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TORSION IN TENSOR POWERS OF MODULES

OLGUR CELIKBAS, SRIKANTH B. IYENGAR,

GREG PIEPMEYER, and ROGER WIEGAND

Abstract. Tensor products usually have nonzero torsion. This is a central
theme of Auslander’s 1961 paper; the theme continues in the work of Huneke
and Wiegand in the 1990s. The main focus in this article is on tensor powers
of a finitely generated module over a local ring. Also, we study torsion-free
modules N with the property that M ⊗R N has nonzero torsion unless M is
very special. An important example of such a module N is the Frobenius power
peR over a complete intersection domain R of characteristic p > 0.

§1. Introduction

In a 1961 paper, Auslander [1] studied torsion in tensor products of

nonzero finitely generated modules M and N over unramified regular local

rings R. Under the assumption that M⊗RN is torsion-free, he proved that

(1) M and N must be torsion-free, and

(2) M and N are Tor independent; that is, TorRi (M,N) = 0 for all i≥ 1.

The two conclusions are cleverly intertwined in his proof, which we revisit

in Section 3 of the present paper. We show, over a reduced complete inter-

section ring R of positive characteristic p, that M ⊗R
ϕe
R is torsion-free if

and only if M is torsion-free and of finite projective dimension, in which

case TorRi (M,ϕ
e
R) = 0 for all i≥ 1. (Here ϕ :R→R is the Frobenius endo-

morphism and ϕe
R is the module obtained from R by restriction of scalars

along ϕe.) When R is F-finite, we obtain a criterion for regularity: R is

regular if and only if (ϕ
e
M) ⊗R

ϕe
R is torsion-free for some (equivalently,

every) nonzero finitely generated R-module M .

Our main results are in Section 2, where we study torsion in tensor pow-

ers. We obtain detailed information on annihilators of elements in ⊗n
RM

and draw several conclusions. Suppose, for example, that r = r1, . . . , rd is a
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regular sequence in R and that M is the cokernel of the d× 1 matrix [ r ]t.

We show in Theorem 2.5 that ⊗t
RM is torsion-free if and only t≤ d. This

result should be compared with Auslander’s observation in [1, p. 638] that

the same holds when M is the (d− 1)st syzygy of a module of projective

dimension d over a d-dimensional regular local ring (see also [7, Proposi-

tion 3.1]). If R is local, the “only if” direction holds much more generally:

we show in Theorem 2.7 that, if we write M as the cokernel of an m× n

matrix θ with entries in the maximal ideal of R, and if some entry of θ is a

nonzerodivisor, then ⊗t
RM has nonzero torsion for every t≥m.

Throughout this article, R is a commutative, Noetherian ring.

§2. Torsion in tensor powers

In this section we establish results on annihilators of elements in tensor

powers of modules.

Notation 2.1. Given elements m :=m1, . . . ,md in an R-module M , we

consider the element in ⊗d
RM defined by

τ(m ) :=
∑

σ∈Sd

sign(σ)mσ(1) ⊗ · · · ⊗mσ(d).

Proposition 2.2. Let M be an R-module. If elements m1, . . . ,md in M

and r1, . . . , rd in R satisfy

(2.2.1) r1m1 + · · ·+ rdmd = 0,

then (r1, . . . , rd) · τ(m ) = 0 in ⊗d
RM .

Proof. The twisted shuffle product gives the graded R-algebra⊕
n≥0⊗n

RM a strictly skew-commutative structure (see [11, Chapter X,

(12.4)]. Strictly skew-commutative means that for any a ∈ ⊗i
RM and b ∈

⊗j
RM there are equalities

a � b= (−1)ijb � a, and a � a= 0 when i is odd.

By definition of the shuffle product, τ(m ) =m1 � · · · �md. Thus, for each j

we have

rj · τ(m ) =m1 � · · · �mj−1 � rjmj �mj+1 � · · · �mn

=−
∑

i �=j

ri(m1 � · · · �mj−1 �mi �mj+1 � · · · �mn) =−
∑

i �=j

ri0 = 0.
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TORSION IN TENSOR PRODUCTS 115

There is a “universal” source for the element τ(m ) in the following sense.

Remark 2.3. Consider the polynomial ring Z[x ] on indeterminates x :=

x1, . . . , xd, and let U be the Z[x ]-module with presentation

0→ Z[x ]
[x1,...,xd]

t

−−−−−−→ Z[x ]d → U → 0.

Let u1, . . . , ud be the generators of U corresponding to the standard basis for

Z[x ]d, so that x1u1 + · · ·+ xdud = 0; that is, x and u satisfy (2.2.1). Then

annZ[x] τ(u) ⊇ (x) by Proposition 2.2; we will see, in Theorem 2.5 below,

that in fact annZ[x] τ(u) = (x).

Given any R-module M with a syzygy relation (2.2.1), consider the ring

homomorphism Z[x] → R taking xi to ri, for each i, and extending the

structure homomorphism Z→R. The hypothesis on M implies that there

is a homomorphism of Z[x]-modules

f : U →M with f(ui) =mi for i= 1, . . . , d.

Under the induced map ⊗df : ⊗d
Z[x] U →⊗d

RM , the element τ(u) maps to

τ(m).

This remark prompts the discussion below, culminating in Theorem 2.5.

First we review some notions regarding depth. For details, see [4, Chapter 1].

2.1. Depth

Let M be a finitely generated R-module, and let I be an ideal of R

satisfying IM �=M . The I-depth of M is the number

depthR(I,M) = inf
{
n≥ 0

∣∣ ExtnR(R/I,M) �= 0
}
.

The I-depth ofM is always finite and is equal to the length of every maximal

M -regular sequence in I .

If x := x1, . . . , xd is a sequence of elements in R, and if K is the Koszul

complex on x, then the (x)-depth of M may be computed from its Koszul

homology:

depthR
(
(x),M

)
= d− sup

{
i≥ 0

∣∣Hi(K ⊗R M) �= 0
}
.

This is the depth sensitivity of the Koszul complex.

Suppose now that x is R-regular. Then K is a free resolution of R/(x),

and hence H∗(K ⊗R M)∼=TorR∗ (R/(x),M). In this case, we have

(2.3.1) depthR
(
(x),M

)
= d− sup

{
i≥ 0

∣∣TorRi
(
R/(x),M

)
�= 0

}
.

If R is local with maximal ideal m, we write depthRM for the m-depth

of M and call it the depth of M .
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2.2. A Koszul syzygy module

Let R be a Noetherian ring, and let r := r1, . . . , rd be a regular sequence

in R with (r) �=R. Consider the complex

F := 0→R
[r1,...,rd]

t

−−−−−−→Rd → 0

concentrated in degrees 0 and 1. Set M =H0(F ); as r1 is a nonzerodivisor,

F is a free resolution of M .

Lemma 2.4. Let M , d, and F be as in Section 2.2. For each n= 1, . . . , d,

the following statements hold:

(1) M and ⊗n−1
R M are Tor independent; and

(2) ⊗n
RF is a free resolution of ⊗n

RM , and pdR(⊗n
RM) = n.

Proof. The base case is n = 1, and then (1) and (2) are clear. Fix an

integer n with 2 ≤ n ≤ d, and assume that these statements hold for all

integers ≤ n− 1. Set I = (r). Since ⊗n−1
R F is a free resolution of ⊗n−1

R M ,

we have

TorR∗ (R/I,⊗n−1
R M) = H∗

(
(R/I)⊗R (⊗n−1

R F )
)∼=

(
⊗n−1

R

(
(R/I)⊗R F

))
∗,

where the last isomorphism holds because the complex in question has zero

differential. In particular, TorRn−1(R/I,⊗n−1
R M)∼=R/I �= 0, so that

(2.4.1) sup
{
i≥ 0

∣∣TorRi
(
R/(r),⊗n−1

R M
)
�= 0

}
= n− 1.

We can now complete the induction step.

(1) The induction hypothesis implies that ⊗n−1
R F is a free resolution of

⊗n−1
R M , so (2.4.1) and (2.3.1) show that

(2.4.2) depthR(I,⊗n−1
R M) = d− (n− 1)≥ 1.

Moreover, TorR∗ (M,⊗n−1
R M) is the homology of the complex

F ⊗R (⊗n−1
R M) : 0→⊗n−1

R M
[r]t−−→ (⊗n−1

R M)d → 0

(concentrated in degrees 0 and 1). By (2.4.2), some ri is a nonzerodivisor

on ⊗n−1
R M , and it follows that M and ⊗n−1

R M are Tor independent.

(2) By hypothesis, F and ⊗n−1
R F are free resolutions of M and ⊗n−1

R M ,

respectively. We have already proved, in (1), that these modules are Tor

independent, so the complex F ⊗R (⊗n−1
R F ), that is, ⊗n

RF , is a free resolu-

tion of ⊗n
RM . In particular, pdR(⊗n

RM)≤ n; that the equality holds follows

from (2.4.1).
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2.3. Torsion submodule

Let Q(R) be the total quotient ring of R. The torsion submodule 
RM

of M is the kernel of the natural homomorphism M → Q(R) ⊗R M . The

inclusion 
RM ⊆M gives rise to an exact sequence

(2.4.3) 0→
RM →M →⊥RM → 0.

The module M is torsion if 
RM =M (i.e., Mp = 0 for each p ∈Ass(R)),

and M is torsion-free if 
RM = 0. Thus, M is torsion-free if and only if⋃
AssM ⊆

⋃
AssR. The stronger condition, that AssM ⊆ AssR, is there-

fore a sufficient condition for M to be torsion-free. We will invoke this

criterion twice in the proof of the next theorem.

Part (1) of the next result is reminiscent of Auslander’s discussion in [1,

p. 638] (see also [7, Proposition 3.1]).

Theorem 2.5. Let M and r be as in Section 2.2. The following state-

ments hold:

(1) ⊗n
RM is torsion-free if and only if n≤ d− 1;

(2) the element τ(m) in ⊗d
RM satisfies annR τ(m) = (r); and

(3) the map R/(r)→⊗d
RM of R-modules with 1 → τ(m) induces a splitting

⊗d
RM

∼=
(
R/(r)

)
⊕W,

where W is torsion-free; in particular, we have

HomR

(
R/(r),⊗d

RM
)
=Rτ(m) �= 0.

Proof. Set I = (r), let n≤ d− 1, and fix a prime p ∈Ass(⊗n
RM). If I ⊆ p,

it follows from Lemma 2.4 that (⊗n
RF )p is a minimal free resolution of

(⊗n
RM)p; therefore,

depthRp
(⊗n

RM)p = depthRp − n≥ d− n≥ 1,

which is a contradiction. Thus, I � p, and then the Rp-module Mp is a

nonzero free module; hence, so is (⊗n
RM)p. Therefore, depthRp =

depthRp
(⊗n

RM)p. We have shown that Ass(⊗n
RM)⊆AssR, and hence that

⊗n
RM is torsion-free. The “only if” direction of (1) will follow from (3).

For (2) and (3), by construction r1m1+ · · ·+rdmd = 0, so Proposition 2.2

gives an inclusion I ⊆ annR τ(m). The reverse inclusion will follow, once we

ascertain that the map in (3) splits. Consider the homomorphisms of R-

modules
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⊗d
R(F0)�⊗d

RM � (⊗d
RM)⊗R R/I ∼=H0

(
(⊗d

RF )⊗R R/I
)

= ⊗d
R(F0 ⊗R R/I),

where the surjections are the natural ones; the isomorphism holds because

⊗d
RF is a free resolution of ⊗d

RM , and the equality holds because the dif-

ferential on F has its image in IF . Let e= e1, . . . , ed be the standard basis

for F0 =Rd, in Section 2.2, and let e′ be the induced basis of the free R/I-

module F0 ⊗R R/I . Under the composite map, the element τ(e) maps to

τ(e′), and {τ(e′)} extends to a basis of the R/I-module ⊗d
R(F0 ⊗R (R/I)).

Since τ(e) maps to τ(m) in ⊗d
RM , the map in (2) splits and gives a decom-

position

⊗d
RM

∼= (R/I)⊕W.

It remains to verify that W is torsion-free; given the decomposition above,

the other parts of (3) are a consequence of this fact.

For p ∈ SpecR with I � p, the Rp-module is Mp free, and hence so is Wp.

Assume now that I ⊆ p. The Koszul complex on r, viewed as elements

in Rp, is a minimal resolution of (R/I)p, and so it is a direct summand

of (⊗n
RF )p, the minimal free resolution of (⊗n

RM)p. The ranks of the free

modules in the top degree, d, of these complexes coincide (and equal 1),

whence pdRp
Wp ≤ d− 1 and

depthRp
Wp = depthRp − pdRp

Wp ≥ 1.

These observations show that AssW ⊆ AssR, so W is torsion-free as

claimed.

2.4. Local rings

Next we focus on local rings, where the preceding results can be strength-

ened to some extent.

Lemma 2.6. Let M be a finitely generated module over a local ring (R,m),

and let m1, . . . ,md ∈M . If the images of {m1, . . . ,md} in M/mM are lin-

early independent, then τ(m) is not in m(⊗d
RM).

Proof. Let m′
i be the image of mi in the k-vector space M/mM . Since

{m′
1, . . . ,m

′
d} is linearly independent, τ(m′) �= 0. Hence, τ(m) /∈ m(⊗d

RM).
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Given an R-module M , we write I(M) for the ideal (rij) defined by the

entries in a matrix in some minimal presentation

Rμ [rij ]−−→Rν →M → 0 where ν = νR(M).

This ideal is independent of the presentation. Moreover, I(M) contains a

nonzerodivisor if and only if, over Q(R), the total quotient ring of R, the

module Q(R) ⊗R M can be generated by fewer than ν elements. To see

this we note that, since Q(R) is semilocal, the module Q(R)⊗R M needs ν

generators if and only if νRp
Mp = ν for some p ∈AssR; moreover, νRp

Mp = ν

if and only if the presentation remains minimal when localized at p, that is,

if and only if I(M)⊆ p. Thus, Q(R)⊗R M needs ν generators if and only

if I(M)⊆ p for some p ∈AssR, that is to say, if and only if I(M) consists

of zerodivisors.

Recall that M is said to have rank r if Q(R) ⊗R M is free over Q(R)

of rank r (see [4, Proposition 1.4.3] for different characterizations of this

property).

Theorem 2.7. Let R be a local ring, and let M be a nonzero finitely

generated R-module satisfying one of the following conditions:

(1) I(M) contains a nonzerodivisor; in this case, set b= νR(M); or

(2) M has rank; in this case, set b= rankR(M) + 1.

If M is not free, then for each nonzero finitely generated R-module N one

has


R

(
(⊗n

RM)⊗R N
)
�= 0 for each n≥ b.

Proof. It suffices to prove the statement for n= b, since

(⊗n
RM)⊗R N ∼= (⊗b

RM)⊗R

(
(⊗n−b

R M)⊗R N
)
,

and N �= 0 implies that (⊗i
RM) ⊗R N �= 0 for each i ≥ 0, by Nakayama’s

lemma.

(1) Let m1, . . . ,mb be a minimal generating set for the R-module M . The

element τ(m) in ⊗b
RM is annihilated by I(M), by Proposition 2.2, and is

not in m(⊗b
RM), by Lemma 2.6. It follows that, for each x in N \mN , the

element τ(m)⊗ x in (⊗b
RM)⊗R N is nonzero and is annihilated by I(M)

and hence is in the torsion submodule; this is where the hypothesis that

I(M) contains a nonzerodivisor is used.

(2) We claim that there exists a syzygy relation (2.2.1) with m a minimal

generating set for M , (r)⊆m, and some ri a nonzerodivisor.
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Indeed, νR(M)≥ b since M is not free. Choose elements m1, . . . ,mb that

form part of a minimal generating set for M and such that m1, . . . ,mb−1

form a basis for Q(R)⊗R M over Q(R). Then there is a syzygy relation as

in (2.2.1) in which rb is a nonzerodivisor.

The element τ(m) in ⊗b
RM is annihilated by (r), by Proposition 2.2, and

is not in m(⊗b
RM), by Lemma 2.6. Since (r) has a nonzerodivisor, it follows

as in (1) that the torsion submodule of (⊗b
RM)⊗R N is nonzero.

We learned recently that in 2011, in response to a query on MathOverflow,

David Speyer gave a proof in [13] of (1) that is quite similar to ours when

R is a domain.

One cannot always expect torsion in tensor powers of nonfree modules,

as the following shows.

Example 2.8. Let R= k[[x, y]]/(xy), where k is a field. The torsion-free

R-module M := R/(x) is not free; however, ⊗n
RM is isomorphic to R/(x)

for every n≥ 1 and hence is torsion-free.

The preceding results bring to the fore the following question:

Question 2.9. Let R be a local domain. Is there an integer b, depending

only on R, such that ⊗n
RM has torsion for every finitely generated nonfree

R-module M and every integer n≥ b?

The condition that R be a domain is to avoid the situation of Example 2.8.

When R is regular, one can take b = dimR, by results of Auslander [1,

Theorem 3.2] and Lichtenbaum [10, Corollary 3].

§3. Torsion “carriers”

Some modules, even though they are torsion-free, usually generate torsion

in tensor products. For example, over a local ring (R,m, k) of positive depth,

the maximal ideal m is such a module: for any finitely generated nonfree

R-module M , the tensor product m⊗R M has torsion. To see this, observe

that the short exact sequence

0→m→R→ k→ 0

yields an injection from the torsion module TorR1 (k,M) into m⊗RM ; more-

over, TorR1 (k,M) �= 0 because M is not free.

We give two more examples of torsion carriers: the integral closure R of

a 1-dimensional analytically unramified ring R, and the Frobenius powers
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ϕe
R of a complete intersection R of characteristic p. Recall that a local ring

is analytically unramified provided that its completion is reduced. If R is

1-dimensional, an equivalent condition is that R be Cohen–Macaulay with

finitely generated integral closure R (see [9, Theorem 4.6]).

Theorem 3.1. Let R be a 1-dimensional analytically unramified local

ring, and let R be the integral closure of R in its total quotient ring. If M

is a finitely generated R-module for which R⊗R M is torsion-free, then M

is free.

Proof. Let p1, . . . ,ps be the minimal prime ideals of R, and for each i let

ri be the dimension of the Rpi -vector space Mpi . Put n= νRM , the minimal

number of generators of the R-module M , and choose an exact sequence

0→K →R(n) →M → 0.

If we can show that ri = n for each i, we will know that K is torsion and

hence zero, and we will be done.

Put Di = R/pi, the integral closure of the domain R/pi. Since R is

reduced, we have inclusions

R ↪→
s∏

i=1

R/pi ↪→
s∏

i=1

Di ↪→
s∏

i=1

Q(R/pi) = Q(R).

We see that R=
∏s

i=1Di; moreover, eachDi is a semilocal Dedekind domain

and therefore a principal ideal domain. Since R⊗R M is torsion-free, it is

projective, in fact free of rank ri on the component Di. Therefore, setting

ei = νRDi, we have the equations

r1e1 + · · ·+ rses = νR(R⊗R M) = (νRR) · (νRM) = (e1 + · · ·+ es)n.

Since ri ≤ n for each i, it follows from these equations that ri = n for each i.

Let R be a Noetherian ring of positive characteristic p, and let ϕ : R→R

be the Frobenius endomorphism r → rp. Given an R-module M and a pos-

itive integer e, we write ϕe
M for the R-module obtained from M by restric-

tion of scalars along ϕe; thus, r ·m= rp
e
m for r ∈R and m ∈M . Observe

that M is torsion-free if and only if ϕe
M is torsion-free for some (equiv-

alently, all) e ≥ 1. Following [12], we write F e(M) for the tensor product

M⊗R
ϕe
R. One views F e(M) as a right R-module: the action of R on F e(M)
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comes from the right (ordinary) action of R on ϕe
R. Thus, F e(R) ∼= R as

R-modules, and it follows that F e(M) is finitely generated if M is finitely

generated.

Theorem 3.2 ([12, Corollaire 1.10]). Let R be a local ring of characteris-

tic p, and let M be a finitely generated R-module. If M has finite projective

dimension, then TorRi (M,ϕ
e
R) = 0 for all e≥ 1 and all i≥ 1.

The converse of Theorem 3.2 is true and was proved by Herzog [5, The-

orem 3.1]. For complete intersections, the following strong converse was

proved by Avramov and Miller.

Theorem 3.3 ([3, Main Theorem]). Let (R,m) be a complete intersec-

tion of characteristic p, and let M be a finitely generated R-module. If

TorRi (M,ϕ
e
R) = 0 for some e≥ 1 and some i≥ 1, then M has finite projec-

tive dimension.

The proof that (1) =⇒ (2) in the next theorem follows many of the same

steps Auslander used in [1, proof of Lemma 3.1]. The main differences are

that we have to allow for the possibility that ϕe
R is not finitely generated

and that we appeal to Theorems 3.2 and 3.3 for a replacement of rigidity

of Tor over regular local rings. Recall that a module M is generically free

provided that Mp is a free Rp-module for each p ∈AssR.

Theorem 3.4. Let (R,m) be a complete intersection of characteristic p,

and let M be a finitely generated, generically free R-module. Fix a positive

integer e. The following conditions are equivalent:

(1) F e(M) is torsion-free, and

(2) M is torsion-free and of finite projective dimension.

Proof. Suppose that (1) holds, and apply − ⊗R
ϕe
R to the short exact

sequence (2.4.3), getting an exact sequence

F e(
RM)
α−→ F e(M)

β−→ F e(⊥RM)→ 0.

Since F e(
RM) is torsion and F e(M) is torsion-free, we see that α = 0,

whence β is an isomorphism. In particular, F e(⊥RM) is torsion-free. Next,

consider the universal pushforward (see [6, Section 1]):

(3.4.1) 0→⊥RM →R(m) →N → 0.
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Applying −⊗R
ϕe
R to this sequence, we obtain an injection

TorR1 (N,ϕ
e
R) ↪→ F e(⊥RM).

Now ⊥RM is clearly generically free, and from the construction of the uni-

versal pushforward in [6, Section 1], one checks that N is generically free as

well. It follows that TorR1 (N,ϕ
e
R) is torsion. Since F e(⊥M ) is torsion-free,

we have TorR1 (N,ϕ
e
R) = 0. Now we invoke Theorems 3.2 and 3.3 to see that

TorRi (N,ϕ
e
R) = 0 for all i≥ 1

and, moreover, that N has finite projective dimension. From (3.4.1) it fol-

lows that TorRi (⊥RM,ϕ
e
R) = 0 for all i≥ 1 and that ⊥RM has finite pro-

jective dimension. Therefore, we will have (2) once we show that 
RM = 0.

For this, we apply −⊗R
ϕe
R once again to (2.4.3), to get an injection

F e(
RM) ↪→ F e(M).

Since F e(
RM) is torsion and F e(M) is torsion-free, we have F e(
RM) = 0.

If 
RM were nonzero, there would be a surjection 
RM � R/m. But

then F e(R/m) = 0, that is, mϕe
R = ϕe

R, an obvious contradiction, since

mϕe
R⊆m. Thus 
RM = 0, and the proof that (1) =⇒ (2) is complete.

Now assume that (2) holds. Since M is torsion-free, we can build the

universal pushforward (see [6, Section 1]):

0→M →R(ν) →N → 0,

where ν = νRM
∗. Then N has finite projective dimension. Now Theorem 3.2

implies that TorRi (N,ϕ
e
R) = 0 for all i ≥ 1. Therefore, TorR1 (M,ϕ

e
R) = 0,

and we get an injection F e(M) ↪→ (ϕ
e
R)(ν), whence F e(M) is torsion-free.

From Theorem 3.2 (alternatively, from the proof of Theorem 3.4), we get

Tor independence (item (2) in the Introduction), as follows.

Corollary 3.5. If R and M satisfy the equivalent conditions of Theo-

rem 3.4, then TorRi (M,ϕ
e′
R) = 0 for every i≥ 1 and every e′ ≥ 1.

Of course, if M is torsion-free, the converse of Corollary 3.5 holds, by

Theorem 3.3. In fact, it suffices to check that TorRi (M,ϕ
e′
R) = 0 for a single

e′ and a single i.
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Recall that R is F-finite provided that ϕ is a finite map, that is, that R

is module-finite over ϕ(R). In this case, ϕe is a finite map for each e ≥ 1.

Note that the action of R on the module (ϕ
e
M) in items (1) and (2) below

is the Frobenius action m · r =mrp
e
.

Corollary 3.6. Assume that (R,m) is a reduced local ring, is F -finite,

and is a complete intersection. The following conditions are equivalent:

(1) F e(ϕ
e′
M) is torsion-free for every torsion-free R-module M and every

pair e, e′ of positive integers;

(2) F e(ϕ
e′
M) is torsion-free for some nonzero finitely generated R-module

M and some pair e, e′ of positive integers; and

(3) R is regular.

Proof. Obviously (1) =⇒ (2), and the implication (3) =⇒ (1) holds by

Kunz’s theorem [8, Theorem 2.1] that the R-module ϕe
R is flat when R is

regular.

To prove that (2) =⇒ (3), we note that ϕe′
M is a finitely generated R-

module, by F-finiteness. Also, ϕ
e′
M is generically free because R is reduced.

By Theorem 3.4, ϕe′
M has finite projective dimension, and now [2, Theo-

rem 1.1] implies that R is regular.
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