists λr > 0 such that, for each λ ∈ ]0, λr[, the functional Ψ + λΦ has at

least k τΨ -local minima lying in Ψ−1(]−∞, r[), where τΨ is the smallest topology on X

which contains both the weak topology and the family of sets {Ψ−1(]−∞, ρ[)}ρ∈R.

2. A multiplicity theorem

Let us introduce the space

H1
T = {u : [0, T ] → R

N absolutely continuous, u(0) = u(T ), u̇ ∈ L2([0, T ], RN )}.

For all u, v ∈ H1
T , define the scalar product as follows:

(u, v) =
∫ T

0
u̇(t) · v̇(t) dt +

∫ T

0
α(t)Au(t) · v(t) dt.
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The norm

‖u‖ =
(∫ T

0
|u̇(t)|2 dt +

∫ T

0
α(t)Au(t) · u(t) dt

)1/2

in H1
T is equivalent to the usual one thanks to condition (1.1).

Let us observe that H1
T is compactly embedded in C0([0, T ], RN ). Define, for each

u ∈ H1
T ,

Ψ(u) = 1
2‖u‖2 −

∫ T

0
α(t)F (u(t)) dt,

Φ(u) =
∫ T

0
G(t, u(t)) dt.

Clearly, Ψ is well defined, sequentially weakly continuous, and continuous together with
its Gâteaux derivative. Moreover, from (1.2) we have

sup
|x|�s

|G(· , x)| ∈ L1([0, T ]) for every s > 0.

Thus, it is easy to prove that Φ satisfies the same properties of Ψ .
We recall that u is a solution of (Pλ) if and only if u ∈ H1

T and it satisfies

∫ T

0
[u̇(t) · v̇(t) +α(t)Au(t) · v(t)−α(t)∇F (u(t)) · v(t)] dt +λ

∫ T

0
∇xG(t, u(t)) · v(t) dt = 0

for all v ∈ H1
T , that is, if u is a critical point of Ψ + λΦ in H1

T .
Our result reads as follows.

Theorem 2.1. Let α, A, F , G be as in § 1. Assume that

(i) lim sup
|x|→+∞

F (x)
|x|2 < 1

2c;

(ii) the set of global minima of the function H(x) = 1
2Ax · x − F (x) has at least k

connected components in R
N (k � 2).

Then, for every r > ‖α‖L1 infRN H, there exists λr > 0 such that, for every λ ∈ ]0, λr[,
(Pλ) has at least k solutions in Ψ−1(]−∞, r[).

Proof. Set X = H1
T . Let us show that the functionals Ψ and Φ defined above satisfy

the hypotheses of Theorem A. The functional Ψ + λΦ is sequentially weakly continuous
for each λ � 0. We now prove that Ψ is coercive: let σ be a positive number such that

lim sup
|x|→+∞

F (x)
|x|2 < σ < 1

2c.
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Then F (x) < σ|x|2 + m for all x ∈ R
N , for some constant m, and

Ψ(u) � 1
2

∫ T

0
|u̇(t)|2 dt + 1

2

∫ T

0
α(t)Au(t) · u(t) dt −

∫ T

0
α(t)(σ|u(t)|2 + m) dt

� 1
2

∫ T

0
|u̇(t)|2 dt +

(
1
2

− σ

c

) ∫ T

0
α(t)Au(t) · u(t) dt − m‖α‖L1

�
(

1
2

− σ

c

)
‖u‖2 − m‖α‖L1 ,

which implies that Ψ(u) tends to infinity as ‖u‖ goes to infinity.
Specifically, from the coercivity of Ψ it follows that for every r > ‖α‖L1 infRN H the set

Ψ−1(]−∞, r[) is bounded. Moreover, we note that the restriction of Φ to the sequentially
weakly compact set (Ψ−1(]−∞, r[))w has a global minimum.

We claim that

inf
X

Ψ = ‖α‖L1 inf
RN

H.

In fact, for all u ∈ X we have

Ψ(u) � 1
2

∫ T

0
α(t)Au(t) · u(t) dt −

∫ T

0
α(t)F (u(t)) dt

=
∫ T

0
α(t)H(u(t)) dt � ‖α‖L1 inf

RN
H.

Let us denote by M the set of global minima of H in R
N . If x0 ∈ M , then the function

defined by putting u0(t) = x0 belongs to X and

Ψ(u0) =
∫ T

0
α(t)H(u0(t)) dt = ‖α‖L1 inf

RN
H.

Thus, our claim is proved.
We note that, if u ∈ X is not constant, then |u̇| > 0 on some set of positive measure,

hence it cannot be a global minimum of Ψ , and the same is true for constant functions
whose value does not belong to M .

Let γ : R
N → X be the function that maps x ∈ R

N into the constant function
u(t) = x in X: γ is then a homeomorphism between R

N and γ(RN ) (endowed with the
relativization of the weak topology). The set of global minima of Ψ is equal to γ(M);
hence it has at least k weakly connected components.

By applying Theorem A we deduce for every r > ‖α‖L1 infRN H the existence of λr > 0
such that, for every λ ∈ ]0, λr[, the functional Ψ + λΦ has at least k τΨ -local minima
lying in Ψ−1(]−∞, r[).

Since Ψ is continuous, the topology τΨ is weaker than the strong topology in X, and
every τΨ -local minimum is also a strong local minimum, and so a critical point of Ψ +λΦ.
The proof is now complete. �
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Theorem 2.2. Let α, A, F , G be as in § 1, and let assumptions (i) and (ii) of Theo-
rem 2.1 be satisfied. Moreover, assume that

(iii) lim inf
|x|→+∞

ess inf [0,T ] G(t, x)
|x|2 > −∞.

Then, for every r > infRN H‖α‖L1 there exists λ�
r > 0 such that, for every λ ∈ ]0, λ�

r [,
(Pλ) has at least k + 1 solutions, k of which lie in Ψ−1(]−∞, r[).

Proof. Let us show that, for λ > 0 small enough, Ψ + λΦ is coercive. From the proof
of Theorem 2.1 we already know that

Ψ(u) �
(

1
2

− σ

c

)
‖u‖2 − m‖α‖L1 .

Then, there exist b < 0 and s > 0 such that

G(t, x) > b|x|2

for |x| > s and a.e. t ∈ [0, T ], while

g = sup
|x|�s

|G(· , x)| ∈ L1([0, T ]).

Summarizing, for all x ∈ R
N and a.e. t ∈ [0, T ] we have

G(t, x) � b|x|2 − g(t),

which implies that

Φ(u) �
∫ T

0
(b|u(t)|2 − g(t)) dt

� b

ac

∫ T

0
α(t)Au(t) · u(t) dt − ‖g‖L1

� b

ac
‖u‖2 − ‖g‖L1

and so

Ψ(u) + λΦ(u) �
[(

1
2

− σ

c

)
+ λ

b

ac

]
‖u‖2 − m‖α‖L1 − λ‖g‖L1 .

Set

λ�
r = min

{
λr,−

ac

b

(
1
2

− σ

c

)}
,

where λr is as in Theorem 2.1. Then, for all λ ∈ ]0, λ�
r [, the functional Ψ + λΦ admits at

least k local minima and is coercive. Thus, Ψ + λΦ satisfies the Palais–Smale condition,
as it is the sum of 1

2‖u‖2, whose derivative is a homeomorphism between H1
T and its

dual, and of a functional with compact derivative. From [2] it follows that Ψ +λΦ admits
one more critical point. �
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Remark 2.3. As seen in the proof of Theorem 2.2, the existence of k + 1 solutions
follows essentially from the Palais–Smale condition, and the latter is proved through the
coercivity of the functional. By using another standard argument, we could assume that
there exist q > 2 and R > 0 such that, for λ small enough,

0 < q[α(t)F (x) − λG(t, x)] � [α(t)∇F (x) − λ∇xG(t, x)] · x (2.1)

for a.e. t ∈ [0, T ] and for every x with |x| > R. This implies, as λ tends to zero, that

0 � qF (x) � ∇F (x) · x.

Now, if there is some x1 such that |x1| > R, F (x1) > 0 and

F (x) < 1
2c|x|2 (2.2)

for all |x| > |x1|, then it is easy to prove that the function

µ → |µx1|−qF (µx1)

is non-decreasing for µ � 1 and so

F (µx1) � |x1|−qF (x1)|µx1|q,

which together with (2.2) gives a contradiction.
No contradiction arises, however, if we assume that F (x) = 0 for all x ∈ R

N , |x| > R

(so condition (i) is obviously satisfied), together with (ii) and condition (2.1), which
becomes

∇xG(t, x) · x � qG(t, x) < 0.

In this case we get k + 1 solutions for λ > 0 small enough.

In the case N = 1, (Pλ) becomes{
u′′ = α(t)(u − F ′(u)) + λGx(t, u), a.e. in [0, T ],

u(0) − u(T ) = u′(0) − u′(T ) = 0.
(P ′

λ)

The following result, whose proof is analogous (with minor changes) to that of Theorem 1
in [5], yields the existence of k + 1 solutions with no additional hypotheses on G.

Theorem 2.4. Let α, F , G be as in § 1 (with N = 1). Assume that

(iv) lim
|x|→+∞

F ′(x)
x

= 0;

(v) the set of global minima of the function H(x) = 1
2x2 − F (x) has at least k connected

components in R (k � 2).

Then, for every r > ‖α‖L1 infR H there exists λr > 0 such that, for every λ ∈ ]0, λr[,
(P ′

λ) has at least k + 1 solutions, k of which satisfy

1
2

∫ T

0
|u′(t)|2 dt +

∫ T

0
α(t)( 1

2 |u(t)|2 − F (u(t))) dt < r. (2.3)
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3. Examples

In the following examples α and G are as in § 1, while the function F is chosen in order
to satisfy assumptions (i) and (ii).

Example 3.1. Let A be the identity matrix (c = 1), let f ∈ C1([0, +∞[) be a
periodic function such that f(0) > b = infR f , and let q ∈ ]0, 1[ and p ∈ [2, +∞[. Define
F as follows:

F (x) =

{
1
2 |x|2 − (f(|x|−q) − b)|x|p if x �= 0,

0 if x = 0.

Clearly, F ∈ C1(RN ). If p = 2, we get

lim sup
|x|→+∞

F (x)
|x|2 = 1

2 − f(0) + b < 1
2 ,

while, if p > 2,

lim sup
|x|→+∞

F (x)
|x|2 = −∞.

So (i) is satisfied.
The function H, here, is given by

H(x) = (f(|x|−q) − b)|x|p.

H is non-negative and the set of its global minima is {x ∈ R
N : f(|x|−q) = b} ∪ {0},

which has infinitely many connected components.
Then, for every k � 2, (Pλ) has at least k solutions for λ small enough.

Remark 3.2. The function F in Example 3.1 depends only on the norm of vector x.
The thesis holds if we replace |x|p with (|x1| + |x2| + · · · + |xN |)p in the definition of F .

Remark 3.3. It is also clear that the problem considered in Example 3.1 does not
satisfy condition (1.4). In fact, in this case, φ(t, x) = α(t)( 1

2 |x|2 − F (x)). So, specifically,
for all x ∈ R

N , x �= 0,

φ(t, x) − φ(t, 0)
|x|2 � a(f(|x|−q) − b)|x|p−2 � 0.

Example 3.4. Let ϕ1, ϕ2, . . . , ϕk ∈ C1([0, +∞[, R) be functions such that

(1) for all i ∈ {1, 2, . . . k}, ϕ−1
i (0) �= ∅;

(2) for all i, j ∈ {1, 2, . . . k}, i �= j, ϕ−1
i (0)

⋂
ϕ−1

j (0) = ∅;

(3) lim
ρ→∞

1
ρ

k∏
i=1

(ϕi(ρ))2 = +∞.
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Then the problem⎧⎪⎪⎨
⎪⎪⎩

ü = 4α(t)
( k∑

i=1

ϕi(|u|2)ϕ′
i(|u|2)

∏
j �=i

(ϕj(|u|2))2
)

u + λ∇xG(t, u), a.e. in [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0

(Pλ)

has at least k solutions for λ > 0 small enough. It can immediately be seen that parts (i)
and (ii) of Theorem 2.1 are satisfied: specifically, x ∈ R

N is a global minimum of the
function H(x) =

∏k
i=1(ϕi(|x|2))2 if and only if ϕi(|x|2) = 0 for some i ∈ {1, 2, . . . k}.

We would like to emphasize that, for λ not sufficiently small, with all the other assump-
tions of our theorem fulfilled, the thesis may fail, as the following counterexample shows.

Example 3.5. Let us consider the one-dimensional problem{
u′′ = u − F ′(u) + λG′(u), a.e. in [0, T ],

u(0) − u(T ) = u′(0) − u′(T ) = 0,
(Qλ)

where the function F is defined by

F (x) = 1
2x2 − 1

4d1x
4 − 1

2d2x
2

and d1 > 0, d2 < 0. Clearly, F satisfies (i), as

lim
|x|→+∞

F (x)
x2 = −∞.

The function
H(x) = 1

4d1x
4 + 1

2d2x
2

admits two global minima. Choose

G(x) = 1
2x2.

The problem (Qλ) reads as follows:{
u′′ = d1u

3 + (d2 + λ)u, a.e. in [0, T ],

u(0) − u(T ) = u′(0) − u′(T ) = 0.

Theorem 2.2 provides the existence of at least three solutions for λ small enough. Specifi-
cally, if λ < −d2, (Qλ) has at least three solutions (the constant functions corresponding
to the critical points of H + λG). If λ � −d2, (Qλ) has only the trivial solution u = 0,
since no non-constant function u can be a solution. In fact, if there exists t1 ∈ ]0, T [ such
that u(t1) > 0, then we get

max
[0,T ]

u = u(t∗) > 0,

hence
0 � u′′(t∗) = u(t∗)[d1u(t∗)2 + (d2 + λ)] > 0,

a contradiction (analogously, a contradiction is reached if u(t1) < 0).
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