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ABSTRACT. We assess how the propagation of high-frequency elastic-flexural waves through an ice
shelf is modified by the presence of spatially periodic crevasses. Analysis of the normal modes supported
by the ice shelf with and without crevasses reveals that a periodic crevasse distribution qualitatively
changes the mechanical response. The normal modes of an ice shelf free of crevasses are evenly
distributed as a function of frequency. In contrast, the normal modes of a crevasse-ridden ice shelf are
distributed unevenly. There are ‘band gaps’, frequency ranges over which no eigenmodes exist. A model
ice shelf that is 50 km in lateral extent and 300m thick with crevasses spaced 500m apart has a band
gap from 0.2 to 0.38Hz. This is a frequency range relevant for ocean-wave/ice-shelf interactions. When
the outermost edge of the crevassed ice shelf is oscillated at a frequency within the band gap, the ice
shelf responds very differently from a crevasse-free ice shelf. The flexural motion of the crevassed ice
shelf is confined to a small region near the outermost edge of the ice shelf and effectively ‘blocked’ from
reaching the interior.

INTRODUCTION
Crevasses are usually thought to weaken an ice shelf. Many
studies have investigated the different physical mechanisms
by which crevasses originate, grow and penetrate the ice
shelf (Van der Veen, 1998a,b), thereby causing calving (Van
der Veen, 2002) or large-scale collapse (Scambos and
others, 2000). This work has typically focused on the stress
distribution in the vicinity of a single crevasse. Here we
show that crevasses, collectively, can in fact be a source of
mechanical resilience. Specifically, we analyze the normal-
mode distribution and the small-amplitude, dynamical
response of a model ice shelf containing a spatially periodic
array of crevasses (Fig. 1). Numerical results show that the
crevasse-ridden ice shelf has no normal modes from 0.2 to
0.38Hz, a feature known as a ‘band gap’ in physics and
mechanics literature. An ice shelf that has no crevasses
(termed ‘intact’ hereafter) would have many elastic-flexural
modes over the same frequency range. The modes that
reside in the band-gap interval for an intact ice shelf are
instead shifted to the edges of the band gap. The net effect is
that the crevassed ice shelf has a large number of excess
normal modes whose natural frequencies lie near the edges
of the band gap. As a result, the response of a crevassed ice
shelf has distinct peaks in the power spectrum, with peak
locations corresponding to the edges of the band gap. When
the ice shelf is driven at its seaward edge at a frequency that
lies within the band gap, the ice-shelf motion is strongly
attenuated as one moves away from the free edge. The
behavior is reminiscent of an evanescent wave. Intriguingly,
results from a recent study on the response of the Ross Ice
Shelf, Antarctica, to ocean gravity wave forcing uncovered a
peak near 0.5Hz (Bromirski and Stephen, 2012). Thus the
band-gap feature studied here may be relevant for the

mechanical response of real ice shelves (see also McGrath
and others, 2012).

There exists a variety of research on the propagation of
classical waves through an infinite, periodic structure (Sheng,
2006). The applications include crystallography, phononic
crystals and electron transport in metals and semiconductors
(Ashcroft and Mermin, 1976). Within the geophysical
sciences, band gaps have been used to explain the formation
of nearshore, underwater sandbars (Mei, 1985) and gravity
wave propagation through sea ice (Chou, 1998).

In short, band gaps are possible whenever waves propa-
gate through a periodic structure. To see why, consider how a
transverse wave propagates along a one-dimensional string.
This motion satisfies the linear wave equation and propagates
at a uniform speed. However, when an imperfection is
present (e.g. a bead fixed onto the string), the wave is
partially reflected and partially transmitted upon encounter-
ing the bead. When a periodic arrangement of beads is
placed along the string, the wave is reflected and transmitted
partially every time it comes to a bead. Typically, when a
large number of beads are present, the phases of the reflected
portions of the wave are randomly distributed and do not add
together. However, it is possible to arrange the wavelength of
the transverse wave so that the phases of all the reflected
waves arrive at the end of the string in phase with each other,
thus adding constructively. In this special situation, the
coherent backscattering channels almost all the energy of the
incident wave into the reflected wave. In the limit of an
infinite periodic array of beads along the string, the wave no
longer propagates but instead becomes evanescent, i.e.
decays exponentially with distance from the free edge.

The basic ingredients for this qualitative transition are
simple: a periodic array of defects, a system whose lateral
dimension is much larger than the spacing between the
defects and, finally, the possibility of exciting a normal
mode of the system whose wavelength is comparable
with the spacing between the defects. The propagation of
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elastic-flexural waves along crevasse-ridden ice shelves
satisfies all these criteria, and therefore supports band gaps
(as we demonstrate below). In the same spirit, we also
analyze the dispersal of energy associated with seiches in a
fjord when ice melange is present (MacAyeal and others,
2012) and show that, if the melange can be idealized by a
periodic array of solid ice blocks, then a band-gap structure
also exists for the normal modes of the fjord. In a sense,
these two cases can be viewed as different limits of the same
underlying problem of how wave energy propagates through
an ice-covered sea surface.

Previous work on wave/ice-shelf interactions has focused
on the low-frequency, long-wavelength limit dominated by
the inertia associated with water motion beneath the ice
shelf. In these works, the ice shelf is idealized as intact and
simply modifies the normal stress boundary condition on the
water surface (e.g. Balmforth and Craster, 1999). We take the
opposite approach and focus on elastic-flexural waves,
which are higher in frequency. When a thin ice shelf overlies
a deep layer of water, the dispersion relation for shelf motion
has the form

4�2f 2 ¼ Dk5

�w þ �ihk
, ð1Þ

where f is the vibrational frequency, D ¼ Eh3=12ð1� �2Þ is
the flexural rigidity, E is the Young’s modulus, � the Poisson
ratio, k the wavenumber, �w the density of water, �i the
density of ice and h the shelf thickness (Landau and Lifshitz,
1986). For the propagation of short-wavelength, elastic-
flexural waves (hk � 1), the coupling between water
motion and shelf motion becomes irrelevant and the
dispersion relation simplifies to

4�2f 2 ¼ Dk4

h�i
: ð2Þ

This is the dispersion relation of a thin elastic plate vibrating
freely under a balance of elastic stresses and inertia.
Motivated by this limiting behavior, we opt to neglect the
normal stress exerted by the water motion below the ice
shelf in our model calculation. Instead, we simply model the
wave/ice-shelf interaction as an oscillatory displacement at
the seaward edge of the ice shelf.

PROBLEM SET-UP
Figure 1 illustrates the model ice shelf we analyze. The two-
dimensional (2-D) shelf is 50 km in length, 300m thick and
has basal crevasses spaced 500m apart. (For clarity of
display, we omit most of the crevasses in the schematic.)
These are length scales typical for an ice shelf. The left edge
corresponds to the grounding line while the right edge
intrudes into the ocean. For simplicity, we assume that
the displacement vanishes along the left edge and that the
elastic stresses vanish along the right edge. The crevasses are

modeled as rectangular notches into the ice shelf, with each
crevasse 150m in depth. The Young’s modulus of the ice
shelf is 1GPa, the Poisson ratio is 0.3 and the density is
1000 kgm�3.

The elastic flexural modes satisfy the equation

�iü ¼ E
2ð1þ �Þr

2uþ E
2ð1þ �Þð1� 2�Þrðr � uÞ, ð3Þ

where uðx, y, tÞ is the displacement of the ice shelf. The left-
hand side of Eqn (3) corresponds to the inertia of the ice
shelf, while the right-hand side describes elastic stresses. The
first term on the right-hand side is primarily associated with
transverse, or bending, modes, while the second term is
associated with longitudinal modes. We use a coordinate
system where x is the horizontal distance along the 2-D shelf
and y is the vertical coordinate. To specify the normal
modes completely requires boundary conditions. Since the
purpose of this calculation is to assess the leading-order
effect of crevasses on the mechanical response of an ice
shelf, we opt to impose highly idealized boundary condi-
tions. The left edge of the ice shelf is taken to be the
grounding line and prescribed to have zero displacement.
The right edge, as well as the top and bottom surfaces of the
ice shelf, experiences zero tangential and normal stresses.
(Preliminary work, not included here, shows that more
realistic choices (e.g. introducing hydrostatic pressure) do
not change the qualitative outcome.)

RESULTS
We present two types of results, characterizing how
the presence of a periodic array of crevasses changes the
mechanical response of an ice shelf. We first assess the
effect crevasses have on the normal-mode spectrum. In this
approach, instead of analyzing how a specific wave
disturbance propagates along a crevasse-ridden shelf, we
use the fact that the wave disturbance can be thought of as a
sum of normal modes. These correspond to standing waves,
or elastic-flexural vibrations, of the ice shelf. Our key finding
is that the dispersion curve of a crevasse-ridden ice shelf is
qualitatively different from that of an intact ice shelf free of
crevasses. The dispersion curve describing the wavenumber/
frequency relation is not continuous, reflecting an even
distribution of normal modes as a function of f , but instead
has frequency intervals where no eigenmodes exist, i.e. a
band gap. Second, we demonstrate (via a direct simulation)
that forcing the ice shelf at a frequency within the band gap
elicits a qualitatively different response from the response
when the gap is absent. All the numerical calculations were
performed using COMSOL.

The impact on the normal-mode distribution, being more
general, is the more powerful result. We describe the results
in two steps. First we describe the results from a conceptual
demonstration, where the ice shelf has only five crevasses.

Fig. 1. To assess how elastic-flexural waves propagate across a crevasse-ridden ice shelf (left), we analyze the normal modes of a model ice
shelf (right).
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occurs between a response dominated by water motion and
one dominated by the inertia of the crevassed ice shelf.

Second, we emphasize that the emergence of the band
gap in the dispersion curve depends fundamentally on a
geometrical interplay between the wavelength of the elastic-
flexural normal mode and the distribution of crevasses. Thus,
disorder and variability, if sufficiently strong, will introduce
qualitative changes. Works to characterize this second
regime of dynamical response are underway.

Finally, the fact that the same ice shelf can respond in a
dramatically different way, depending on whether it
experiences an edge disturbance inside or outside the band
gap may be relevant for ice-shelf collapse. To see why, let us
suppose that the crevasse distribution on an ice shelf can
evolve over a relatively long timescale so that, typically, the
environmental disturbances perturb the ice shelf only within
its band-gap range. If this assumed evolution exists, then a
sudden thinning of the ice shelf may be catastrophic if the
reduction in the ice-shelf thickness shifts the band gap
appreciably, since the frequencies of the normal modes vary
strongly with the ice-shelf thickness. Since forcing from the
ocean waves is unchanged, a shift in the frequency interval
for the band gap would switch the response of the ice shelf
from the ‘within band gap’ response, in which most of the
ice-shelf interior is shielded from wave disturbances, to the
‘out of band gap’ response, where the entire ice shelf
experiences the effect of the waves. Testing this idea requires
fieldwork that more fully characterizes the elastic-flexural
wave response of ice shelves, as well as an understanding of
whether, and how, crevasses evolve on an ice shelf.

CONCLUSION
The propagation of elastic-flexural waves through an ice
shelf can be strongly modified by the presence of crevasses.
We demonstrate this feature by calculating the normal
modes of an ice shelf under the assumption that only inertia
of the ice shelf and elastic stresses are significant. Unlike the
case for an intact ice shelf, the normal modes for a crevasse-
ridden ice shelf are unevenly distributed as a function of
frequency. For a model ice shelf with dimensions and
crevasse spacings consistent with field observations, there
exists a ‘band gap’ from 0.2 to 0.38Hz, an interval of
frequency where no normal modes are possible. This
behavior contrasts sharply with a crevasse-free ice shelf,
which supports many normal modes within that frequency
range. This band-gap structure gives rise to a qualitatively
different mechanical response. Driving a crevasse-ridden ice
shelf at its seaward edge with a frequency in the band gap
causes the disturbance to be confined near the edge of the
ice shelf, reminiscent of an evanescent (non-propagating)
wave. Most of the interior of the ice shelf is left quiescent. In
contrast, a crevasse-free ice shelf shows a response that is

evenly distributed throughout the interior. More generally,
the existence of a band gap implies that the response of a
crevassed ice shelf exposed to wave forcings that cover a
broad frequency range should show peaks in the power
spectrum, with each peak corresponding to one edge of the
band gap.
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