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Abstract

A classical theorem states that if a polynomial with integral coefficients is an mth power for every
integral value of its argument, then it is the mth power of a polynomial with integral coefficients.

In this paper we deal with analogous problems concerning functions which arise as solutions of
recurrence equations with constant coefficients.

1980 Mathematics subject classification (Amer. Math. Soc): 10 A 35.

1. Introduction and statement of the results

A classical theorem states that if a polynomial with integral coefficients is an mth
power for every integral values of its argument, then it is the mth power of a
polynomial with integral coefficients (see Polya-Szego [10] part VIII, Chapter 2).
This theorem has been generalized and improved in various directions; we quote
for example Davenport-Lewis-Schinzel [5], Ribenboim [11] and Perelli-Zannier
[9].

In this paper we deal with analogous problems concerning functions, defined
on the positive integers, N, of the form

(1) f{n)=lPJ{n)a],
7=1

where i> £ Z[x], ay £ N. The interest of such functions arises also from the fact
that they are solutions of recurrence equations with constant coefficients (see
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[21 Arithmetic properties of certain recurrence sequences 5

Lemma 1). The particular case with the i> constants has been dealt with by
Lovasz [8].

We denote by A the integral domain of the functions/: N -> Z of the form (1),
by A+ the subset of A consisting of the / such that / ( w ) > 0 for every m E N,
and by KA the quotient field of A. If / E A+ and k E N we denote by (f{m))x/k

the real fcth root if k is odd and the positive real root if k is even. Let B — {g:
N - R, g(m) = llLiCiWm))1"", C, E Z, kt E N, / E A+ }; obviously B is a
ring.

We say that a sequence of natural numbers is of type P if it intersects every
arithmetic progression; it is easy to see that a P sequence contains infinitely many
terms of every arithmetic progression.

Our results are the following:

THEOREM 1. / / g E KA and g{m) E Z for every m E N, m > m0, then Cg E A
for some integer C.

THEOREM 2. If g E B and g(m) E Z for every m belonging to a fixed P sequence,
then Cg E A for some integer C.

The idea of considering P sequences in a similar problem concerning polynomi-
als can be found in Davenport-Lewis-Schinzel [5].

We wish to thank Professor van der Poorten for useful comments. In his paper
[12] he treats, among others, similar problems and he obtains independently our
results using different methods. We point out that our method is completely
elementary.

The referee pointed out that in the meantime Theorem 1 has been proved and
to some extent generalized by Lewis and Morton [7]; anyway we still include it
for sake of completeness.

Moreover in the paper of Benzaghou [1] there is a reference to an apparently
unpublished proof by Pisot of the particular case of Theorem 2 in which the
coefficient of the leading term of the exponential polynomial (1) is constant, and
the P-sequence coincides with N.

2. Preliminary lemmas

If Q(y) = any
n + an_xy

n~x + • • • +a0 E C [ j ] and / : R - C we set [Tf](x)
= f(x + 1) and Q(f, x) = [Q(T)f](x) = aj(x + n) + an_J(x + n - 1)
+ • • • +aQf(x). As usual, if x E R, let \\x\\ = minm e Z|x — m\, while if ||x|| =
\x — mo\ and ||*|| ¥= 1/2 we put (x) = x — m0 and otherwise (x) — 1/2.
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6 A. Perelli and U. Zannier [3]

We shall use the following lemma from the theory of finite-difference equa-
tions.

LEMMA 1. Letf: N -* C; if there exists a polynomial Q £ C[y],

(2) f+l

satisfying Q(f, m) = 0 for all m G N , then there exist P,, P 2 , . . . ,PR G C[x],
deg Pj < «7, JWCA r/ia/

R

(3) / ( w ) = 2 Pj{m)aT for allm G N.

Conversely, if f is of the form (3), then Q(f, m) = 0 /or a// w G N, where Q is
defined by (2).

For the proof see, for example, Gelfond [6].

REMARK. Let Q and / be as in Lemma 1, Q(f, m) = 0 for all m G N; define,
for s=\,2,...,R, Qs(y) = Q(y)/(y-as) = l^=odvy

v, and Ps(x) = bsx-
+ • • • +b0. The operator defined from Qs clearly annihilates all terms of/except
the term bsx"'a*, whence

(4) G , ( / . m) = b,<Q,(t"-a',,0) = bsa?Q<">\as).

LEMMA 2. Let P,, P2,...,PM G R[x], let a^ > a2 > • • • > aR_l > \ >aR>
• • • > aM> 0 be rational numbers and

M

/(*)= 2^,(*)«;, deg ^ = 11,.
7=1

Suppose that, for integral m -* oo, we have | | /(w)| | -» 0. 77ien, /or sufficiently large
m,

(i) ( / ( « ) ) = 2 y > J t Pj(m)a?, whence Ij<RPj(m)a? G Z;
(ii)al,...,aR_] G Z;

PROOF. The lemma evidently follows from the special case where aj > 1 for all
j . Assume now that this applies. Let Q(y) — Q0J\f=i(y — aj)"'+x with Qo chosen
so that Q G Z[y]. Writing/(w) = Nf(m) + 6f(m), 8f(m) = (f(m)), we have by
Lemma 1,

0 = Q(f, m) = Q(Nf, m) + Q(0,, m).
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[4] Arithmetic properties of certain recurrence sequences 7

But Q(Nf, m) is an integer and Q(6f, m) -> 0, so Q(Nf, m) = Q(6f, m) = 0 if m
is large enough. Again from Lemma 1 we obtain

«/(«) = 2 Vj(m)a?, Vj G C[x],
7 = 1

which implies Vj = 0, since a, > 1 and 0f(m) -* 0. Thus, for sufficiently large m,
/ (m) is in Z and, by repeated applications of (4), we see that all the coefficients of
the Pj(x) are rational numbers.

COROLLARY. Let Px(x),...,PM(x) G (Q fiR)(x) fee rational functions, let
a,, . . . ,aM be as in Lemma 2 andf(x) = 2^1, Pj(x)a*. Suppose that mN\\f(m)\\ ->
0, where N is the degree of a common denominator V(x) G Z[x] for Pu... ,PM.
Then, for m large enough,

(i)(f(m)) = lj3.RPJ(m)aJ>;
(ii)ai,...,aR_i G Z;

PROOF. We set Pj(x) = Q/x)/V(x) and F(x) = V(x)f(x). Obviously F satis-
fies the hypotheses of Lemma 2 and for large m we have, since V(m) G Z,

(5) (F(m)) = V(m)(f(m)).

(i) and (ii) are immediately deduced, and we also obtain P,(x) G Q(x) for
j *z R — 1. From (i) we get

2 Pji^oJ1 G Z for w large enough.

Let now G(x) be a l.c.m. of the denominators of Pl,...,PR_l, such that
Hj(x) = G ( J C ) P / X ) G Z[x]. Then G.C.D.(jyI(x),...,JWJl_I(x),G(jc)) = 1. Sup-
pose degG > 0; there exist Tl,...,TR_l, T G Z[x] and an integer A ^ 0 such
that

(6) 2 7J.(ac)Hy(x)+7X*)G(*)=^-
7 = 1

Let /> > max(^4, a, , . . . ,a^_,) be a prime number such that p | CrC/M]) for some
sufficiently large m, (see exercise 108, page 131 of [10]). From2,</j P,(w,)aj"' G Z
it follows that

= G{mx + up) 2 Py(»!| + «^)a7'+u/' = 0 (mod p)
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A. Perelli and U. Zannier [5 ]

for every u G N, whence

2 Hj(m,) aJ" ajp = 0 (mod p), u = 0,\,...,R- 1.

We consider these congruences as a linear system in Z/pZ with unknowns
H/m^aJ1'. The determinant is I l ^ / a f - of) = II,<y(a, - a,) 2= 0 (mod p).
Therefore Hj(mx) = 0 (mod p) for ally «£ R — 1 and, by (6), p \A, a contradic-
tion.

LEMMA 3. Letf(x) = 2 * 1 , Pj(x)a*, ax> • • • > aM^ \,Pj& C(x), 8>0. Then

there exist real numbers A, = I/a, > A2 > • • • > \T > 0 am/ W,(JC) =
H^(JC), . . . , »V(x) e Q »

Further, if aj G Q and Pj G Q(^), ^en we can /a/te A, e Q and Wt E Q(-x).

PROOF. We have the identity

I x)aj\/{Px(x)a*J(x))
\ y=2

= W,(x)Xi + g(x)/f(x).

By iteration of this formula one obtains, for every N G N,

1//(•*) = Wx(x)\x, + W,(x)\xg(x) + • • •

+ Wx(x)\\gN{x)+gN+\x)/f{x).

It is clear that g(x) — O(yx), 0 < y < 1, and the lemma follows on choosing N
large enough.

3. Proof of Theorem 1

Let f(x) = 2y=lPJ(x)ax, h(x) = l^T^b?, f,h<=A, g(x) = h(x)/f(x),
a, > •••> aM>0, bt> • • • > bN > 0. Moreover let 5 < \/bx and A , , . . . .A^,

Wx,..., WT be determined as in Lemma 3. Then

N T

/= 1 j=

R

v=\
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[ 61 Arithmetic properties of certain recurrence sequences 9

where yv > 1, y, G Q, Qy(x) G Q(x), 0 < y < 1. We have ||G(m)|| < ym, since
g(m) G Z if m is large. From the corollary to Lemma 2 it follows that y ,GZ and
£)„(*) G Q[x]. If C G Z is such that CQv(x) G Z[x] for all v, we have

Cg(x) = CG(x) + O(yx) and CG G A.

But C(g(m) - G(m)) is an integer which must be zero in view of the previous
estimate, and the theorem is proved.

4. Reduction of Theorem 2 to a particular case

We first require the following lemmas.

LEMMA 4. Letf(x) = 1f=x Pj(x)a*, Pj G R[x], aj G R, a, > a2 > • • • > an > 0,
and let N= S^deg i 3 ; + 1). Then, if f has N real zeros, all the Pj vanish
identically.

For the proof see [10], part V, Chapter 1, exercise 75.

LEMMA 5. Let f\{x),...,fR{x) be of the same kind as f(x) in Lemma 4, and
suppose f(x) > 0, if x > x0. Suppose that

R k

*(*) = 2 Ct{fjx), C,. G R, x > x0,

has arbitrarily large zeros. Then g(x) = 0 identically.

PROOF. Using Lemma 4, we may assume /.(x) > 0 for x > x,. We argue by-
induction on R. If R — 1, the conclusion follows from Lemma 4. If the
lemma holds for R < Ro - 1, let /i(x) = g(x)/fx/k(x). Then
/ ( 1 + 1/*)(xXnf=°2 /i(x)) dh(x)/dx is of the same kind as g(x) with # = Ro - I,
and has, by Rolle's theorem, arbitrarily large zeros. From the induction hy-
pothesis it follows that dh/dx = 0, whence /i(x) = C i s a constant and g(x) =
Cfl/k(x). This implies g(x) = 0.

We now show that the truth of Theorem 2 follows from a special case. Take g
in B, say g(m) = 2*L, Ci(fi(m))i/k'. We assume the theorem for N = 1, and work
out the general case by induction.

k.

We need the following corollary of a theorem of Besicovitch [2]: "If 2^ i d^
= 0, where / ^ Q - {0} and /,//, £ Q*, i ¥=j, dt G Q, then dt = 0 for all /".
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10 A. Perelli and U. Zannier [ 7 ]

We may obviously assume, by replacing / with f^i*'ki if necessary, that
kl = • • • = kN = k. For every fixed / we can write uniquely

fi(m) = rj
k(m)li(m) with rt, /, G Z and /, A:-free.

Let U(m,l) = {i<N: /,.(m) = / } ; clearly {l,...,N} = U,f/(w, /) for every
m. We denote by 5 a P sequence such that g(s) G Z for s G S, and consider the
following two cases:

(i) for every s £ S, s > s0, we have {l,...,N} = U(s, 1). In this case, recalling
that {s G S: s > s0] is again a P sequence, Theorem 2 is a straightforward
consequence of the induction hypothesis.

(ii) There exists an infinite subsequence S" of S such that {l,...,N} =£ U(s',l),
for every s' G S'.

By Dirichlet's principle, there exist T G N and non-empty disjoint sets VX,...,VT

such that U j = 1 ^. = {l, . . . , iV} and there is an infinite subsequence S" of S'
such that, for every s" G S" and every / satisfying U(s", / ) ^ 0 , there exists h
with I/( j" , /) = Vh.

We have, for every s" G S"',

7=1 ie^. y=

where /(y, J" ) is one of the /,(•*") for / G Vj. Now it is plain that l(j, s")/I(h, s")
£ Q* if 7: ̂ = h. Clearly, there exists at least ay such that l(j, s") ¥= 1; for every
such j , by the above corollary to the theorem of Besicovitch, we deduce that

k,

2,G^C,r.(j") = 0. This implies 2,6^C,V/(5") = 0 for all s" G 5". Then by
Lemma 5 we get

2 cdfM ~ ° for every s G N.

Now, if ^ = (l,...,N), we have g(^) = 0 for all s G N, whence g £ A; if
^•7t{l, . . . , iV}, then the induction hypothesis applies to

2 cfcuj = g(s)- 2 c,te" = g(,).
This completes the induction.

Now we only have to prove

THEOREM 2'. Let g G B, g(m) = Cjf{m) with Co in Z and f in A+. If
g(m) £ Z for every m belonging to a fixed P sequence, then Cg G A for some
integral C.
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[ 8 ] Arithmetic properties of certain recurrence sequences 11

W e now prove tha t we m a y further restrict ourselves t o the following

k,

THEOREM 2". Let g G B, g(m) = Coif{m) as before. If g(m) G Z for every
m G N, then Cg G A for some integral C.

First of all we show that if f(s) G Zk for every s £ 5 , then there exist a, b G Z
such that f(am + b) <E Zk for every m G N. We set f(m) = dmf*(m), where
d = (a,,.. . ,aM), whence f*(m) = 2f=:iPj(m)bJ

m with (6, , . . . ,bM) = 1. Further,
let % = {p: p prime, p\bj for some j] and, for p G %, let J{p) = {y < M:
p\bj}, and f*(m) = 1jeJ(p)Pj(m)bJt. From Lemma 4 it follows that there exists
r G N, r = 0 (mod &), such that

£ ( r ) * 0 for every/> 6 % .

For/) G % letph(p)\\f*(r). If c > *(/>) for all/> G % we have, for m > 1:

/*(r + « ( / , - 1)/>C) = / / ( r + m(/> - 1)/>C) =/;( /•) (mod />c),

whenceph(p)\\f*(r + m(p - l)pc) for m ^ 1. SettingL = A^IIpg^p - l)pc) we
have, for m s* l,/>/l(/')||/*(/- + mL). Thus we can write

f(r + mL)= ][ ph^dr+mLy{m), where h (m) , II

We wiU show that if q'\\y(m), and q is prime, then s = 0 (mod A:), thereby
proving that j</n) G Z*. Assume the contrary, that is, tk < s < (t + \)k; if c > s
and v G N, we have

/•(/• + L/M + Lt>(? - l)qc) =f*(r + Lm) (mod qc),

whence qs\\f*(r + Lm + Lv(q — \)qc) for every v G N. Now r + Lw + Lv(q —
l)qc is an arithmetic progression and so /(r + Lm + Lvo(q — \)qc) G Z* for
some o0. Hence f*(r + Lm + Lvo(q - \)qc) G Z* since f(kn)/f*(kn) G Zk, and
this contradiction proves the statement. We can now write

f(r + mL)= II Phlp)y?(m), m ̂  \,yx{m) G Z.

With the same arguments as before we see that h(p) = 0 (mod A:) for all p G %
whence/(r + mL) G Z* for every m 3* 1.

Theorem 2" implies the existence of g G A, g(m) = 2j=12y(w)/j" such that
T/VC + xL) = g*(x) for some integer ffandjcGR. For fixed / G N, 0 < / < L
we have

Hkf(r + I + mL) = gk(m + l/L),
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12 A. Perelli and U. Zannier 19}

hence there exist infinitely many integers mx, m2,-.-, such that g(mv + l/L) G Z.

Setting Qj(m + l/L) = 2 ^ 0
 cj,im^ cj,t G Q> w e h a v e

g(mK + l/L) = H cj.m^l'/^.
7 = 1 1 = 0

Consider the following Unear system, with unknowns j>iy:

2 2 <ijm-yu = 8(»>» + '/*<) (G z ) if © = i,..., 2 K + 0-
y = l 1 = 0 7 = 1

Its determinant is non-zero, for otherwise there would exist *, j not all zero such
that

T Jj

2 2<ijm'xltj = o
7 = 1 1 = 0

for ^=l(dj + 1 ) distinct Values of mv, which is impossible by Lemma 4. By
Cramer's rule we have ytj G Q. But the system has the unique solution yitj =
Cjj'/L, and so ll/L G Q for ally. Taking / = 1 we deduce /, = hf, where hj G Q.
Writing

h(m) = g(m/L) = 2 Qj(m/L)h?
J=i

we have Hkf(m + r) - hk(m) G Z, whence h(m) G Z. Either by Lemma 2 or by
an even simpler argument, we obtain hj G Z. Thus there exists an integer C such
that Ch G A, whence C*ff*/ G Ak.

5. Proof of Theorem 2"

We require some more lemmas.

LEMMA 6. Let f(x) = Pt
k(x)a^ + 2*L2 Pj(x)a*, where />, G (Q nR)[x], a, >

a2 > • • • > flw > 1, a, G Z, Pj G Q[JC] //> > 2. Suppose that, for m large, f(m) G
Z*. 77ie« there exists an integer C such that Cf G Ak.

PROOF. We let F(x) = f(kx); Fl/k(x) is defined for large x, and

F'/*(x) = Px(kx)ax
x{\ + A(x))1A

where A(x) < Sx with 0 < 8 < 1. Expanding (1 + h(x))i/k as a power series of
h(x), when x is large, we see that for every r\ > 0 there exists f/(x) = 2 j = , Qj(x)lj,
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[ 10 ] Arithmetic properties of certain recurrence sequences 13

Qj G (Q H R X x ) , lj G Q, such that

Fx/k{x) = U(x) + O(-qx), x^oo.

But for m G Z, m large, Fl/k(m) G Z, whence ||t/(w)|| « T?m. Choose 7) < 1. Since
is in Z for m large, the corollary to Lemma 2 gives

m) = 2 e^) / ) " , 0, e Q[X], ij e z, /' > /2 > • • • > /„ > o.
7 = 1

Hence there exists an integer C such that Cf(km) = gk(m) G ,4*.
Noting that Cf(m) = gk(m/k) is integral for w large, we obtain the lemma by

the same argument used at the end of the previous section.

LEMMA 7. Let f(x) = 2f=lPj(x)aJ G A such that f(m) G Z* for m large, and
let ft(x) = 2*1, Pf°(x)a*. Let q be a prime number and let m, be an integer such
that q\f(mx). Then ifq> max(ax,...,aM, k) we have q\ft(m ,)/<?/• i = 0,\,...,k

i

PROOF. Let aj~i = 1 + qAj. We have

j{m, + tq{q - \))af^ - {P^) + tq{q - l)PJ(m}) + •••)

= C0>SJ + tCUsJ +••• +/ ' - '<: ,_ , , , , , (mod q')

for every s < k. It is well known that ('f) is a polynomial in t with coefficients
divisible by q if y < <?. Hence

Cs-UsJ = qs-^s-xKm,){q ~ l ) * " ' / ^ - 1)! (mod q').

From these congruences we obtain

(7) /(m, + tq(q - 1)) = Qf, + /C,',, + • • •

1 — 1)! (mod*')-

Now/(w, + tq(q - 1)) = / ( w , ) = 0 (mod q) and, since/(m, + tq(q - 1)) G Z*,
we have

(8) f(mi + tq(q-l))=O (mod qk)

for every sufficiently large integer t.
From (7) and (8) we obtain finally ^ _,(/«,) = 0 (mod ^) if 5 < A;.
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14 A. Perelli and U. Zannier [ 11 ]

We now introduce the following polynomials
M

(9) Fs(x) = 2 Pj(s - x)a'j.
y = '

LEMMA 8. Under the same hypotheses as Lemma 7, every root of Fs(x) has
multiplicity > k, for all s G N .

PROOF. We note that fr(s + (q - \)h) = 2*1, Pf\s - h)a) = (-l)T/r)(A)
(mod q), h G N, if q > max(a,, a2,... ,aM). For fixed s, let q be a sufficiently
large prime satisfying q\Fs(h) for some h. This implies q\f(s + (q — l)h),
whence q\fr(s + (q - 1)A) by Lemma 7, for r = 0 ,1 , . . . ,k - 1. Hence q\F}r\h)

Let now ^ (x ) = ^"'(x) • • • QZ'(x) with (gu G Z[x], g u irreducible over Q
and Qt ¥= Qj for / ¥=j. We claim that «, > A: (/' = 1,... ,b). If, for example, we
had 0 < M , <k, then G.C.D.(i^(x), F/(x),. ..,F/*-'>(*), e.(^)) = 1 and there
would exist Vx,..., Vk_}, V G Z[x] and an integer D s* 0 such that

x) + V(x)Ql(x) = D.

Then the previous remark, where q is a large prime number dividing Qt(h) gives a
contradiction.

We can now give the proof of Theorem 2".
For /(«) = 2^L, Pj(n)aj £ A v/e put deg / = maxdeg Py. We denote by E the

subring of A consisting of the/such that deg / = 0, and by KE its quotient field.
If Fs(x) is defined by (9) then, using the euclidean algorithm, which involves

only rational operations, we can write

(10) R,(x) = G.C.D. (Fs(x), F,(x)) = x" + C ^ x " " 1 + • • • +C0,,

where C,, G KE, i = 0 ,1 , . . . ,n - 1. If F,(x) = ^ ^ n ^ ^ x - frj"", fiit, * fijit,
i ¥-j. Then, since vis >k^2by Lemma 8, we have Rs(x) = UfL t(x - &iySY'-'~\
whence

M

Fs(x)/Rs(x) = II (x - PtJKs) = W£x).
i=i

Using again the euchdean algorithm, we see that Ws(x) is of the form (10). By
Lemma 8, Fs(x) is divisible by Ws

k(x) and their quotient, Qs(x), is again of the
form (10). On multiplying Fs(x) = Wjc(x)Qs(x) by a common denominator
Dk(s) G E of the coefficients, we obtain

(11) Dk(s)Fs(x) = Bs
k(x)Ts(x),
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[12] Arithmetic properties of certain recurrence sequences 15

where Bs and Ts are of the form (10). Putting x = 0 in (11) and noting that
Fs(0)=f(s), we have

where D G E, and Bs(0), Ts(0) E A.
If J is large enough, then D(s) G Z, /(s) G Z*, whence T(s) = Ts(0) G Z \

and, since obviously deg B > 0, we have deg T < deg / . Thus, after a finite
number of steps we obtain an identity of the form

Dk(s)f(s)=Bk(s)f(s),

where D,feE and B G A. If

c'w=2

7=1

7 = 1

we finally obtain £>,/*,($) — Bk(s)Tv By Lemma 6 the proof is complete.

Final remarks

(1) The introduction of the polynomials Fs(x) is motivated by the following
remark: if / G Ak, /(«) = (2?=lHi(n)b?)k = lf=xPj{n)a] then it is easy to see
that (2^=! Hi(m)b")k = 2*1] Pj(m)a" for every m, n, and the polynomials in m
2*11 Pj(m)aJ are kth powers.

(2) It may be worth noting that A is a unique factorization domain; this follows
from the "Principal Theorem" of Cashwell-Everett [3], concerning the unique
factorization problem for a certain class of rings.
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