ON THE MAXIMUM MODULUS AND THE MEAN MODULUS
OF AN ENTIRE FUNCTION

A.R. Reddy
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v = v(r), v(r) is a monotonic increasing function of r. By Parseval's
theorem, we have
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In this note we prove two theorems, of which Theorem 1 includes a
result of Brinkmier [1, Satz (8)]. The proof of this theorem is not only
shorter than the one used by Brinkmier, but also very elementary. By
combining Theorems 1 and 2 we can have the well-known result of Valiron
[2, Theorem 12]. In this case too the present proof is more elementary
than the one used by Valiron.

THEOREM 1. If f(z) is an entire function of finite order p then
the inequality

1 pP+e

m(r) < Mz(r) r? 1

is satisfied for r > roo,oy being arbitrarily small.
1
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Proof. Letus choose 0 < r < R, vy = y(R). By definition

* n v-1 n ® n
m(r) = Z ,anfr = Z Ianlr + Z ,an'r .
0 0 v

Now by the Cauchy-Schwarz inequality,

v-1 2 2nt/2 2 n
m(r) < Vv ( = fa [7x HHey s la |

0 v

Using here the definitions of Mz(r) and p(r),

0 ’a Irn
m(r) < Nv M (r) + p(r) = L=
2 v 'a 'rv
v
o |a IRn n-vy
m(r) < Ny M,y(r) +pl) 2 ——— (@),
v ’aVIRn

m(r) < Vv (R) MZ(I‘) + p(r) (R/R-1),
m(r) < Mz(r) {Nv(R) + R/R-r}, because p(r) < Mz(r).

Now by choosing R = 2r, and also by using the fact that

1
lim sup log v(r) _ o [2, page 30],
log r
r—> o
we have finally
ip+e
m(r) < Mz(r) ré 1

Hence the theorem is proved.
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THEOREM 2. If f(z) is an entire function of finite order 0 then
1

sP+te

2 2

I

is satisfied for r > r , € bein
1s salisiied 1Oor ¢ beling
2

the inequality M {r) < plr) r

arbitrarily small.

Proof. Let us choose 0 < r < R, v = y(R).

Now by definition

0 v-1 .
)% = 2 fa |5 s fa |5 e s (a5
2 n
0 0 v
2 o la |*R*7 T A
< v{u(r)} + {p(r)} = " (E_) ,
v la "R

o0 2 -
< v{u(r)}2 +{p(r)}2 b2 [(EJ n

2 2
{Mz(r)} 2 < vip(r)} Zy {p(c)} ZRZ/R -r

By choosing here R = 2r and using the fact [2, page 30] that

lim sup log v(r o,
log r
r—>

we finally have the required result, i.e.

M, (r) < p(r) {Jv(R) + RZ/R- rz} < ulr) L20te,

Remark. By combining Theorems 1 and 2 we have

m(r) < p(r) rp+83 .
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