ON THE MAXIMUM MODULUS AND THE MEAN MODULUS
 OF AN ENTIRE FUNCTION

A. R. Reddy

Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function, but not a polynomial. As usual let,

$$
M(r)=\max _{|z|=r}|f(z)|, \quad M_{\delta}(r)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right\}^{1 / \delta}, 0<\dot{\delta}<\infty,
$$

(1)

$$
m(r)=\sum_{0}^{\infty}\left|a_{n}\right| r^{n}, \quad \mu(r)=\max _{n \geq 1}\left|a_{n}\right| r^{n}=\left|a_{\nu}\right| r^{v}
$$

$\nu=v(r), v(r)$ is a monotonic increasing function of r. By Parseval's theorem, we have

$$
\begin{equation*}
M_{2}(r)=\left\{\sum_{0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}\right\}^{1 / 2} \tag{2}
\end{equation*}
$$

In this note we prove two theorems, of which Theorem 1 includes a result of Brinkmier [1, Satz (8)]. The proof of this theorem is not only shorter than the one used by Brinkmier, but also very elementary. By combining Theorems 1 and 2 we can have the well-known result of Valiron [2, Theorem 12]. In this case too the present proof is more elementary than the one used by Valiron.

THEOREM 1. If $f(z)$ is an entire function of finite order p then the inequality

$$
m(r) \leq M_{2}(r) r^{\frac{1}{2} \rho+\varepsilon_{1}}
$$

$\underline{\text { is satisfied for }} r>r_{\varepsilon_{1}}, \varepsilon_{1}$ being arbitrarily small.

Proof. Let us choose $0<\mathrm{r}<\mathrm{R}, \quad v=v(\mathrm{R})$. By definition

$$
m(r)=\sum_{0}^{\infty}\left|a_{n}\right| r^{n}=\sum_{0}^{v-1}\left|a_{n}\right| r^{n}+\sum_{v}^{\infty}\left|a_{n}\right| r^{n}
$$

Now by the Cauchy-Schwarz inequality,

$$
\mathrm{m}(\mathrm{r})<\sqrt{\nu}\left(\sum_{0}^{\nu-1}\left|\mathrm{a}_{\mathrm{n}}\right|^{2} \mathrm{r}^{2 \mathrm{n}}\right)^{1 / 2}+\sum_{v}^{\infty}\left|\mathrm{a}_{\mathrm{n}}\right| \mathrm{r}^{\mathrm{n}} .
$$

Using here the definitions of $M_{2}(r)$ and $\mu(r)$,

$$
\begin{aligned}
& m(r) \leq \sqrt{v} M_{2}(r)+\mu(r) \sum_{v}^{\infty} \frac{\left|a_{n}\right| r^{n}}{\left|a_{v}\right| r^{v}}, \\
& m(r) \leq \sqrt{v} M_{2}(r)+\mu(r) \sum_{v}^{\infty} \frac{\left|a_{n}\right| R^{n}}{\left|a_{v}\right| R^{n}}{\left(\frac{r}{R}\right)^{n-v},}_{m(r) \leq \sqrt{v(R)} M_{2}(r)+\mu(r)(R / R-r)}^{m(r) \leq M_{2}(r)\{\sqrt{v(R)}+R / R-r\}, \text { because } \mu(r) \leq M_{2}(r)} \\
& m
\end{aligned}
$$

Now by choosing $R=2 r$, and also by using the fact that

$$
\lim _{r \rightarrow \infty} \frac{\log v(r)}{\log r}=\rho \quad[2, \text { page } 30]
$$

we have finally

$$
m(r) \leq M_{2}(r) r^{\frac{1}{2} p+\varepsilon_{1}}
$$

Hence the theorem is proved.

THEOREM 2. If $f(z) \frac{\text { is an entire function of finite order }}{\frac{1}{2} \rho+\varepsilon_{2}} \quad$ is satisfied for $r>r_{\varepsilon_{2}}, \varepsilon_{2}$ being arbitrarily small.
$\underline{\text { Proof. Let us choose } 0<r<R, v=v(R) . ~}$
Now by definition

$$
\begin{aligned}
& \left\{M_{2}(r)\right\}^{2}=\sum_{0}^{\infty}\left|a_{n}\right|_{r}^{2 n}=\sum_{0}^{\nu-1}\left|a_{n}\right|_{r}^{2}{ }_{r}^{2 n}+\sum_{v}^{\infty}\left|a_{n}\right|_{r}^{2}{ }_{r}^{2 n}, \\
& \leq \nu\{\mu(r)\}^{2}+\{\mu(r)\}^{2} \sum_{v}^{\infty} \frac{\left|a_{n}\right|^{2} R^{2 n}}{\left|a_{v}\right|^{2} R^{2 \nu}}\left[\left(\frac{r}{R}\right)\right]^{2}(\mathrm{n}-\nu), \\
& \leq v\{\mu(\mathrm{r})\}^{2}+\{\mu(\mathrm{r})\}^{2} \sum_{v}^{\infty}\left[\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{2 \mathrm{n}-v}\right. \\
& \left\{M_{2}(r)\right\}^{2} \leq \nu\{\mu(r)\}^{2}+\{\mu(r)\}^{2} R^{2} / R^{2}-r^{2} .
\end{aligned}
$$

By choosing here $R=2 r$ and using the fact [2, page 30] that

$$
\limsup _{r \rightarrow \infty} \frac{\log v(r)}{\log r}=\rho,
$$

we finally have the required result, i.e.

$$
M_{2}(r) \leq \mu(r)\left\{\sqrt{\nu(R)+R^{2} / R^{2}-r^{2}}\right\} \leq \mu(r) r^{\frac{1}{2} \rho+\varepsilon_{2}} .
$$

Remark. By combining Theorems 1 and 2 we have $m(r) \leq \mu(r) r^{\rho+\varepsilon_{3}}$.

REF ERENCES

1. H. Brinkmier, Über das mass der Bestimmutheit des wachstums einer ganzen transzendenten function durch die absoluten Betrage der Koeffizienten ihrer Potenzreihe. Math. Ann. 96 (1927) 108-118.
2. G. Valiron, Theory of integral functions. (Chelsea Publishing Co. 1949.)

University of Alberta Edmonton

