
ON FACTORIZATION OF ELLIPTIC FUNCTIONS 

F R E D GROSS 

I. Introduction, In this paper we shall be concerned with the following 
problem: If h is an elliptic function and h(z) = f(g(z))> what can be said about 
the functions / and g? In order to simplify the discussion we introduce some 
basic definitions. 

Definition 1. A meromorphic function h{z) = f(g(z)) is said to have/(z) and 
g(z) as left and right factors, respectively, provided that either/(z) is non-linear 
and meromorphic and g(z) is non-linear and entire or f(z) is rational and g(z) is 
meromorphic. 

Definition 2. h(z) is said to be prime if every factorization h(z) = f(g(z)) 
implies that one of the functions/(s) or g{z) is linear. 

Definition 3. h{z) is said to be pseudo-prime if every factorization 
h(z) = f(g(z)) implies that either f(z) is rational or g(z) is a polynomial. 

All factorizations fall into one of the three following categories: 
(a) / rational and g meromorphic, 
(b) / meromorphic and g entire and transcendental, 
(c) / meromorphic, g polynomial. 
We shall have occasion to refer to these categories (a), (b), and (c) in what 

follows. 

II. Theorems about right factors. 

LEMMA 1 (the inverse function theorem). If w: f(£) is meromorphic in 
I £ ~~ £o| < R, then it is possible to find a p, 8 > 0 and a positive integer q such that 
all solutions £ of the equation 

M) =w ( |«/-/(£o)| < P ) 

which satisfy |£ — £0| < à are given by 

where <£(/) is a Laurant series in t with at most a finite number of negative powers. 

Using Lemma 1, one can easily prove 
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LEMMA 2. Let h(z) = f(g(z)) be an elliptic function and {cn} a sequence of 
complex numbers tending to co. Choose a period parallelogram P of h(z) and 
determine the period wn of h(z) so that cn — wn £ P. If {g{cn)} is bounded, then 
one of the numbers wk — wtis a period of g(z). 

Proof. We may suppose that 

Cn — Wn->C0 G P) 

then g(cn - wn) -> g0 = g(c0). 
By the inverse function theorem there is a neighbourhood N of /(go) so that 

for all w £ N, all solutions of 

/(f) = v) 

which lie in |f — g0| < 5 are given by the formula 

m f ^ [ ( W - Z t e o ) ) 1 7 ' ] , / ( go ) ^ co, 
W f = *[«ri/«] /(go) = - , 

and </> is a Laurent series with a finite number of negative terms, at most. 
Let 

w = h(z — wn) ( = h(z)) 
and let 

f = g(z - wB). 

Then, for all sufficiently large n and |z — cn\ < e, say, g(z — wn) is given by one 
of the determinations of (1). Since there are only a finite number of these, 

g(z - wk) = g(z -wi) 

for two indices k and I. This completes the proof of the lemma. 

Immediate consequences are Theorems 1 and 2 below. 

THEOREM 1. In case (a), g(z) is elliptic. 

Consider from now on only factorizations (b) and (c). 

THEOREM 2. In case (b) g{z) is a periodic function; there is a number a ^ O 
and an integer M such that 

M 

(2) «(«)=£«/'. 
k=-M 

At least one ck with k > 0 and one ck with k < OisdifferentfromO. 

Proof. I t suffices to show that the functions of the form (2) are the only 
periodic functions tending to œ as x —> °° (z = x + iy). Suppose that g(z) is 
periodic, of period 2iri, g{x + yi) —» c° as x —> oo. Let f = ^z; then g(s) is an 
analytic function of f in 0 < |f | < oo . Therefore 

(3) « ( * ) = £ * { * 
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and if g tends to limit as x —> °° , then f = 0 and f = <» are either removable 
singularities or poles of (3), i.e., 

M 

THEOREM 3. A right factor of an elliptic function of order 2 (i.e., 2 poles in its 
period parallelogram) must be either a polynomial of degree 2, of the form 
A cos(cs + r) + B or elliptic where A, B, c, and r are constants. The latter case, 
clearly, can only occur when the corresponding left factor is rational. 

Proof. If/ is any transcendental meromorphic function and g(z) is a trans­
cendental entire function, then 

T(r,f(g))/T(r,g)^œ 

as r —> oo (see Hayman 5). Any elliptic function, h, of order 2 satisfies an 
equation of the form 

(h'Y = P(h) 

where P i s a polynomial. Suppose that h = f(g) ; then (g'f'(g))2 = P(f(g)). 
We may assume that / is transcendental. (This follows from the inverse 

function theorem.) 
By the opening remark in our proof, we see that 

(g')2 = Qi(g)/Q*(g), 

where Q\(w) and Q%(w) are relatively prime polynomials. Let 

Qi(w) = ci(w - ai)"i . . . (w - ak)
n\ 

Ç2O) = c2(w - 61)ll . . . (w - bm)tm; 

Ci, £2 constants. Then 

u-\ ( g - g i ) " 1 ( g - g » ) " , . . . ( g - a O " * _ , ,s2 
w ( g - 6 i ) " ( g - & 2 ) ( 2 . . . ( g - W m c u ; * 
c constant. 

Since g' has no poles, the denominator of (4) cannot vanish. Thus we may 
assume that tt = 0 for i > 1. If h 7̂  0, then g must be of the form ea + bu 

where a is entire. This implies that g cannot have any additional completely 
ramified values. Hence in this case (4) implies that 

c(a'eaY = e~tla, 
which is impossible. 

We, therefore, conclude that 

(5) (g - a.Y^g - a^ . . . (g - a*)»* = c(g'y. 

Since g can have at most two completely ramified values in the finite plane, 
we get 

(6) (g - ai)»ife - a2)*« = c{g')\ 
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By Theorem 2 we may assume that g attains ax. If n\ > 1, then g' must have 
a double zero, so that g" vanishes whenever g(z) = a,\. Thus g must attain a,\ 
triply everywhere. Repeating this argument we would arrive at the ridiculous 
conclusion that g attains a,\ with infinite multiplicity. 

The only possible values for rt\ and w2, therefore, are 0 and 1. 
Suppose that g is a polynomial of degree n. Then (gr)2 has degree 2n — 2 

while the left side of (6) has degree n or 2n. It follows, in this case, that n = 2 is 
the only possibility. 

When g is transcendental, n\ and n2 must both be equal to 1. Integrating the 
resulting equation one gets 

g = A cos(cz + r) + B, 

where A, B, c, and r are constants. This completes the proof. 

With respect to Theorem 3, we note that the Weierstrass ^-function is even 
and can be expressed as the ratio of two even entire functions. Thus, it can be 
written as f(z2), where / is meromorphic. There also exist meromorphic func­
tions fn(z) with the property that/w(3w) is elliptic for n = 3, 4, and 6. We prove 
this for n = 6. A similar proof exists for the case n = 4. 

The Weierstrass ^-function can be expressed as 

«?(*) = ( l + Ê ckz*k)/z\ 

where the coefficients ck, for k > 4, satisfy the recursive relation 

q k—2 

Ck = ~(2k+l)(k-'3) S Cm Ck~m 

and 
c2 = g2/20, c, = g3/28 

(see N.B.S. Handbook 4). 
One can easily verify, by induction, that when gi = 0, ck = 0 if and only if 

k ^ 0 (mod3) . 
Thus, the corresponding g?-function is of the form f(z6)/z2. Consequently 

G(z) = £P(V)3 may be written as h(zQ), where h is a meromorphic function. 
On the other hand, a circle of least positive radius containing a period can 

have only 2, 4, or 6 periods lying on it. I t follows that for n = 5 or n > 7, zn 

cannot be a right factor of an elliptic function. 
This leads to the following conjecture about factorizations (c) which the 

author has not been able to resolve. 

Conjecture. If g is a polynomial of degree n, where n = 5 or n > 7, a n d / is 
any meromorphic function, then/(g) is not elliptic. 

Particular functions having transcendental right factors of the type described 
in Theorem 3 are 

£P, sn, dn, en, and V ( £? — £i). 
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In fact, explicit factorizations can easily be found. For example (using the 
notation used by Hille in (6)). 

/ o r / v 0,2i/u-i/2 . f j / 1 — 2qn cos 2z + qin \ 

Thus, 
sn(2ZsA) = / ( s in2) , 

where 

(?) Kw) = cw n vr=^^=^=^7T+l ï^/ • c a constant' 
is a meromorphic function. 

More generally we remark that every elliptic function of order 2 has a right 
factor of the form cos(as + b), where a and b are constants. This follows from 
the fact that every even elliptic function is a rational function of a ^-function 
(see Hille 6) and from the fact that every elliptic function of order 2 has the 
property that for some constant 7, <j>(2y — z) = <j>(z) (see Neville 7). Simply 
let zf = z — 7 and <f>(z') = <j)(z' + 7) and observe that $(JS') is an even elliptic 
function. 

While the above functions have transcendental right factors, there are some 
functions for which this is not the case. 

THEOREM 4. Let 

^ = ? + § * 4 + " ' (i.e., take ^2 = 0). 

<@' is pseudo-prime. The only possible non-elliptic right factor is a cubic polynomial. 

Proof. <@f satisfies a differential equation of the form 

O' ) 3 = P(w), 

where P(w) is a polynomial. 
Suppose^ ' = f(g). 
As in the proof of Theorem 3 we conclude that 

(g')z = c(g - ai)»Kg - a2)
w*. . . (g - ak)

n\ 

and that g attains every value. If n\ > 0 and n2 > 0, then g must attain a± and 
#2, each with multiplicity 3. This is impossible. Hence we may assume that for 
i > 1, tit = 0. One sees easily that n\ < 2 and that g must be a polynomial 
satisfying the condition 

(g'Y = *fe - aO-i. 

If g has degree K, then (g')3 has degree 3(K — 1), while (g — &i)Wl has degree 
n\ K. Hence 

3(K - 1) = »! X 

and K = 3, ni = 2. Our proof is complete. 
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It is clear from the series for $ that <@'(z) = f(zz) is a valid factorization and 
one can find/ by looking at the series for $'(z). 11 is interesting to note, however, 
that by using the condition established in the proof of Theorem 4 

(8) P(j{w))/(j'{w)y = c(w - a,)\ 

P a polynomial, one can express/ in closed form. This has the advantage that 
many of the properties of the possible polynomial right factors might be easier 
to analyse when/is expressed in this form. 

Using (8) one can show that when zz is replaced by an arbitrary cubic 
polynomial of third degree, 

f{w) = ± V[&(ffiMw - ai)1" + c))* - gzl 

Co a constant, where %>i(u) is a Weierstrass elliptic function with its g2 constant 
equal to zero. 

We note that when g = s3,/corresponds to the values a\ = c = 0. 
It would be interesting to know whether prime elliptic functions also exist. 

Unfortunately, the author has not been able to resolve this problem. 
By the method used in the proof of Theorem 3 one can also prove 

THEOREM 5. An elliptic function y has a common right factor with an elliptic 
function <j> of order 2 if and only if rj is a rational function of <j>. 

COROLLARY. Any two elliptic functions of order 2 having a common right factor 
must be linear transformations of each other. 

III. Theorems about left factors. 

THEOREM 6. Let h be elliptic and suppose it has the factorization 

h = fog. 

If f in addition, for some non-rational function # , / has the factorization f = </> o x, 
then either x is of order 1/2 and g is a quadratic polynomial or xis a polynomial. 

Proof. By Theorem 2, either g is a polynomial or g is transcendental and both 
g and x(g) a r e of exponential type with the type of g, r(g), positive. Suppose 
that the latter holds if x is also transcendental. Then 

T(r, x(g))/T(r, g) -> oo as r -» co 

(see Hayman 5). Consequently, in this case, r(x(g)) = °° and we have a 
contradiction. Thus, if x is transcendental, we may assume that g is a poly­
nomial and x(g) is periodic transcendental of order 1. It follows (see 2, Theorem 
6) that g must be a quadratic polynomial and x of order 1/2. This completes 
the proof. 

For particular functions one can say more about the left factor ; for example, 

THEOREM 7. / defined by (7) must be pseudo-prime. 

Remark. Though this follows from Theorem 6, we give a somewhat more 
illustrative direct proof. 
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Proof. For suppose that / = 1(g), g entire and transcendental. Then 
l(g(cos(cz + r))) is an elliptic function of order 2 which has g(cos cz + r) as a 
right factor. g(cos(cs + r)) must, therefore, be of the form cos(c'z + r'). But 
for any K > 0, 

T(r, g(co$(cz + r))) > KT(r, cos(cz + r)) 

for sufficiently large r. One can easily verify that 

Me0Brz(r) ~ ci eC2r, ci, c2 constant. 

It follows from the well-known fact 

T(r, / ) < log+ M(r,/) < f - ^ T(R, f) (0 < r < R) 

that 
T(r, cos as) '-^ cr, c a constant. 

Thus, 
T(r,cos(c'z + T')) < c"r < K'cr < KT(r, cos(z + r)) 

for sufficiently large K! and K. Our assertion therefore follows. 
By a method similar to the proof of Theorem 7 in (3) we prove 

THEOREM 8. Let h be an elliptic function with left and right factors f and g 
respectively. If g is entire, then f has no deficient values. 

Proof. Applying Lemma 1 to entire functions, one can easily verify t h a t / 
cannot be a rational function. Furthermore, h, being an elliptic function, has no 
deficient values. Thus, if g is a polynomial, one can easily verify t h a t / has no 
deficient values either. Let us, therefore, assume that both / and g are tran­
scendental and that g is not elliptic. Let r = reid be a period of h. We may 
assume that g is not periodic with a period having argument 6. LetL be equal to 
the half-line reie everywhere except near poles of h, where we letL loop around 
them with radius e, e a small positive number, h is bounded on L. If g is also 
bounded on L, then it follows that g is periodic with a period having argument 6. 
Since this contradicts our hypothesis, we may assume that g(L) is a curve 
extending to infinity. Furthermore, since g is assumed to be transcendental, / 
must be of zero order.* By a well-known extension of Wiman's theorem (see 
Hay man 5), a meromorphic function of order zero which has a deficient value, 
a, satisfies the condition that for some sequence rn —> + oo, f(rn eia) —> a as 
n —» oo , uniformly for 0 < a < 2w. Thus °° is not a deficient value of / . 
Similarly, by considering for arbitrary points, a, the function l/(h — a) one 
sees that a is not a deficient value of/and our theorem follows. 

While right factors are either polynomials or periodic, (Theorems 1 and 2) 
left factors are never periodic. 

THEOREM 9. An elliptic function cannot have a periodic left factor. 

We shall need the following. 

*See Lemma 3 below. 
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LEMMA 3 (Edrei and Fuchs 1 ). If f is any meromorphic function and g is 
entire, then f(g) is of finite order implies that either f is of finite order and g is a 
polynomial or f is of zero order. 

Proof of theorem. Let h = f(g) be an elliptic function. If g is transcendental, 
then / must be of order zero. This is an immediate consequence of Lemma 3. 
Since any periodic function is at least of order 1, it follows that / cannot be 
periodic. Before proceeding with the case when g is a non-linear polynomial we 
prove the following fact: 

Let P(z) be any non-linear polynomial and let S be the locus of points satisfying 
at least one of the equations P{z) = m + c, c a constant, m = 0, ± 1 , ± 2 , . . . . 
Then S has an infinite sequence of elements zt such that \zi+j. — z\,ft > 0, takes 
on arbitrary small values as i approaches infinity. 

The proof of this fact is fairly simple. Let 

P(z) = A0 + AlZ + . . . +Akz*. 

Suppose that 

A0 + Axzm + . . . + Akz
k
m = m + c, 

A o + Ai zm+j + . . . + Ak zk
m+j = m + j + c. 

Then 

(9) | + . . . + Zm + Pk-<i{zm, Zm+j) | = j , 

where Pk-2 is a polynomial in zm, zm+j of degree k — 2. 
One can easily verify that for every m there exist j \ and j*2, greater than or 

equal to m, whose difference is less than 4&2 and which satisfy the condition that 

|argzyi - a r g z j < 2TT/4&2. 

Thus, we may assume in (9) that the arguments of zm+j and zm differ by no more 
than 2TT/4&2. It follows that 

\zk~+j + . . . + Pk-2(zm, zm+j)\ > max (\zm+j\
k~\ |sj*_1) - |2V-2|. 

This factor must approach infinity through an infinite sequence of integers m. 
Thus, it follows from (9) that \zm+j — zm\ takes on arbitrarily small values as m 
approaches infinity. 

We now proceed with the remainder of the proof of Theorem 9. Suppose that 
fis periodic with period 1 and f(g) has periods n and T2. Then, we have 

(10) f(g(z + »i ri + n2 r2) + m) = f(g(z)). 

For any fixed z0 the locus of zeros of 

{g(z + Wi TI + n2 r2) + m — g(z0) ; nlt n2, m integers} 

has a limit point, by virtue of what we proved above. Thus, from (10), one 
easily concludes tha t / i s a constant. This completes the proof of the theorem. 
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