ON THE MAXIMUM MODULUS AND THE MEAN MODULUS OF AN ENTIRE FUNCTION

A.R. Reddy

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an entire function, but not a polynomial. As usual let,

$$M(\mathbf{r}) = \max |f(\mathbf{z})|, \quad M_{\delta}(\mathbf{r}) = \left\{\frac{1}{2\pi} \int_{0}^{2\pi} |f(\mathbf{r}e^{i\theta})|^{\delta} d\theta\right\}^{1/\delta}, \quad 0 < \delta < \infty,$$

$$|\mathbf{z}| = \mathbf{r} \quad 0$$

(1)

$$m(r) = \sum_{n=0}^{\infty} |a_n| r^n$$
, $\mu(r) = \max_{n \ge 1} |a_n| r^n = |a_{\nu}| r^{\nu}$,

 $\nu = \nu(\mathbf{r})$, $\nu(\mathbf{r})$ is a monotonic increasing function of \mathbf{r} . By Parseval's theorem, we have

(2)
$$M_2(r) = \left\{ \sum_{n=0}^{\infty} |a_n|^2 r^{2n} \right\}^{1/2}$$
.

In this note we prove two theorems, of which Theorem 1 includes a result of Brinkmier [1, Satz (8)]. The proof of this theorem is not only shorter than the one used by Brinkmier, but also very elementary. By combining Theorems 1 and 2 we can have the well-known result of Valiron [2, Theorem 12]. In this case too the present proof is more elementary than the one used by Valiron.

THEOREM 1. If f(z) is an entire function of finite order $\,\rho\,$ then the inequality

$$m(r) \leq M_2(r) r^{\frac{1}{2}\rho + \epsilon_1}$$

is satisfied for $r > r_{\epsilon_4}$, ϵ_1 being arbitrarily small.

<u>Proof.</u> Let us choose 0 < r < R, $\nu = \nu(R)$. By definition

$$m(\mathbf{r}) = \sum_{n=0}^{\infty} |\mathbf{a}_{n}| \mathbf{r}^{n} = \sum_{n=0}^{\nu-1} |\mathbf{a}_{n}| \mathbf{r}^{n} + \sum_{n=0}^{\infty} |\mathbf{a}_{n}| \mathbf{r}^{n}.$$

Now by the Cauchy-Schwarz inequality,

$$m(r) < \sqrt{\nu} \left(\sum_{n=0}^{\nu-1} |a_n|^2 r^{2n} \right)^{1/2} + \sum_{n=0}^{\infty} |a_n| r^n.$$

Using here the definitions of $M_2(r)$ and $\mu(r)$,

$$m(r) \leq \sqrt{\nu} M_2(r) + \mu(r) \sum_{\nu}^{\infty} \frac{|a_n| r^n}{|a_{\nu}| r^{\nu}}$$
,

$$m(r) \leq \sqrt{\nu} M_2(r) + \mu(r) \sum_{\nu}^{\infty} \frac{|a_n| R^n}{|a_{\nu}| R^n} (\frac{r}{R})^{n-\nu},$$

$$m(r) \leq \sqrt{\nu(R)} M_2(r) + \mu(r) (R/R-r)$$
,

$$m(r) \, \leq \, \, M_2^{}(r) \, \, \{ \sqrt{\nu(R)} \, + \, R/R \, \text{-} \, r \}$$
 , because $\mu(r) \, \leq \, \, M_2^{}(r) \, .$

Now by choosing R = 2r, and also by using the fact that

$$\lim_{r \to \infty} \sup \frac{\log \nu(r)}{\log r} = \rho \quad [2, \text{ page 30}],$$

we have finally

$$m(r) \le M_2(r) r^{\frac{1}{2}p + \epsilon_1}$$
.

Hence the theorem is proved.

THEOREM 2. If f(z) is an entire function of finite order p, then the inequality M (r) $\leq \mu(r)$ r is satisfied for r > r, ϵ_2 being arbitrarily small.

Proof. Let us choose 0 < r < R, $\nu = \nu(R)$.

Now by definition

$$\{M_2(r)\}^2 = \sum_{0}^{\infty} |a_n|^2 r^{2n} = \sum_{0}^{\nu-1} |a_n|^2 r^{2n} + \sum_{\nu} |a_n|^2 r^{2n},$$

$$\leq \nu \{\mu(r)\}^{2} + \{\mu(r)\}^{2} \sum_{\nu=1}^{\infty} \frac{|a_{n}|^{2} R^{2n}}{|a_{\nu}|^{2} R^{2\nu}} \left[\frac{r}{R} \right]^{2(n-\nu)},$$

$$\leq \ \nu \left\{ \mu(\mathbf{r}) \right\}^{2} \ + \left\{ \mu(\mathbf{r}) \right\}^{2} \sum_{\nu}^{\infty} \left[\left(\frac{r}{R} \right)^{2} \right]^{2 \ n - \nu}$$

$$\left\{\,M_{2}^{}(r)\right\}^{\,\,2} \,\,\leq\,\, \nu \left\{\mu(r)\right\}^{\,\,2} \,\,+\, \left\{\mu(r)\right\}^{\,\,2}\,R^{\,2}/\,R^{\,2} - r^{\,2} \,\,.$$

By choosing here R = 2r and using the fact [2, page 30] that

$$\lim_{r \to \infty} \sup \frac{\log \nu(r)}{\log r} = \rho',$$

we finally have the required result, i.e.

$$M_2^{}(r) \, \leq \, \mu(r) \, \, \{ \sqrt{\nu(R) \, + \, R^{\, 2} / R^{\, 2} \cdot r^{\, 2}} \} \, \, \leq \, \mu(r) \, \, r^{\frac{1}{2}\rho \, + \, \epsilon_2} \ \, . \label{eq:M2}$$

Remark. By combining Theorems 1 and 2 we have $m(r)\,\leq\,\mu(r)\,\,r^{\,\,\beta\,\,+\,\epsilon_3}\,\,.$

REFERENCES

- 1. H. Brinkmier, Über das mass der Bestimmutheit des wachstums einer ganzen transzendenten function durch die absoluten Betrage der Koeffizienten ihrer Potenzreihe. Math. Ann. 96 (1927) 108-118.
- 2. G. Valiron, Theory of integral functions. (Chelsea Publishing Co. 1949.)

University of Alberta Edmonton