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§ 1. While engaged in a study of the Methodus Differenticdis of
Jas. Stirling (1730) I have been struck by the fact that Nicole's*
Papers on the same subject, printed in the Memoires de l'Academie
Koyale des Sciences (Paris), appear to form a fitting prelude to the
work published by Stirling. The dates of Nicole's Papers are
1717, 1723, 1724, 1727, and it is almost certain that Stirling was
well acquainted with their contents, for he remarks on page 24 of
the Methodus Differentialis :—" Hac de re primus quod sciarn egit
D. Taylor in Methodo Incrementorum. Eadem etiam fusius et
elegantissime traditur a D. Nicol in Actis Academiae Regiae
Parisiensis."

As Nicole's Theorems are right in the line of progress, and are
still of fundamental importance, it seems desirable that some
account should be given of them, more especially as the intro-
duction of the modern notation of the Calculus of Finite Differences
effectively curtails and condenses his conclusions.

The demonstrations are frequently distinct from those given by
Nicole, but in no case do they involve a principle not already
used by him

It will appear that his work is almost entirely concerned with
integral and rational functions to which the methods of Finite
Differences may be applied with special facility. The note on the
standard formulae of Interpolation has been added, though foreign
to Nicole's memoirs, because it forms so elegant and useful an
illustration of the application of Nicole's Functions.

* Francois Nicole (1683-1758), described by Cantor as a pupil of Montmort,
published at the age of nineteen "The Rectification of the Cissoid." In
addition to his memoirs on finite differences, he also wrote several memoirs
on geometry and probability.
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§2. In the First Memoir, Traits du Calcul des Differences
Finies (1717), Nicole proposes to expound certain ideas suggested
to him by a perusal of the Methodus Incrementorum of Brook
Taylor.

THE DIFFERENCE.

Consider a function, uk, of the form

ut = x (x + n) (x + 2n) ... (x +p - In)
and write

«*+i = (x + n) (x + 2n) ... (x +pn),

found by substituting x + n for x in uk. Then the Difference

uk+1-uk=pn(x + n)(x + 2n) ...(x+p- In) (1)

(In modern notation

Aw,. = pn(a; + «) ... (x+p- In), if Ax = n).

Similarly, if

uk= l/x(x + n) ... (x+p- In)

and ut+1 =\/(x + n) (x + 2n) ... (x +pn),

then the Difference

uk-ut+l=pn/[x(x + n) ... (x+2m)] (2)

(In modern notation this would be

A%= -pn/x(x + n)...(x+pn),

but the notation introduced will not cause any confusion in what
follows).

THE INTEGRAL.

§ 3. The Integral is the inverse operation. Thus the Integral

of the function (a; + n) (x + 2n) ... (x +p - In) is equal to

x(x + n) ... (x+p-ln)/pn, (3)

because the Difference for the latter function is the former.

Similarly, the Integral of l/sc(a; + n) ... (x+pn) is

l/pnx(x + n) ... (x+p- In) (i)

Ex. l.—To sum
F=1.2 + 2.3+.. +x(x + l) (5)

If Ft=1.2+...+x(x + l)
and Fk+1 = 1.2+

Here n = \, p=3, and the Integral is i,x{x+l)(x
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Ex. 2.—To sum
5 = 1 . 4 . 7 . 10 + 4 .7 .10 .13+ . . .+x( . c + 3)(a; + 6)(x- + 9) (6)

Here AS = (x + 3)(x + 6) {x + 9){x + 12), n=3, p-5 .
Hence the Integral is

J ( 3)
This is not the correct sum. For when a: + 3 = l , or x= - 2 , the Integral ia

- ^ 2 . 1 . 4 . 7 . 1 0 ,
whereas the sum should then be zero.

Hence the correct sum is
^rx(x + Z) ... (a;+12) + , ^ 2 . 1 . 4 . 7 . 1 0 (7)

Ex. 3.— To sum

- B + i r - 5 + - + / „ , .» + etc (8)

Consider

a n d

1_

Hence the corresponding Integral is l/x.
In particular, by putting x = \, we obtain Brouncker's result

l

(Of course it follows that

i L+ + + i )
1.2 2 . 3 "• x(x+l) {x + l)

The same example ia taken by Stirling (Meth. Diff., page 23).

Ex. U.—To sum

1 . 3 . 5 . 7 3 . 5 . 7 . 9
Denote the general term by

If Fk-Fk+1 = l/x{x + 2)(x + i)(x + 6), we find Ft = i/x

the Integral. To sum to infinity from the initial term, put x=l .:

Ex. 5.—To sum

4 4 9 225
4 7 19

1 . 4 . 7 . 1 0 . 1 3 . 1 6 4 . 7 . . . 19 7T722 +

Nicole's method is very instructive. He takes the general term to be
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He writes the Dumerator of this fraction in the form

in which Ao ... At are easily determined.

The general term may then be written

• , \ { x ( x + 3 )
J r . . • • + • • • +

Hence the Integral is
to , A, \

{x + 3) ... (z + 12) •" 3(a; + 1 2 ) / '

To sum to infinity from the initial term put x = l in (12).

(12)

The interest of this example lies in the fact that he represents
an integral function of x, not as a sum of integral powers of x,
but as a sum of factorials.

Such representations were freely used by Stirling to good
purpose in the Methodus Differentialis.

The development of the principle here employed furnishes the
material for Part II. of Nicole's Traite (1723).

PART II.—Section I.
§ 4. Being given

x (x + n) ... (x + k — In),
to calculate

(x + m) (x + m + n)...(x + m + k - In) - x(x + rj)...(x + k - In)
in the form

«„ + a, (x + n) + a2 (x + n) (x + In) + ... +ak_l(x + n)...(x + k- In).
To attain his object Nicole employs a long inductive process.

The desired result may, however, be found directly with the aid of
the modern notation of finite differences and the application of
Nicole's earlier calculations.

Assume the obviously possible identity
(x + m) (x + m + n)...(x + m + k- In)

= Ao + At(x + n) + As(x + n) (x + 2n) + ...Ak(x + n)...(x + kn) (13)
and calculate Ao, Alt ...Ak.

Put x= -n in the identity (13).
.•. Ao = (m - n) m (m + n) ..(m + k — 2n).

Equate to each other the rtb differences of the two sides of the
identity for A* = n.

3 Vol.36
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On the left side we obtain

nrk(k-l)...(k-r+\) (x + m + rn) ...(x + m+.k- In);
and on the right

nr r ! Ar + (x + r + In) <j> (x)
where <£ (a;) is an integral function of (a;).

Write a; + r + l n = 0, i.e. x=-(r + l)n.
.: nrr\Ar = nrk(k~\)...(k-r+\)y.(m-n)m(m + n)...

-r-2n).
Hence Ar = kCr(m-n)m(m + n)...(m + k-r- 2n) (14)

Finally, Ak_2 = tC2 (m - n) m

We thus find
Ak = 1 .

(x + m) (x + m + n)...(x+m + k- In)
= (»» -n) (TO) (m + n)...(m + k- 2n)

r=k-l
+ 2 fir (m ~ «) (»») ...(»» + A - r - 'In) (x + n) (x + 2n) ... (a; + rn)

r=l

+ (x + n)(x + 2n) + ...(x + kn) (15)
Also x(x + n) ... (x + k- In)

= (a; + re) (a? + 2n)...(x + kri)
- In) :

so that the difference may then be obtained in the desired form:—
(m - n) m (rn + n)... + (m + k - 2w)

r=i-2 _ _ _ _ _ _

r = l

+ km(x + n) ...(x + k-ln). (16)

Cor. 1.—If m = n, there is a reduction to the first case
considered.

Cor. 2.—H n = 0, we find

r = 0
(17)

[Cor. S. (x + m) (x+m + n)...(x + m + k- In)
— m(m + n)...(m + k— In)

, r ( + ) ( + -f-l) x
r=l

+ „(„ + »»)...(* + * - ! » ) ] (18)
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APPLICATIONS.

Ex. 1.—To find the integral corresponding to, say,

when <±x = m, Nicole uses the method of indeterminate coefficients.

He assumes the integral to be of the form

of which the difference for Ax=m is then formed according to the rule given
by (16). Corresponding coefficients equated to A, B, ... furnish in succession
the values of alt etc.

Ex. 2.— To sum 1 . 4 . 7 . 1 0 + 5 . 8 . 1 1 . 1 4 + (19)

Here n-3, m — 4; and we may write the general term as

(x + n) (x + 2n) (:c + 3n) (x + in).

The integral is therefore of the form

The oonstants A are determined as in the preceding example.
To get the correct sum, add a constant C such that when £ + 3 = 1 we have

F(-2) + C=0. For then the sum should be zero, since the difference
reduces to the first term.

Thus the sum of three terms is .F(IO) - F( —2).

§5. Memoir, Section II. (1723), and Memoir (1724) entitled
Addition aux deux Memoires sur le Caicul des Differences Finies,
imprimes I'annee derniere, deal with Inverse Factorial Series, and
may be taken together.

In Section II . Nicole establishes the relation

1 1
x(x + n)...(x + kn-n) (x + tn) (x + m + n) .... (x + m + kn-n)

- n) (x + m)..,(x + m + kn - n)

m (TO - n)j(x + tn- 2n)...(x + m + kn - n)

+ 1l m(mn)(m
1 . J . o

+ etc. + kHrm(m-n)...(n)/x(x + n) (20)

He assumes that m is a positive integral multiple of n, m = rn,
so that the series contains only r terms.

Cor. 1.—If m =• n there is a reduction to (2).
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Cor. 2.—By putting n = 0 he obtains an infinity of terms, and
writes the result

l l m „ m" .„
ff+ A * + e t c {

As a special case,
a

(1-a)* (1 - a)k (1 — a + a)k

. V s TJf f.r+1 /99\

r=l

and he adds an independent proof of this result.

The memoir of 1724 furnishes another demonstration of the
theorem of Section II., in which the restriction that r shall be an
integer is removed, so that the series may have an infinity of
terms. It is preceded by another expression for the difference,
viz.:

1 1
x (x + «)...(a; + kn — n) (x + tn)...(x + m + kn — n)

k

k(k + l)
T:—jj— m(m - n)lx
1 . 2i

k(k+\)(k + 2)
+ . n o — - m (m - n) (m - %n)/x (x + n) ... (x + kn + 2n)

- etc (23)

DEMONSTRATION.

§ 6. Write, as Nicole does,

_1_ __J m
x x + m x{

x (x + m) (x + m-n)
m m(m-n)

(x + m-n) (x + m) (x + m-n) (x + m)x '

m(m-n)(x + m- 2n)
i.e.

(x + m- 2n) (x + m-n) (x + m)x'
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1 1
x x + m

m m (m — n)
= ^ : L

(x + m - n) (x + m) (x + m- 2n) (x + m-n) (x + m)

+ m(m-n) (m - 2n)/(x + m- 3n)...(x + m)

+ etc (24)
The series terminating if mjn is a positive integer.

To the two sides of this identity apply the formula (2), and
take the (k- l)th difference on each side, putting Aa; = w. Divide
on both sides by (k - 1)! nk~\ when we find

1 1

x(x + n)...(x + k - In) (x + m) (x + m + k- In)

= km/(x + m — n) {x + m)...(x + m + kn — n)

k (k + 1)
H -̂——-m (m-n)/(x + m- 1n)...(x + m + kn-n)+ etc. (25)

The process of taking the Differences seems so simple that one
wonders that Nicole does not use it.

To satisfy modern requirements the interesting question of
convergence should be discussed, but this we omit just as Nicole
does.

§7. Again,

1 1
x x + m

m

x(x + m)

= m(x + n + m — m)/x (x + n) (x + m)

m
x(x + n)

TO

x (x + n)

— etc .

m(n •1 \
x (x + n)

| m(n
x (x + n)

- m)
(x + m)

- m) m (n - m) (2n - m)

(x + 2n) ' x(...)(x + m)

(26)

Apply to each side of this equation the formula (2), and take
the (k - l)th difference for Ax = n ; divide throughout by n"-\k - 1) !
when (23) follows readily after a simple transformation.
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[By writing in it -^m for m, and taking n—\, we get the
formula

1 1
(x-m)(x-m+ 1) ... (x-m + k- 1) ~x(x+ l)...(x + k- 1)

w (m + 1)

MEMOIR, 1727.

§ 8. This, the last memoir of the set, takes up the summation
of a variety of series as deduced from the chain of identities

1 1 b
+ -a — b a a (a — b)

_ 1 6 , 6(6 + c)

a a(a + c) a(a + c)(a-b)

1 6 b(b + c)
a a(a + c) a(a + c)(a-

b(b + c)(b + d)
a (a + c) (a + d) (a - b)

etc.

Of this a particular case is

1 1 6 6(6-

a—b a a(a + l) a(a+\

sometimes called Stirling's Series,* which is, of course, fundamental
in §§ 6-7.

As I understand that this memoir has had attention drawn to
it by Enestrom (Comptes Rendus 103 (1886), pp. 523-5), it need
not here be further discussed.

* Meth. Diff., p. 12.
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APPLICATION OP NICOLE'S FACTORIALS TO THE STANDARD FORMULAE

OP INTERPOLATION FOR A FUNCTION f(x).

§ 9. Let f(x) be an integral function of x of degree n. I t may
be represented in a great variety of ways in the form

f(x) = A0 + A1(x-

in which the coefficients may be found by division in any
particular case.

For certain values of a.lt.,.,a.n the expansion may be found
very simply by Nicole's Functions—certainly in all cases cor-
responding to the standard formulae of interpolation, in which
^ — 04 = ou - a.., = etc.

The principal of these are the following :—

(i) A. + A.x + A,00^'^ +pix(x-l)(x-2)+ etc.

(ii) Ao + A.x + A . ^ ^ ^ + hx(x+l)(x + «) + etc.

(Newton).

(iii) Ca + C, x + C23? + (C3 x + C< x-) (x2 - I2)

+ (Csx + Ce x
2) (x2 - P) (z2 - 2!) + etc.

(Stirling I.).

(iv) Co + C, x + (C2 + Cs x) (*2 - I2) + (C4 + C5 x) (x2 - I2) (x- - 32)
+ (C(! + CT x) (ar - I3) (x- - 32) (x- - 52>+ etc.

or

(Stirling II . ) .

(v) ^ 0 + ^ a ; + ^ a ; ( a ; _ i ) + ^ (

(Gauss (Encke) I.),
(vi) Ao + A,x + A2 x+1C2 + A3,+1C3+ ...

... + Air »+rC2r + A«r+i ,+rC2r+1 + ...
(Gauss (Encke) I I . ) .
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Now, on noting that a.x + f3x- = x(a. + /3n + {3x- n), we may
write (iii) in the form

i.e. in a form equivalent to (v).
Likewise, since OLX + /3xr — x (a. - fin + /? x + n), it follows that

(iii) may be written as in (vi). Thus, from our point of view, the
Gaussian formulae differ only in a trifling detail from the older
formula (iii) of Stirling.*

If these expressions are examined (with the alteration in (iii)),
it will appear that they have the common property of consisting of
a sum of Nicole's Functions, and that any factors in one such
function are reproduced in all the following functions. It will
then be seen that the coefficients may be easily expressed by the
notation of Finite Differences.

§ 10. For example, take Gauss's Formula (v).

Inf(x) = AQ + AlxC1 + AixC*+ etc (28)
Puta; = 0. .-. A0=/(0).

Take the first difference on each side of (28) for Ax= 1.
.-. A/(<e)=A + x<j>(x), (29)

where <f> (x) is an integral function of a;. Put x = 0.
••• A = A/ (0 ) (30)

Similarly,
A*f() A

.-. 4 = AV(-') (31)
and

.: Ar+1 = A-+ ' / ( - r ) (32)
In the case of No. (iv) we have to take Aa; = 2. We find

A2' f(x) = 2*rA2r + (x + 2r + 1) -/, (x),
.: ^2r = A V ( - 2 r - l ) / 2 2 ' (33)

* Really due to Newton, see § 14.
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and
(x + 2r + 1) + (x),

/(-2r-l) (34)

It is needless to do more than tabulate the results to be thus
obtained:—

(i)' /(*)-/<0)+2f A'/(0),Cr.
r = l

(ii)' f{x) =/(0) +"2 A'/( - r) ^ .
r = l

(iii)' /(*) =/(0) + i [ x {A/(0) + A/( - 1)} + a? AV( -1) ]

+ a:5 A2'+2/( - r - 1)] (x2 - 1=) (a2 - 22)... (a;2 - r2).

N.B.—For A 2 r + 2 / ( - r - 1 ) may be written

A2'-+1/( - r) - A2 r + 1 / ( - r - 1).

(iv)' /(a;) = i {/(0) + / ( - l) + x A / ( - 1)}

^ ( - 2r - 1) + A V ( -2>-+1)}

+ a;A2r+1/( - 2r - 1)] (x2 - I2) (a;- - 32)...(x2 - 2r - I2).

i^.^.—For A-r+lf(-2r- 1) may be written

A s ' / ( - 2' ' + 1) - A 2 ' / ( - 2r - 1).

(v)' fix) =/(0) + A / ( 0 ) x + A 2 / ( - 1),C, + A V ( - 1) x + A
+ ... + A V ( - r) x+r^C!r + A2^1 / ( - r) x+rC2r+l + etc.

(TX)' f(x) =/(0) + A / ( - 1) * + A 2 / ( - 1) x+iCs + A 3 / ( - 2) X+IC3
1 / ( - r - 1) I+rC2r+I + etc.

Since Ar/(a:) is a linear homogeneous function of f(x),
f(x + h), ...f(x + rh) for Aa; = A, it is not difficult to see that
f(x) is supposed known for

x = 0, 1, 2, ... n in (i)'
x = 0, - 1, - 2 , ... -ra in (ii)'
x = 0, - 1 , +1 , - 2 , +2, ... in (iii)', (v)' and (vi)'
a;= - 1 , +1 , - 3 , + 3, ... in (ivy.
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Though the fundamental values chosen are not the same, the
graphs of the corresponding functions are all identical ; for the
integral function of degree n is uniquely determined by assigning
its values for n + 1 values of its argument.

§ 11. It will now be obvious how to make up a great variety of
similar formulae in which the coefficients may be simply expressed
by the notation of Finite Differences.
e.g.

Ao + A,x + A.2x(x - 1)12 ! + .. .+ Ar+l x{x-\) ... (x - r)/(r + 1)!

+ etc (35)

+ terms in which the factors x + r+2, x + r + 3, etc., are
introduced in succession (36)

The rule of formation is as follows :—
Consider the equidistant values of x

«-_j, «•_», «._!, a., a.,, «.,, a..j...

where ...a. —a._1 = a.j — a. = a-j—a.1( etc.

Form the chain of factors

... x - a._1, x - a., x - «.[, x - u..,, etc.

Start with x - a.; then take either of the adjoining factors,
say x - cc,, then either x - <x2 or x — «._] adjoining, and use them
in this order to form the succession of Nicole's Functions
corresponding. There seems no reason why such a representation
might not be of practical value in particular cases.

THE COMPLEMENTARY FUNCTION.

§ 12. When f(x) is not an integral function of x, if -F(a;) is the
integral function formed by the above process, then the identity

f(x)=F(x)
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is impossible in general, though true for at least the n + 1 values
of x chosen in succession. Let them bea , , «_,, ... <x,1+1.

Then f(x) = F{x) + 4> (x) U(x- 04)
would equally well represent the function, provided <f> (x) is finite
for x = o.lt ..., «.„+,.

Suppose the value of f(x) is wanted for x = /3, and that it
satisfies the equation

where R is a constant.
Then f(x) - F(x) - BU(x -a.) = 0 for the n + 2 values

«-i ••• «-«+n P-
Hence, by Rolle's Theorem, for some intermediate value £ of x

we must have
/<-+»(£)-.»(» +1 ) !=0 .
••• £ = / " * " (£)/(»+ 1)1

Hence f(x) = F(x) + U(x-a.)/'"+1)(f)/(w + 1)!
is also true for x = /8.

The function II (x - CL)/"'+11 (£)/(« + 1) ! is called the Comple-
mentary Function. The maximum error made by assuming
f(x) = F(x) will depend on the maximum value of

II (a:-a.)/'-™ (£)/(»+1)1
in the interval «.,... <x,i+1, /S.

The actual error may be much less.
If, as sometimes happens, the Complementary Function is

negligible in the interval, we may for all practical purposes
assume f(x)-F(x). Otherwise this assumption may be quite
illusory. As serious a source of error may arise from the fact that
the values of f(x) are not absolutely accurate as is assumed in
the theory, but merely approximations.

§ 13. Some further examples of expansions by means of Nicole's
Functions.

(1) If f(x) is an integral function of x, to represent f(x) in
the form

An + Atx + A*x- + (A3x + A^) (ar + 1-)
+ (A, x + Ae x

2) {x- + V) (a:2 + 22) + etc.
or

x (ar + r-) (...) (ar + 22) (or + 1")x.
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The sequence of values of x is

and we take Aa: = i.
Hence A0=/(0)

and we find, after some reductions,

f(x) =/(0) + ^

It is not difficult to verify directly that

A2r+>/( - ri) + A21"1 • ' / ( - ri - i)

is purely imaginary, and A-r+J/'( - ri - i) is real, when f(x) has
real coefficients.

(2) To represent f(x) in-the form

Ao + A1 x + {As + iljx) (a? + P) + (44 + A5x) (x" + I2) (ar + 2s) + etc.,
obtain xf(x) as in the preceding example and divide out the
factor x.

(3) f(x) = Ao + A, x + {A» + A3x) (xs + V)
+ (At + A-ox) (x- + I3) (ar + 33) + etc.

Ao + A, x + A»x° + (A3x + A4x") (x - a3

+ (A-ox + A6x-) (x - a.2 + 4/3-) (x - a? + fp) + etc.

§14. Newton's Interpolation Formula (i), §9, first occurs, I
think, in the Principia Book III., Lemma V. The rest of this
Lemma states the more general formula of parabolic interpolation
for unequal increments of the variable. Professor Whittaker has
drawn my attention to the fact that, the so-called Stirling
Formulae (iii) and (iv) were given by Newton in the short tractate
Methodus Differentialis (1711) many years before Stirling used
them (Phil. Trans., 1719, or Treatise, 1730) Newton there gives
them as Casus (i) and Casus (ii) of Prop. III .

He also attaches two Casus to his Prop. IV., which, for equal
increments, furnish very simple examples of my statement in § 11.
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Case (i).—Suppose/(.x), of even degree, given for the 2m+ 1
values

/ 3 m > •••! ( i s i A > «-> « - i » - - - . « - „ • •

Take these in the order a., a-j, ft , 04, ft, etc., and also in the
order a., ft, a.,, ft,, a_2, etc., to furnish

f(x) = A0 + Al(x~a) + A2 (x - a) (x - a j + A. (x - a) (x - a,) (a; - ft)
+ etc.

and

f(x) = B0 + B1 (x - a) + B.2 (x - a) (* - ft) + B3 (x -a)(x- ft) (x - a,)
+ etc.

Then it is easily found that

A0 = B0; A^B,; A4 = Bt; etc.,

so that on adding and dividing by 2 we find f(x) in the form

+ etc.
Similarly, when 2m + 2 values are given

ft, ... ft ft aa, ... am,
take these in the order

«•> P, a,, /? , , a2) ft, etc.,
and then in the order

ft a., ft , o.,, ft, «.,, etc.,
to obtain f{x) in the forms

Ao + At (x - a) + A.2 (x - a) (x - P) + etc.
and Bo + B, (x -f3) + B»(x- /3) (x-a)+ etc.

Then ^i = -8i, A = B3, etc.,
and by adding we find

etc.

The expressions given by Newton have the same form, but for
unequal increments. I t is a simple matter of elementary algebra
to show a priori that such expressions are possible. Nothing
therefore seems to have been added to this form of interpolation
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since Newton's time, and Stirling's remark* in his Treatise, p. 107,
applies to this day.

ADDENDUM.

From the foregoing it seems natural to infer that Nicole was
the first to introduce the Inverse Factorial Series. His first
Memoir bears the date 30th January 1717. In the Philosophical
Transactions for the months of July, August, and September 1717
(No. 353), there was published a Memoir entitled Be Serinbus
Infinitis Tractatus. Pars Prima. Auctore Petro Remundo de
Monmort, R.S.S. Una cum Appendice et Additamento per D. Brook
Taylor, R.S. Sec.

From this Memoir it is clear that both Montmort and Brook
Taylor had at the same time been busy with similar ideas. The
opening theorems are identical with those of § § 2, 3 in Nicole's
Memoir, save that the difference of l/x (x + n)... is taken with the
negative sign as in modern notation. With respect to the
summation of ~2x(x + n) ... (x+p - In), Montmort remarks in
Scholium I. to Prop. I. :—"In hacpropositions continetnr particula
quaedam Methodi Incrementorum de qua ante biennium librum
edidit D. Brook Taylor, Soc. Reg. Lond. Seer. Librum ipsum
adeat qui de ea methodo plura scire velit." Montmort had therefore
received his inspiration from the same source as Nicole.

In Prop. II . he shews how to find ^<f>(x)/(x + n)...(x+p - In)
in the same way as Nicole, viz., by writing <f> (x) in the form
Ao + A1x + A.2x(x + 7i)+ . . . .

In Prop. V. he shows how to sum Hlj(x + a) (x + b) (x + c)...,
where a, b, c... are positive integers, by inserting the product
(x + a+ 1) (x + a+ 2)...(x + b - 1) (x + b + 1)..., etc., and then pro-
ceeding as in Prop. II .

Scholium 3, attached to this proposition, gives the expansion
of ]./(* +<x) in the form A/x + B/x (x+1) + etc., commonly
described as Stirling's Series.

* " De desoriptione Curvae Parabolici generis per data quofceunque puncta
egerunt plures celebres Geometrae post Newtonum. Sed omnes eorum
solutiones eaedem stint cum hisce jam exbibitis ; quae quidem a Newtonianis
vix discrepant, etc."
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It may also be noted that his Lemmas (1) and (2) are the
Newtonian Formulae of Interpolation (i) and (ii), though he refers
for proof to his own Essai d'Analyse.

Brook Taylor in his Appendix shows in a masterly manner how
to deduce by his method of Increments the conclusions obtained
by Montmort.*

00

In the summation of 2 <£ (x)j(x + a) (x+b)... he points out that
the degree of <£ (x) must be less by 2 than that of the denominator.
He then represents the fraction <j>(x)/(x + a) ... as a sum of
partial fractions

where A+J1+ ...=Q.

* Pierre Remond de Montmort, born at Paris in 1678, and left with a
sufficient patrimony, devoted himself to the study of mathematics1. In 1715,
accompanied by the Abbe Conti, he visited London, and made the acquaint-
ance of Newton and other scholars. During his stay in London he had more
particularly the help of his compatriot Demoivre, who writes in his
Miicellanea Analylica, p. 149:—"Habuit me comitem, interpretem,
ductorem ; apud Newtonum aliosque doctos viros admissus eat, urbaniter
ab iis exceptus, tandemque Societati Regiae annumeratus." His Masai
(V'Analyse tiur le» jtnx de. Hazard appeared in 1708 and in 1713. He died
in 1719.
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