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Introduction

Our dream is to revive the ideal theory in partially ordered sets

from a viewpoint of commutative algebra.

Historically, the concept of ideals in commutative algebra was first

studied by Dedekind, who considered the ring of algebraic integers in

an algebraic number field.

Let S be a set and S* the set whose elements are the various subsets

of S. Then S* turns out to be a lattice ordered by inclusion. On the

other hand, we may regard S* to be a commutative ring with identity

if we define addition and multiplication in S* as follows: A + B:==

(A — B)Ό (B - A), AB:= AD B. A subset I of the ring S* is an ideal

of S* if and only if (i) A el, Be S* and BcA together imply Bel

and (ii) AUBeI for any A, Bel.

So, in Stone [Sto], a subset I of an arbitrary lattice L is called an

ideal of L if (i) ael9 ξeL and ξ < a together imply ξ el and (ii) aV βel

for any a, βel. Later, Frink [Fri] extended Stone's definition to partially

ordered sets, abbreviated as posets. Here, ignoring the condition (ii) of

Stone's definition, we call a subset I of an arbitrary poset Q a poset ideal

of Q if a e I, β e Q and β < a together imply βel.

Recently, some remarkable works between commutative algebra and

combinatorics have been accomplished ([HocJ, [Rei], [Sta5], [Sta9], [Sta13]).

One of the main topics in this area is the concept of Cohen-Macaulay

posets, see [Bac], [Bjo], [H3] and [Sta8]. We now pay attention to poset

ideals of Cohen-Macaulay posets to obtain certain ring-theoretical infor-

mation.

Let R = 0nΞ>o Rn be an ASL (algebra with straightening laws [Eis]) do-

main on a Cohen-Macaulay poset Q over a field Ro = k. Then by what means
Received December 15, 1986.

https://doi.org/10.1017/S0027763000001112 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001112


2 TAKAYUKI HIBI

can we describe the canonical module KR of R explicitly? Roughly
speaking, as we can see in Stanley's paper [Sta7], the canonical module
KR of a Cohen-Macaulay domain R = ®n^oRn is controlled by the
numerical condition, i.e., the behavior of its Poincare series F(R,X): =
2Γ=o (dimfc Rn)λn. In general, given a noetherian graded ring R = 0n>o Rn

defined over a field Ro = k, it is difficult to check whether R is Cohen-
Macaulay and to calculate its Poincare series. However, as soon as R
turns out to be an ASL on a poset Q over a field k, the desired informa-
tion can be obtained easily from the combinatorics of the poset Q.

In this paper, we introduce the concept of "canonical ideals" of
Cohen-Macaulay posets (cf. (1.1)). If R = 0n2>o Rn is an ASL domain on
a Cohen-Macaulay poset Q, which possesses a canonical ideal 7, over a
field Ro = k9 then the canonical module KR of R is isomorphic to the
ideal IR of R as graded β-modules up to shift in grading. This is a
ring-theoretical background to define canonical ideals of Cohen-Macaulay
posets.

Many interesting and important questions now occur. Among them,
one of the fundamental problems is to classify all Cohen-Macaulay posets
which possess canonical ideals. Our main result (3.12), in which the
distributive lattices with canonical ideals are classified, is a starting point
of this classification problem. We hope that the structure of Cohen-
Macaulay posets with canonical ideals will be clear in our further study.

The author would like to thank Prof. Hideyuki Matsumura for
providing stimulating atomosphere in which this paper was written, and
to thank Prof. Kei-ichi Watanabe for suggesting the effective lemma (1.7).
Also, special thanks are due to Prof. Richard P. Stanley for many
exciting discussions on the topic of Cohen-Macaulay posets during the
conference on Commutative Algebra and Combinatorics at Kyoto (August,
1985) and the conference on Graph Theory at Hakone (June, 1986).

§ 1. The what and why of canonical ideals

The purpose of this section is, first, to introduce the concept of
canonical ideals of Cohen-Macaulay posets and, secondly, to state a
ring-theoretical background of this notion.

To begin with, we summarize basic definitions and terminologies on
combinatorics.

Every partially ordered set (poset for short) to be considered is finite,
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unless otherwise stated.

The length of a chain (totally ordered set) X is #(X) — 1, where

is the cardinality of X as a set.

The rank of a poset Q, denoted by rank(Q), is the supremum of

lengths of chains contained in Q.

A poset Q is called pure if the length of any maximal chain of Q is

equal to rank(Q).

The height (resp. depth) of an element a of a poset Q is the supremum

of lengths of chains descending (resp. ascending) from α, and written as

heightQ(<x) (resp. depthQ(a)).

A poset ideal of a poset Q is a subset / such that a el, β e Q and

β < a together imply β el.

We say that a multichain aλ < a2 < < ap of a poset Q belongs to

a poset ideal I if at e I for some /.

A lattices is a poset L any two of whose elements α and β have a

greatest lower bound or "meet" denoted by a Λ β9 and a least upper

bound or "join" denoted by a V β. A subposet P of a lattice L is called

a sublattice of L if both a A β and α V j8 in L are contained in P for

all a, βeP.

Let N be the set of non-negative integers and Z the set of integers.

A weighted poset (Q, ω) is a couple of a poset Q and a map ω, called a

weight on Q, from Q to N — {0}.

The weight of a multichain α̂  < a2 < < ap of a weighted poset

(Q, ω) is defined to be Σi^pώία:*). For any non-negative integer n, let

cw = cn(Q, ω) be the number of multichains of weight n. Thus in partic-

ular c0 = 1. Then define the Poincare series F{Qi(ΰ)(λ) of (Q, ω) to be the

generating function

of the sequence {cn}n^ΰ, which will turn out to be a rational function of

the indeterminate λ.

Let I be a poset ideal of a poset Q and ω a weight on Q. For any

positive integer n, write cτ

n = cτ

n(Q, ω) for the number of multichains of

(Q, ω) of weight n which belong to I. The Poincare series F{Qy(ΰ){ΐ) of /

in (Q, ω) is defined by
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Let Q be a poset and A = k[Xa; aeQ] the polynomial ring in #(Q)-

variables over a field β. Also, let IQ be the ideal of A generated by all

monomials of the form XaXβ such that a and β in Q are incomparable.

Set &[Q]:= A/IQ, which is called the Stanley-Reisner ring of Q over k

after the famous works [Sta5] and [Rei].

A poset Q is called Cohen-Macaulay (resp. Gorensteiή) over a field &

if the Stanley-Reisner ring k[Q] is Cohen-Macaulay (resp. Gorenstein).

Many interesting and important works of Cohen-Macaulay and

Gorenstein posets are accomplished. Consult [Hoc2] and [Staπ] for further

information.

We have now finished the preliminary steps for the definition of

canonical ideals of Cohen-Macaulay posets.

(1.1) DEFINITION. Let Q be a Cohen-Macaulay poset of rank d — 1

with a unique minimal element — oo, and ω a weight on Q. Then a

non-empty poset ideal I of Q is called a canonical ideal of the weighted

poset (Q, ω) if the following conditions are satisfied:

(1.2) FiQtm)(λ-1) = i-iyλ-Fh^iλ) for some aeZ.

(1.3) The subposet Q — I is Cohen-Macaulay with rank (Q — I) —

d-2.

(1.4)
poset

EXAMPLE, a) First, consider the following Cohen-Macaulay

Fig. 1.

Let ω be the natural weight on Q, i.e., ω{x) = 1 for any xeQ. Then the

Poincare series of the weighted poset (Q, ω) is

6λ + 9λ2
2λ3

\-*- /̂

Let Iα = { — co, a}. Since Q — Ia is Cohen-Macaulay and the Poincare

series of Ia in (Q, ω) is
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the poset ideal /„ is a canonical ideal of (Q, ω). Of course, Iβ = { — oo, β}9

I7 = {— oo, y) are also canonical ideals of (Q, ω). Thus a canonical ideal

of a weighted poset is not necessarily unique even if it exists.

b) Secondly, let n be a positive integer and ω the weight on the

Cohen-Macaulay poset

Fig. 2.

defined by ω(x) = 1 if x Φ a and ω(a) = n. Then

P , Λ _ (1 + λ)\l + A + λ2 + + A"-1) + A»

Hence, it can be checked that (Q, ω) has a canonical ideal if and only

if n = 1.

c) Finally, let Q be the following Cohen-Macaulay poset

Fig. 3.

We write ω for the natural weight on Q and denote by ω' the weight

on Q defined by ω'(x) = 1 if x Φ a, β and ω\a) = ω'(β) = 2. Then

J = {_00,̂ 3} is a canonical ideal of (Q, ω), while I ={—00} is a ca-

nonical ideal of (Q, ωf).

A weighted poset (Q, ω) is called numerically Gorensteίn over a field

k if Q is Cohen-Macaulay over k and

for some α e Z , where d = rank(Q) + 1.

If Q is a Cohen-Macaulay poset with a unique minimal element —00

and ω is a weight on Q, then the weighted poset (Q, ω) is numerically

Gorenstein if and only if I = {— 00} is a canonical ideal of (Q, ω).
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(1.5) PROPOSITION. Let (Q, ω) be a Cohen-Macaulay weighted poset

with a canonical ideal I. Then (Q — I, ω) is numerically Gorenstein.

Proof. Since

we have the equalities

F{Q-ItQ>)(λ~ι) =

for some a e Z and d = rank (Q) + 1. Hence (Q — 7, ω) is numerically

Gorenstein. Q.E.D.

Next, let us recall the definition and some basic results on algebras

with straightening laws from [D-E-P] and [Eis].

Suppose that R is a commutative ring and Q, SL subset of R, is a

poset. A monomial is a product of the form ata2 ap9 where at e Q. A

monomial axa2 αp is called standard if α̂  < α2 < < αp. Now, let £

be a field, R a ^-algebra and Q a poset contained in i? which generates

R as a /^-algebra. Then we call i? an algebra with straightening laws

(abbreviated as ASL) on Q over k if the following conditions are satisfied:

(ASL-1) The set of standard monomials is a basis of the algebra R

as a vector space over k.

(ASL-2) If a and β in Q are incomparable (written as a </< β) and if

/yH N r Ύ I ' ' ' I

where 0 Φ rtek and ΐn < Ti2 < , is the unique expression,

called the straightening relation, for aβ in R as a linear combina-

tion of distinct standard monomials guaranteed by (ASL-1), then

ϊii < oc, β for every /.

Note that the right-hand side of the straightening relation in (ASL-2)

is allowed to be the empty sum (=0), but that, though 1 is a standard

monomial, no 7n7n Tίp. can be 1.

It can be checked that the dimension of R as a ^-algebra coincides

with rank(Q) + 1.
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Let (Q, ω) be a weighted poset. An ASL R on Q over k is called an

ASL on (Q, ω) if there is a grading i? = ©TO^0 -R« such that Ro = k and

a: e jRβ(β) for every a e Q.

Since the Stanley-Reisner ring £[Q] is the simplest ASL on Q over

k, we also call k[Q] the discrete ASL on Q over £. For any weight ω

on Q, £[Q] is an ASL on the weighted poset (Q, ω).

Let (Q, ω) be a weighted poset and R an ASL on (Q, ω) over £.

Then R is Cohen-Macaulay (resp. Gorenstein) if the poset Q is Cohen-

Macaulay (resp. Gorenstein) over k. This result is called a fundamental

theorem in the theory of ASL, see [D-E-P]. Thanks to this fundamental

theorem, we can obtain many information about any ASL on Q from

the combinatorics of the poset Q.

The following lemma is quite essential in our work.

(1.6) LEMMA ([D-E-P]). Let R be an ASL on a poset Q over a field

k. If I is a poset ideal, then the set of standard monomials belonging to I

is a basis of the ideal IR of R as a vector space over k and the quotient

ring RjIR is an ASL on the subposet Q — / over k.

It is natural to ask why we present the concept of canonical ideals

of Cohen-Macaulay posets. So, we now turn to the statement of a ring-

theoretical background of canonical ideals of Cohen-Macaulay posets.

Let R = 0 ^ o Rn be a noetherian graded ring defined over a field

RQ — k, and M = φnezMn a finitely generated graded i?-module. The

Hίlbert function of M is defined by

H(M, ή) = dimfc Mn9 for n e Z .

Thus in particular H(M, n) = 0 for n < 0. Define the Poincare series of

M to be

FM{λ)= Σ H(M,n)λneZ[[λ]][λ->].
n=-oo

It is a consequence of the Hubert syzygy theorem that FM(X) is a rational

function of λ.

The theory of canonical modules of noetherian graded rings is

developed in [StaJ and [G-W]. We here summarize fundamental results

from [H-K] and [StaJ.

Let R = ©r^o Rn be a Cohen-Macaulay graded ring defined over a

field Ro = k, and KR the canonical module of i?. Then the Poincare
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series FKR(λ) of KR coincides with ( — \)dFR{λ~ι\ where d = dim(JS).

If R is Gorenstein, then FR(λ-') = (-ί)dλ'aFR(λ) for some aeZ.

Moreover, if R is a Cohen-Macaulay integral domain, then R is Gore-

nstein if and only if F^X'1) = (-ΐ)dλ-aFR(λ) for some α e Z .

If R is a Cohen-Macaulay integral domain, then the canonical module

KR of R is isomorphic to a graded ideal 7 of R as graded i?-modules up

to shift in grading. In this case, if Iψ R, then Rjl is Gorenstein and

dim(R/I) = dim(R) - 1.

(1.7) LEMMA. Let R — φn>o Rn be a Cohen-Macaulay graded domain

defined over a field i?0 = k with dim(i?) = d. Assume that I is a graded

ideal of R which satisfies the following conditions:

(i) Fniλ-1) = (-l)dλ-aFj(λ) for some aeZ.

(ii) Rjl is Cohen-Macaulay and dim (R/I) — d — 1.

Then the canonical module KR of R is isomorphic to I as graded R-modules

up to shift in grading.

Proof. Since

(*) 0 >I >R >RjI >0

is an exact sequence of graded jR-modules, we have the long exact

sequence

0 > EomR(RII, KR)

> Exti(Λ/I, KR)

• Ext^Λ/J, KR) • Ext^iί, KR) • Ext2^/, KR)

On the other hand, Hom^i?//, KR) = 0, ExtR(R/I, KR) ~ KR/I, ΈίomJR. KR)

~ KR and Ex&(B, KR) = 0 by (ii), see [G-W, (2.1.6)] and [G-W, (2.2.9)].

Thus we have the exact sequence

(**) 0 >KR • Hom^J, KR) • KR/I • 0.

By (i) we have the equality FKR(λ) ( = ( - l ) ^ ^ " 1 ) ) = ^aFj(X), and

by the same method as in the proof of (1.5) we can check FKjtlI(λ)

( = (-ly-ψwiλ-1)) = λ'aFB/I(λ). Hence, thanks to (*) and (**), we obtain

-^HomΛ(7,Λ:Λ(-α))W = FR(λ) ,

where KR(—a) is a shift in grading of KR. Thus there exists a degree
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preserving i?-homomorphism φ: I-^KR{ — a). Since R is an integral domain

and KR{ — a) is a fractional ideal of R, the map φ must be a multiplication

by a homogeneous element of degree zero of the quotient field of R,

hence φ is injective. Thus I ~ KR(—a) since Fj(X) = λaFKR(X) = FKE(_a)(X).

Q.E.D.

The above result (1.7) is false if we drop the assumption that R

is an integral domain. For example, let A be the polynomial ring

k[Xu X2, Xi9 XA, X*] with the natural grading, i.e., άeg(Xt) = 1, R the

quotient ring AI(XtX2i XZX,) of A and J the ideal (Xu X2X5) of iί. Then

R is reduced, Iζβ ~ X$R, and Rjl a J?/(X5) is Gorenstein, however, IΦ KR.

Let J? = 0 n > o i?n be an ASL on a weighted poset (Q, ω) over a field

RQ = k. Then, by (ASL-1), the Poincare series FR(X) of R coincides with

the Poincare series F(QtW)(λ) of (Q, ω). Moreover, if 7 is a poset ideal of

Q, then Fz.B(λ) = F(ρ,ω)(A) by (1.6).

Hence, by virtue of a fundamental theorem of ASL and (1.6), we

obtain the following result as a corollary to (1.7).

(1.8) COROLLARY. Let (Q, ω) be a Cohen-Macaulay weighted poset

which possesses a canonical ideal I, and R — 0n>o Rn an ASL domain on

(Q, ω). Then the canonical module KR of R is isomorphic to the ideal

I'R of R as graded R-modules up to shift in grading.

This is the reason why we introduce the concept of canonical ideals

of Cohen-Macaulay posets.

A weighted poset (Q, ω) is called weakly Gorenstein over a field k if

Q is Cohen-Macaulay over k and there exists a Gorenstein ASL on

(Q, ω) over k. If Q is Gorenstein over k, then (Q, ω) is weakly Gorenstein

over k for any weight ω on Q. Also, a weakly Gorenstein weighted

poset is automatically numerically Gorenstein. See [HJ, [H2], [H6], [H7] and

[Wat] for some results on Gorenstein posets.

A weighted poset (Q, ω) is called integral over a field k if there exists

an ASL domain on (Q, ω) over k. Refer to [HJ, [HJ, [HJ, [HJ, [H-W]

and [Wat] for some information on integral posets.

We close this section with the following

(1.9) PROPOSITION. Let (Q, ω) be a Cohen-Macaulay weighted poset

which possesses a canonical ideal I. If (Q, ω) is integral then the weighted

poset (Q — J, ω) is weakly Gorenstein.
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§ 2. Edge-labelings of partially ordered sets

This section is a fundamental work which is indispensable for tho

classification (3.12) of distributive lattices with canonical ideals. More

systematic study related with this section will appear in [H9].

Given a poset P, we write P Λ for the poset obtained by adjoining a

new pair of elements, written as 0Λ and 1Λ, to P such that 0Λ < x < 1Λ for

all xeP. If we only require that 0Λ or 1Λ be adjoined, we write P0 A or

P 1 A respectively. We use the convention that 0Λ or 1Λ is never an element

of P.

The symbol " < • " denotes the covering relation, that is to say,

x < y means that x < y and x < z <y for no z. For any poset P, we

write ^(P) for its covering relation

Thus, roughly speaking, ^(P) is the set of "edges" in the Hasse diagram

of the poset P.

An edge-labeling of P is a map δ: ^ ( P ) - > N . Thus an edge-labeling

corresponds to an assignment of non-negative integers to the edges of

the Hasse diagram of P. The technique of edge-labelings originated in

Stanley's work [Sta3] and was developed by Bjorner [Bjό],

An edge-labeling δ of a poset P is called positive (resp. non-zero) if

δ(x, y) > 0 for any (resp. some) x < y of P.

The edge-labeling which we are interested in is the following

(2.1) DEFINITION. An edge-labeling δ of a poset P is called path-free

if, for any two unrefinable chains

x = x0 < xί < < xn = y

and

x = yo < Vι < < ym = y

of P combining x with y, we have the equality

n - l m - 1

(***) Σ « ( « < . « . + J = Σ % Λ J .
t=0 .7=0

Let P be an arbitrary poset. We denote by ^ ( P Λ ) the set of path-

free edge-labelings of P Λ . Define the partial order in ^ ( P Λ ) as follows:

δ < δ' if δ(x, y) < δ'(x, y) for every x < y of P Λ . Also, let @*(PA) (resp.

^ + (P Λ ) ) be the subposet of ^ ( P Λ ) which consists of all path-free positive
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(resp. non-zero) edge-labelings of P Λ . Let Jέ*{PA) (resp. ^ + ( P Λ ) ) be the

set of minimal elements of the poset @*(PA) (resp. ^ + ( P Λ ) ) . Though we

mainly consider finite posets only in this paper, we here study the infinite

poset S(P Λ ) exceptionally.

We make ^ ( P Λ ) an additive semigroup with identity by (δ + δ')(x,y)

:= δ(x,y) + δ'(x,y). Note that if δ < δ' then the edge-labeling 3'— 3,

which is defined by (δ' - δ)(x, y) := δ*(x, y) - δ(x, y), is contained in ^ ( P Λ ) .

On the other hand, we naturally, associate ^ ( P Λ ) (resp. ^*(P Λ )) with

the set of solutions in non-negative (resp. positive) integers to the system

(***) of linear equations.

(2.2) EXAMPLE. The set S(P Λ ) of

Fig. 4.

corresponds to the set of solutions in non-negative integers to the system

of linear equations.

For any poset ideal I, including 1 = 0 , of P, we denote by δΣ the

path-free edge-labeling of P Λ defined by

(2.3)
1 if x e I U {0Λ} and y £ IU {0Λ}

0 otherwise.

(2.4) EXAMPLE. Consider the following poset

d

c

Fig. 5.
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and the poset ideal I — {α, b, c, d). Then the path-free edge-labeling <57

of P Λ looks like

Fig. 6.

Now, it is natural to ask what the set Jί X is.

(2.5) PROPOSITION. A path-free edge-labeling δ of P Λ is contained in

*Jί+(PA) if and only if δ = δΣ for some poset ideal I of P.

Proof. We easily see that δr e Jί+(PA) for any poset ideal I of P.

Conversely, let δ e ^ + ( P Λ ) and I the poset ideal of P consisting of all

elements x of P with the following property: For some (or equivalently,

any) unrefinable chain

x = xQ < Xι < * < *n =
of P 1 A , we have

We claim δz < δ. Let (x, y) e ^ (P Λ ) with δj(x, y) = 1 and

one of the unrefinable chains of P Λ combining x with 1Λ. Then we have

the inequality

Σ

since xeIΌ{0A} and δ e ^ + ( P Λ ) . On the other hand, the equality

-i δ(yj9 yj+ί) = 0 holds since y & 7, thus δ(x, y) > 0 as desired. Q.E.D.

Remark. If I and I', J Φ Γ, are poset ideals of P, then δz and δΣ,

are incomparable in the poset

We now study and Jt*(PA).
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(2.6) PROPOSITION. %(Jί*(PA)) = 1 if and only if P is pure.

Proof. To begin with, define δ™ e S*(PΛ) to be

(2.7) δίdl(x,y) = depthpA(x) - depths ( y)

for any x < y of P \ We claim 5™ e ^f *(PΛ). If

0Λ = JC0 <• χx < . . . . < . χr == IΛ (Γ = rank(PΛ))

is a maximal chain of P Λ , whose length is equal to rank(P Λ ), then

δίd}(xi9 xi+1) = 1 for every i. If 3 e ^ ( P Λ ) and 3 < d r a, then we have the

inequality

thus flfo, x<+1) = 0 for some i, 0 < i < r. Hence δ & @*(PA), and therefore

Now, the "if" part is easy. In fact, if P is pure then δίd\x9 y) = 1

for any * < y of P Λ . Obviously, δ™ < δ for any δ e ^ * ( P Λ ) . Hence

To see why the "only if" part is true, assume that P is not pure.

Then δίd\a, β)>l for some a < β of P Λ . We consider the map d'\ P Λ -> N

defined by

= Γ d e p t h P Λ ( x ) + δW(a, β ) - l iΐ a Φ x < β

(depthp Λ (x) otherwise.

By means of this map d\ we define δ' e@*(PA) to be δ'(x9y) := df(x) —

d'(y). Then δ'(a, β) = 1, thus δ™ ^ δ', hence %(J/*(PA)) > 1. Q.E.D.

From the above construction of δ' e @*(PA), we immediately see the

following

(2.8) COROLLARY. For each covering relation x < y of PA there exists

δ e ^T*(PΛ) with δ(x, y) = 1.

(2.9) DEFINITION. Let P be an arbitrary poset and J a collection

of poset ideals of P. Then J is called basic if the following conditions

are satisfied:

(2.10) The empty set 0 is contained in «/.

(2.11) If I and J are poset ideals such that J e / and Ja I, then

Je/.
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(2.12) There exists δ* e ^ ( P Λ ) , called the shifting of J, such that

For which posets P does there exist a basic set J ?

(2.13) PROPOSITION. Let P be an arbitrary poset. Then J = {0} is

a basic set of P if and only if P is pure.

Proof Thanks to the proof of (2.6), if P is pure then ^ * ( P Λ ) =

where <5M is the edge-labeling (2.7). Let 3* : = δ™ - δφ e ^ ( P Λ ) . Then

«/ = {0} is a basic set of P with the shifting δ*.

On the other hand, if J = {0} is a basic set of P, then #(^*(P Λ )) == 1,

hence P is pure by (2.6). Q.E.D.

(2.14) LEMMA. Let J be a basic set of a poset P and δ* e ^ ( P Λ ) the

shifting of S. Then δ*(x, y) <1 for each covering relation x < y of P Λ .

Moreover, δ*{x, y) = 1 if 0Λ < x < y (< 1Λ).

Proof. Thanks to (2.8), δ*(x, y) < 1 for each covering relation Λ: < y

of P Λ . Also, since 0 e / , 5̂  + 3* must be positive, hence d*(x, y) > 0 if

0A<x<-y (<1Λ). Q.E.D.

By the path-free property of the shifting 3#, we obtain

(2.15) COROLLARY. Assume that a poset P possesses a basic set J.

Then, for any element a of P, the interval

[a, 1A) := {x e P1Λ a < x <1A}

of P 1 Λ is pure.

(2.16) LEMMA. Assume that, for each element a of a poset P, the

interval [a, 1Λ) of P l A is pure. Then, for any maximal chain of P Λ of the

form

0Λ = x0 < • xx < • < x r ω k ( P Λ ) = 1 Λ ,

and for any δ e Jt*(PA), we have δ(xu xi+1) — 1 for every 0 < i < rank(PΛ).

Proo/. Let δeJ(*(PΛ). We define the map d δ : P Λ - > N as follows.

If xeP0Λ and

x = x0 < xx < < Λn = 1Λ

is one of the unrefinable chains of P Λ combining x with 1Λ, then
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(2.17) * ( * ) : = Σ3(*«,*m),

and dδ(lA) = 0. Then dδ(x) > depths (x) for every x e P Λ . To obtain the

conclusion, we have only to prove dδ(0A) = rank(PΛ).

So, assume that dδ(0A) > rank(PΛ). Let 21 be the subset of P con-

sisting of all elements xeP with depthPΛ(x) < dδ(x), and 93 = P — 21.

Since the interval [a, 1Λ) of P 1 A is pure for any a eP, the subset 21 of P

is a poset ideal of P. Also, if x e 2ί U {0Λ}, y e S3 U {1Λ} and x < y e <T(PΛ),

then dδ(x) — dXy) > 1. We now define another map d#: P Λ - > N to be

Wa(*)-1 if xe2ίU{0Λ}

U(x) if x e S3 U {1Λ},

and, by using this map d\ define 3* e ^ * ( P Λ ) to be ^#(x, y) : = d\x) — d\y).

Then δ* < δ in @*(PΛ), which contradicts 5 e ^ * ( P Λ ) . Q.E.D.

(2.18) PROPOSITION. A poseZ P possesses a basic set if and only if

the following conditions are satisfied:

(2.19) For any element a of P, the interval [a, 1Λ) of P 1 A is pure.

(2.20) The inequality rank(P Λ ) — depthPΛ(/3) < 2 holds for any element

βeP with 0 Λ < β in P \

Proof First, we shall prove the "only if" part. Thanks to (2.15),

the condition (2.19) holds. Let δ* be the shifting of a basic set / of P

and δ™ e ^ * ( P Λ ) the edge-labeling (2.7). Then δ™ = δz + δ* for some

I e«/, hence

rank(P Λ ) - depthPA(|8) =

by (2.14) if 0 Λ < i3 in P Λ .

Conversely, to prove the "if" part, let © be the set of minimal

elements of P and, for i = 1, 2,

(2.21) ©t = {x e (£; rank (PΛ) - depthPΛ(x) = i}.

Let «/ be the set of poset ideals / of P with JΠSi = 0. Also, let

d* e 9{PA) be the edge-labeling defined by

0 if * = 0Λ and y e e t

1 otherwise.
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We claim / is a basic set of P with the shifting δ*.
Let δ e Jt*(PA). Then δ - δ* e ̂ + ( P Λ ) . Hence, thanks to (2.5), δr <

δ — δ* for some poset ideal I of P. If xx e ©! and

0* = χ0 < . Λ l <• <• x r a n k ( P Λ ) = 1Λ

is a maximal chain of P Λ , then, by (2.16), δ(xί9 xί+ί) = 1 for every i, 0 <
ί < rank(P Λ ) . Thus (δ - δ*)(xi9 xi+ί) = 0 if i > 1. So, δj(xu xi+1) = 0 if
j ;> 1, hence ^ £ I, and therefore 7 e / . Now, <5Z + £* e^^(P^, ί e Jf*(PA)
and 3j + ^* < δ in ^ ϊ j ί(PΛ) together imply δΣ + δ* = ̂ . Hence J(*(Ph) c
{̂ z + ^ ; J e t / } . On the other hand, 37 + 3*e0*(PΛ) if J e / . Thus,
thanks to the remark after the proof of (2.5), Jί*(PA) = {δ7 + ^ ; I e / } .

Q.E.D.

(2.22) COROLLARY. A 6αsic set J of a poset P is unique if it exists.

Proof If P is pure, then #(uT*(PΛ)) = 1 by (2.6), hence </ = {0} is
a unique basic set of P.

Assume that P is not pure and that P satisfies the conditions (2.19)
and (2.20). Let (£* (i = 1, 2) be the sets (2.21) and J a basic set consisting
of all poset ideals I of P with 7ΓΊ©i = 0. Let ./' be another basic
set of P and δ* the shifting of .Z7. If a poset ideal 7/ e Jr contains an
element y e $u then δΓ(0A, y) = 0, thus <^(0Λ, y) = 1. Since ^(x, y) = 1 if
0Λ < x < y < 1Λ by the latter half of (2.14) and δ'* is path-free, we have
δ'*(0A,x) = 2 if xeδ 2 , which contradicts the first half of (2.14). Thus
S' C J. Since #(^0 = \(J) = ^ ^ ^ ( P ^ ) , we have ./' = ./. Q.E.D.

So, from now on, we call the basic set / of a poset P.

§ 3. Which distributive lattices possess canonical ideals?

We now consider the problem of finding all distributive lattices which
possess canonical ideals.

First, recall the Birkhoff's fundamental structure theorem [Bir, p. 59]
for finite distributive lattices.

A lattice L is called distributive if the distributive laws

a Λ (]8 V r) = (a A β) V (a A ϊ)

aV(βAϊ) = (aVβ)A(a\/r)

hold for all a, β, ΐ e L. A lattice L is distributive if and only if L con-
tains neither

https://doi.org/10.1017/S0027763000001112 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001112


COHEN-MACAULAY 17

nor

Fig. 7. Fig. 8.

as a sublattice.
Let P be an arbitrary poset and /{P) the poset consisting of all

poset ideals of P, ordered by inclusion. Then it can be checked imme-
diately that /(P) is a distributive lattice. A classical fundamental structure
theorem of Birkhoff guarantees the converse, that is to say, for any finite
distributive lattice D, there exists a unique poset P such that D = /(P).

An element a of a lattice is called join-irreducible if a = β V T
implies a = β or a = ϊ. Let D be a distributive lattice and P the sub-
poset consisting of all join-irreducible elements of Zλ Then D = /(P).
For example, if

then
Fig. 9.

'• . t X
Fig. 10.

Next, let us consider the solutions in non-negative integers to a
system of linear equations over Z.

Let Φ = (αί7)i<i<r be an r X n Z-matrix and

EΦ : = [j9 = (βu

the set of solutions in non-negative integers to the system of linear
equations Σ?-i α i Λ = 0 (i = 1, 2, , r) over Z. Clearly, i?φ is an additive
semigroup with identity.

https://doi.org/10.1017/S0027763000001112 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001112


18 TAKAYUKI HIBI

An element β e Eφ is called fundamental if-β = 7 + δ (ϊ, δ e Eφ) implies

ϊ = β or <J = β. We ctenote by PUNDΦ the set of non-zero fundamental

elements of Eφ. It is a consequence in classical invariant theory that

there are only finitely many non-zero fundamental elements of Eφ. Thus

Eφ is finitely generated as an additive semigroup, in other words, Eφ is

an affine semigroup. Consult [Sta2], [StaJ, [Sta6] and [Sta10] for further

information.

Let k be a field and k[Xl9 X2, , Xn] the polynomial ring in n-variables

over k and Rφ: = k[Eφ] the affine semigroup ring

k[X',βeEφ] (

of Eφ over k, where Xβ = X^Xξ* Xβ

n

n if β = (ft, ft, , ft). By virtue

of [HoCj], i?φ is Cohen-Macaulay. Note that Rφ is generated by {Xβ; β e

FUND*} as a β-algebra. We call an element β = (ft, ft, , ft) e Eφ

positive if ft > 0 for every 1 < i < n. Let EJ be the set of positive

elements of Eφ and

k[m]' =k[Xβ;βeE*],

which is an ideal of Rφ. Without Ipss of generality, we may assume

that the set E$ is non-empty.'

Assume, for the moment, that Rφ is endowed a structure of a graded

ring ®nzo (Rφ)n over (Rφ)0 = k such jthat each monomial Xβ, β e Eφ, is

contained in (RΦ)n for some n (=nβ)>0. Let FSφ(λ) (resp. i^t^j]^)) be

the Poincare series of the graded ring Rφ (resp. the graded ideal k[Et\

of Rφ). Then

(3.1) LEMMA, i^/λ" 1) = ( - i l j ^ ^ l ^ ) , ^/ιβre d = dim(JR#).

Proof. Consult [Sta2, (23)] and [Sta2, (26)]. Q.E.D.

(3.2) COROLLARY. The canonical module KRφ of Rφ = ®n^(Rφ)n

coincides with k[E%\.

Proof Consult [Sta7, (6.7)]. Q.E.D.

(3.3) EXAMPLE. Let Φ = [1 1 —2], so we study the solutions in

non-negative integers to the linear equation x + y — 2z = 0 over Z. Then

FUND* = {(2, 0,1), (0, 2,1), (1,1,1)} and Rφ = k[X% Y2Z, XYZ]. Then Rφ

is considered as a graded ring (&n^o(Rφ)n with deg(Z2Z) = p, deg(Y2Z) = q

and deg(-XΎZ) = r if and only if p + q = 2r. Under the assumption

https://doi.org/10.1017/S0027763000001112 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001112


COHEN-MACAULAY 19

p + q = 2r, we have

i ) ' *«*>**> ( 1 _ λP){1 _ ̂

Thus F ^ " 1 ) - F* c n ] ( i ) .

Let D = f{P) be a distributive lattice and ^ ( P Λ ) the affine semigroup

considered in the previous section. Also, let H e a field and k[@(PA)]

the affime semigroup ring of @(PA) over k.

(3.4) LEMMA. 7/ we embed D = / ( P ) mfo £[^(PΛ)] 6y ί/ie ίnjectίve

map ψ: D ( =

e k[9{PA)] (I e / ( P ) ) ,

then k[@(PA)] is an ASL on D over k.

Proof. By means of the map dδ defined in (2.17), it is easy to see

that the affine semigroup S(P Λ ) is isomorphic to ̂ (D) of [H2, (3.2)]. Hence

the conclusion follows from [H2] immediately. Also, see [Gar]. Q.E.D.

Note that

(3.5) dj + dj = δInJ + δIΌJ

for all I, Jef(P), and that

(3.6) k[®{PA)} ~ k[Xa; a e D]l(XaXβ - XaAβXaVβ; a^β).

Hence,

(3.7) COROLLARY. Let D = f(P) be a distributive lattice and o) a

weight on D. Then the k-algebra k[@(PA)] is an ASL on the weighted

poset (D, ω), with respect to the embedding ψ, over k if and only if ω

satisfies the equality

(3.8) ω(a) + ω(β) = ω(a Λ β) + ω(a V β)

for any a, β eD.

Before studying the β-algebra k[9{PA)} further, we recall the concept

of "wonderful posets".

A poset Q is called wonderful (or locally semimodular) if the follow-

ing condition holds in the poset QΛ : If yu y2 < z are covers of an element

x, then there is an element y < z which is a cover of both yx and y2.
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(3.9) LEMMA. A wonderful poset is Cohen-Macaulay over an arbitrary

field.

For the proof, consult [D-E-P, (8.1)] and [Bjδ, (6.1)]. Also, see [H3,

(4.4)].

Without difficulty, we can check that every distributive lattice is

wonderful.

(3.10) LEMMA ([D-E-P, Lemma 8.2]). Let Q be a wonderful poset and

{au a2, , an} a, collection of minimal elements of Q. Define the poset ideal

I of Q to be

I = {xeQ; x^ at for all ί}.

Then the subposet Q — I is wonderful

Now, our main result is

(3.11) THEOREM. Let D = f(P) be a distributive lattice and ω a

weight on D satisfying the condition (3.8). Then a poset ideal J of f(P)

is a canonical ideal of the weighted poset (D, ω) if and only if <f is the

basic set of P.

Proof First, to prove the "if" part, assume that a poset ideal J of

f{P) is a basic set of P with the shifting δ*e@(PA). Let J

be the ideal of k[@(PA)] generated by {XδI; IeJ). Since

we have

Hence, if we consider k[@(PA)] to be a graded ring 0 ^ o (k[@(PA)])n over

(k[@(PA)]\ = k with deg(Xδί) = ω{a\ a(eD) = I ( e / ( P ) ) , for any aeD,

then

where a = —deg(Xδ*). Thus, since k[@(PA)] is an ASL on (D, ω) over k,

by (3.1), where d == rank(D) + 1.

The remains of our work is to prove the subposet D — J is Cohen-

Macaulay with rank(Z) — J) = rank(D) — 1. Let (£* (i = 1, 2) be the
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subsets (2.21) of P. Then, by the latter half of the proof of (2.18), we

obtain

/ = {αe D(= f(P)); a £ {x} e / ( P ) for all x e S J .

Hence, we have rank(D — J) = rank(D) — 1 and, thanks to (3.10), D — J

is wonderful.

Now, we shall prove the "only if" part. Since J is a canonical

ideal of (D, ω), the ideal J k[Q)(PA)} of the ASL k[@(PA)] on the weighted

poset (D, ω) over k is isomorphic to the canonical module KkίaiP*Ώ =

k[@*(PA)] of k[@(PA)] as graded k[^(PΛ)]-modules up to shift in grading.

Let

b = min{n e N; (^[^*(PΛ)])n ^ 0}

and

c = min{n e N; (./. A[S(PΛ)])n ^ 0}.

Also, let / be a homogeneous element of degree b — c of the quotient

field of k[@(PA)] such that an isomorphism, up to shift in grading, from

J-k[^(PA)\ to k[@*(PA)] is obtained by the multiplication of /. Let XδI'

(Γ e / ) b e a monomial with άeg(Xδr) = c. Also, let

Jf = {δ e ^ * ( P Λ ) ; deg(Xδ) = 6}.

if f XδI' is the linear combination

then, since d7, <[δ in @{PA) for any δ e Jf, we obtain

Take 3' e ̂  ^with^ c ^ 0. Since / I ί ' e ^ * ( i ) Λ ) ] . .X''-""-.*" must be

contained in ^ [ ^ ( P ^ ] for any IeJt. Thus

On the other hand, the Poincare series of the ideal Xs'-Sl'{J k\β{PA)])

coincides with^that of A;[^*(PA)]. Hence

thus

JH*(PΛ) = {dj + (δ' - δ,.); IeJ).
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So, J is the basic set of P with the shifting <5* = δf — £/>. Q.E.D.

(3.12) COROLLARY. Let D be a distributive lattice, P the subposet

consisting of all join-irreducible elements of D and ω a weight on D

satisfying the condition (3.8). Then the weighted poset (D, ω) possesses a

canonical ideal if and only if the poset P satisfies the conditions (2.19)

and (2.20).

Also, if P satisfies (2.19) and (2.20), then the poset ideal

I a Jέ β for any join4rreducible\

aeD; element β of D with >

rank(P Λ ) - depth^CjS) = 1 J
of D is a canonical ideal of the weighted poset (D, ω).

Moreover, a canonical ideal J of (D, ω) is unique if it exists.

We should remark that the above corollary (3.12) is a somewhat

surprising generalization of Stanley's famous result [Sta12, Cor. 4.5.17 (b)].
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