
Kang et al. (J. Fluid Mech., vol. 874, 2019, pp. 339–358) studied viscous dissipation
within a permeable body with a view to maximizing the damping of oscillations of
the body. They found that dissipation is maximal when the length scale for diffusion
of vorticity in the fluid outside the body is similar to the length scale for decay of
fluid motion within the body. Their results are examined in the context of the simpler
problem of a porous half-space oscillating parallel to the interface between porous
solid and fluid. The analysis is then extended to consider the impulsive start-up from
rest of a porous plane surface adjacent to unbounded fluid.

Key words: porous media

1. Introduction
Interactions between flowing fluid and permeable solids are of interest over a

wide range of problems at different length scales, including the motion of coiled
polymer molecules (Felderhof 2014), the flow of blood adjacent to body tissue, and
the absorption of wave energy by dykes built as piles of boulders rather than as
solid walls (Chwang & Chan 1998). Kang et al. (2019) recently studied viscous
energy losses inside oscillating permeable spheres and cylinders (both cylindrical and
elliptical). The energy loss (and hence the degree of damping) can be maximized by
choosing the permeability of the porous body to be such that the length scale for
decay of fluid motion inside the porous body is comparable to the length scale for
decay of vorticity outside the body.

Our aim here is to shed further light on the energy analysis of Kang et al. (2019)
by considering a much simpler problem. The flow created by a rigid plane boundary
oscillating in its own plane, first studied by Stokes (1851) (and known as Stokes’
second problem) is a standard textbook example taught to undergraduates (Batchelor
1973): here, we extend the analysis, replacing the boundary by a permeable half-space.
For completeness, we then look at Stokes’ problem of the impulsive start-up from rest
of a rigid plane moving in its own plane, and similarly replace the boundary by a
permeable half-space.

The two-domain approach to studying hydrodynamic interactions between a porous
body and surrounding fluid uses Darcy’s law to predict fluid motion within the
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FIGURE 1. The region y > 0 is occupied by fluid; the region y < 0 is occupied by a
permeable solid that oscillates in the x direction with velocity ũseiωt̃.

porous body and the Navier–Stokes equations in the external fluid (Chwang & Chan
1998), but one then has to decide upon appropriate boundary conditions at the
interface between the permeable body and external fluid. Beavers & Joseph (1967)
showed that a tangential slip boundary condition can be more appropriate than no slip,
though when slip is allowed the choice of the normal stress boundary condition is less
obvious, since viscous normal stresses may be non-zero outside the body (Sherwood
1990) when the tangential velocity is non-uniform. The jump in normal stress
has been discussed by e.g. Ochoa-Tapia & Whitaker (1995), Marciniak-Czochra &
Mikelić (2012), Valdés-Parada et al. (2013) and Carraro et al. (2013). An alternative
one-domain approach uses a single governing equation with material properties that
are functions of position. The two approaches are compared by Valdés-Parada et al.
(2013). As an alternative to Darcy’s law, Brinkman (1947) suggested that the effect of
the solid matrix within the permeable medium can be modelled as a forcing term in
the Navier–Stokes equations, with strength inversely proportional to the permeability
(and therefore zero outside the medium), i.e. the permeable medium and adjacent
fluid are treated as a single domain. This approach allows us to assume continuity of
fluid velocity and stress at the interface.

Here we adopt a one-domain approach based on Brinkman’s equation within the
porous medium, in part because it provides a simple method to illustrate the effect
of permeability on the flows considered by Stokes, but also because this was the
approach adopted by Kang et al. (2019), whose work was the motivation for the
studies presented here. Brinkman’s equation makes no attempt to include details of the
flow within the tortuous pore space of the permeable medium (Scheidegger 1957), and
neglects any nonlinear inertial contributions to fluid inertia which are present at the
pore scale even if the average, Darcy velocity is uniform. This neglect means that it is
most likely to be appropriate in the limit of zero solids volume fraction, i.e. porosity
φ = 1 (Auriault 2009).

2. The oscillating plane permeable wall
The problem is two-dimensional, as depicted in figure 1. The region ỹ > 0 is

occupied by fluid, and the region ỹ< 0 by a fluid-filled permeable solid that oscillates
in the x̃ direction with velocity given by (the real part of) ũs = ũseiωt̃x̂, where ω is
the angular frequency and t̃ is time. The resulting fluid velocity ũeiωt̃ is also in the
x̃ direction, with ũ→ 0 as ỹ→∞, and ũ tending to a constant as ỹ→−∞. Thus
we have rectilinear flow, and nonlinear terms ũ · ∇ũ in the Navier–Stokes equation
are zero. The fluid has density ρ and viscosity µ. In the upper (fluid) half-space, the
fluid velocity ũ and pressure p̃ satisfy

ρ
∂ ũ
∂ t̃
=µ

∂2ũ
∂ ỹ2
−
∂ p̃
∂ x̃
, ỹ> 0. (2.1)
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Unsteady flow adjacent to a porous wall 894 A1-3

The fluid is at rest far from the porous solid, with ũ and ∂ p̃/∂ x̃ tending to zero as
ỹ→∞. The ỹ component of the Navier–Stokes equations tells us that ∂ p̃/∂ ỹ= 0, and
we conclude that ∇p= 0 everywhere in ỹ> 0.

In the lower half-space, the fluid velocity is again assumed to be solely in the x̃
direction. The solid matrix has porosity φ and the mean fluid velocity within the pores
is 〈ũ〉 (where the average is taken over only the pore space). We set ũD=φ〈ũ〉, so that
when the solid is at rest ũD denotes the Darcy superficial velocity within the porous
medium.

Brinkman (1947) modified Darcy’s equation by adding a viscous term µB∇
2uD.

There is no reason to suppose µB = µ (as discussed in appendix A), but in §§ 2
and 3 we assume φ = 1, in which case ũD = 〈ũ〉 = ũ and it is generally accepted
that µB = µ is a reasonable assumption. We add a linear inertial term to obtain a
Brinkman equation of the form (when the solid matrix is at rest)

ρ
∂ ũD

∂ t̃
=µB

∂2ũD

∂ ỹ2
−
∂ p̃
∂ x̃
−
µ

k
ũD, ỹ< 0, (2.2)

where k is the Darcy permeability of the porous medium.
When the solid moves with velocity ũs, the mean velocity of the fluid relative to

the solid matrix is 〈ũ〉 − ũs and the Darcy drag term is modified to become

ρ
∂ ũD

∂ t̃
=µB

∂2ũD

∂ ỹ2
−
∂ p̃
∂ x̃
−
µ

k
(ũD − φũs), ỹ< 0, (2.3)

where ũD=φ〈ũ〉 denotes the scaled fluid velocity in the laboratory frame, rather than a
Darcy velocity relative to the solid matrix. In the main body of this paper we assume
φ = 1, so that ũD = 〈ũ〉 = ũ and µB = µ. (We shall relax the assumption φ = 1 in
appendix A.) The governing equation (2.3) therefore becomes

ρ
∂ ũ
∂ t̃
=µ

∂2ũ
∂ ỹ2
−
∂ p̃
∂ x̃
−
µ

k
(ũ− ũs), ỹ< 0, (2.4)

and f̃ =µ(ũs− ũ)/k is the force per unit volume acting on the fluid due to the Darcy
resistance to flow through the porous medium, with f̃ = 0 in ỹ> 0.

The rectilinear nature of the flow in ỹ< 0 ensures (as in ỹ> 0) that ũ ·∇ũ terms are
absent from Brinkman’s equation of motion, and we conclude from the ỹ component
of the equation that ∂ p̃/∂ ỹ= 0, as in the upper half-plane.

As is usual in one-domain models, we assume that the fluid velocity ũ, shear stress
µ∂ ũ/∂ ỹ and pressure p̃ are continuous at y = 0. There are therefore no pressure
gradients in this uni-directional flow, so from henceforth we set p̃= 0. If we multiply
the governing equations (2.1) and (2.4) by ũ and integrate (2.4) over −L̃< ỹ< 0 and
(2.1) over 0< ỹ< M̃, we obtain the energy equation

µ

∫ M̃

−L̃

(
∂ ũ
∂ ỹ

)2

dỹ+ ρ
∂

∂ t̃

∫ M̃

−L̃

ũ2

2
dỹ−

∫ 0

−L̃
(ũ− ũs)f̃ dỹ

=µũ
∂ ũ
∂ ỹ

∣∣∣∣
ỹ=M̃

−µũ
∂ ũ
∂ ỹ

∣∣∣∣
ỹ=−L̃

+ ũs

∫ 0

−L̃
f̃ dỹ. (2.5)

The right-hand side of (2.5) represents the rate of input of energy by the solid matrix
in ỹ< 0 as it moves with velocity ũs, together with any work performed at the upper
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and lower boundaries ỹ= M̃, ỹ=−L̃. These boundary terms tend to zero as we allow
L̃ and M̃ to tend to infinity. The left-hand side of (2.5) represents viscous dissipation
due to shear within both the permeable medium and the adjacent fluid, the rate of
change of kinetic energy of the fluid, and the rate at which the motion of the fluid
relative to the solid matrix performs work. The rate at which the solid performs work
on the liquid determines the rate of damping of interest to Kang et al. (2019), and
we therefore direct our attention to this final term on the right-hand side of (2.5).

We look for oscillatory solutions in which all quantities vary as eiωt̃, and from now
on drop explicit mention of this exponential factor. We scale time by ω−1, lengths in
the y direction by Ld= (µ/ρω)

1/2 (the length scale for diffusion of vorticity), velocities
by ũs, stress by µũs/Ld and force per unit volume by µũs/L2

d, and we denote non-
dimensional quantities by the absence of a tilde. There are no pressure gradients. The
governing equations become

iu=
∂2u
∂y2

, y> 0, (2.6a)

iu=
∂2u
∂y2
− γ (u− 1), y< 0, (2.6b)

where

γ =
L2

d

k
=

µ

ρωk
. (2.7)

The solution of this pair of equations is straightforward, with

u = U1 exp
(
−i1/2y

)
, y> 0 (2.8a)

=
γ

γ + i
+U2 exp

(
(γ + i)1/2y

)
, y< 0, (2.8b)

where i1/2 and (γ + i)1/2 are chosen to have positive real part. Continuity of the fluid
velocity and shear stress at y= 0 requires

U1 =
γ

γ + i+ (γ + i)1/2i1/2 , U2 =
−i1/2γ

(γ + i)3/2 + (γ + i)i1/2 . (2.9a,b)

The non-dimensional force that the solid exerts on the fluid is f = γ (1− u) per unit
volume, so that the rate of working of the solid as it oscillates with non-dimensional
velocity Re{eit

} is

W(y, t)= γRe
{[

1−
γ

γ + i
−U2 exp

(
(γ + i)1/2y

)]
eit

}
Re
{

eit
}

(2.10)

and the mean rate of working is

W(y)=
1

2π

∫ 2π

0
W(y, t) dt=

γ

2(γ 2 + 1)
−
γ

2
Re
{

U2 exp((γ + i)1/2y)
}
. (2.11)

Fluid inertia prevents the pore fluid from moving with the velocity of the solid, so
that, by (2.8b), u→ γ /(γ + i) as y→−∞, representing a fluid velocity that oscillates
out of phase relative to the solid matrix. As a result, the rate of working of the
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Unsteady flow adjacent to a porous wall 894 A1-5

solid matrix, per unit volume, tends to a non-zero constant as y→−∞. The depth-
integrated mean rate of working of the solid in the region −L< y< 0, with L� γ −1/2,
is

V =
∫ 0

−L
W(y) dy∼

F1(γ )

2
L+

F2(γ )

2
+ · · ·, L→∞, (2.12)

where
F1(γ )=

γ

γ 2 + 1
(2.13)

and

F2(γ )=−γRe
{∫ 0

−∞

U2 exp
(
(γ + i)1/2y

)
dy
}
=Re

{
i1/2γ 2

(γ + i)2 + (γ + i)3/2i1/2

}
.

(2.14)
In dimensional form, the total mean rate of working (per unit length in the x direction)
by the solid matrix is

˜V ∼
µũ2

s

2Ld

[
F1(γ )L+ F2(γ )

]
=

ũ2
s

2
(ρωµ)1/2

[
F1(γ )L̃

(
ρω

µ

)1/2

+ F2(γ )

]
. (2.15)

If we allow the permeability k to tend to zero, so that γ = L2
d/k→∞, then

F1(γ )∼ γ
−1, F2(γ )∼

1
21/2

(
1+

1
γ
−

6
(2γ )3/2

+ · · ·

)
, (2.16a,b)

and as γ →∞ the total rate of working tends towards the classical result for the
rate of dissipation in fluid adjacent to an oscillating plane impermeable wall. In this
limit, fluid within the permeable solid moves at almost the same velocity as the solid,
except within a boundary layer of thickness γ −1/2, within which the relative velocity
is O(γ −1/2), shear rates are O(1) and the force f is O(γ 1/2). In consequence, the
energy equation (2.5) represents a large force f̃ confined to a thin boundary layer at
the surface of the permeable solid, balanced by dissipation almost entirely within the
unbounded fluid in y> 0, together with an oscillating kinetic energy term.

As γ → 0,

F1(γ )∼ γ , F2(γ )∼
γ 2

23/2

(
−1+

7γ
4
+ · · ·

)
(2.17a,b)

and the highly permeable porous solid exerts little force on the fluid, which in
consequence hardly moves. We plot the functions F1(γ ) and F2(γ ) in figure 2. We
see that F1, associated with work performed within the interior of the porous slab,
has a maximum at γ = 1, whereas F2, associated with the region near the boundary
at y = 0, is not far from monotonic apart from a small overshoot near γ = 10
and a small undershoot near γ = 0.4. If the porous slab has thickness L � γ −1/2

the total rate of working of the solid (2.15) is dominated by the term LF1(γ ) and
exhibits a maximum near γ = 1. If L� γ −1/2 we expect the surface effects to play
a dominant role. However, if the porous layer is shallow the expansion (2.12) for
the mean rate of working when L� γ −1/2 is no longer valid, and we cannot ignore
boundary conditions at y = −L. One could investigate this limit by setting up an
alternative geometry e.g. a symmetric problem with a porous slab occupying the
region −H < y<H, with fluid in the regions |y|>H, but we shall not pursue this.
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FIGURE 2. The functions F1(γ ) and F2(γ ). Also shown are asymptotes for F2 for (c)
γ � 1 (2.17), and (d) γ � 1 (2.16).

3. Impulsive start-up from rest of a permeable wall
Stokes’ (1851) analysis of fluid motion adjacent to a plane wall that starts to

move impulsively in its own plane with a steady velocity ŨsH(t) (where H(t) is the
Heaviside function) is a second textbook example taught to undergraduates (Batchelor
1973). We again investigate the effect of replacing the plane wall at ỹ = 0 by a
permeable half-space ỹ< 0.

The fluid is at rest at time t̃ = 0, and subsequently moves with velocity ũ(t̃, ỹ) in
the x̃ direction. Fluid motion in the region ỹ > 0 obeys the Navier–Stokes equation
(2.1); in the region ỹ < 0 it obeys the Brinkman equation (2.4). As in § 2, pressure
gradients are zero, so we set p̃= 0.

We scale velocities by Ũs, and for the moment we scale lengths in the y direction
by an arbitrary length scale L̃. Time is scaled by L̃2ρ/µ, stress by µŨs/L̃, force per
unit volume by µŨs/L̃2 and we denote non-dimensional quantities by the absence of
a tilde. The governing equations become

∂u
∂t
=
∂2u
∂y2

, y> 0, (3.1a)

∂u
∂t
=
∂2u
∂y2
− R(u− us), y< 0, (3.1b)

where R = L̃2/k and the non-dimensional solid velocity us = H(t). We take Laplace
transforms, with

u∗(s, y)=
∫
∞

0
u(t, y)e−st dt. (3.2)

The governing equations become

su∗ =
∂2u∗

∂y2
, y> 0, (3.3a)

su∗ =
∂2u∗

∂y2
− R

(
u∗ −

1
s

)
, y< 0, (3.3b)
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Unsteady flow adjacent to a porous wall 894 A1-7

with solutions

u∗ = A(s) exp
(
−s1/2y

)
, y> 0, (3.4a)

u∗ = B(s) exp
(
(s+ R)1/2y

)
+

R
s(s+ R)

, y< 0. (3.4b)

Continuity of velocity u∗ and shear stress ∂u∗/∂y at y= 0 gives

A=
R

s(s+ R)1/2[(s+ R)1/2 + s1/2]
, B=−

R
s1/2(s+ R)[(s+ R)1/2 + s1/2]

. (3.5a,b)

The fluid velocity in the permeable medium far from the interface (y→−∞) depends
solely on a balance between inertia and the Darcy resistance to flow, with

u∗→ u∗
∞
=

R
s(s+ R)

=
1
s
−

1
s+ R

as y→−∞, (3.6)

corresponding to
u→ u∞ = 1− exp(−Rt). (3.7)

The non-dimensional force that the solid exerts on the fluid is f = R(1− u) per unit
volume. In an unbounded porous medium this force would be R(1− u∞)=R exp(−Rt).
The total additional force (per unit length in the x direction) due to the presence of
the interface at y= 0 is therefore

F= R
∫ 0

−∞

[(1− u)− (1− u∞)] dy, (3.8)

with Laplace transform

F∗ =−
RB(s)

(s+ R)1/2
=

R2

s1/2(s+ R)3/2[(s+ R)1/2 + s1/2]
. (3.9)

In the limit of an impermeable solid (k→ 0, R = L̃2/k→∞), for fixed s we find
F∗ ∼ s−1/2 corresponding to non-dimensional and dimensional forces

F(t)∼
1

(πt)1/2
, F̃(t)∼

(µρ)1/2Ũs

(πt̃)1/2
, (3.10a,b)

in agreement with the classical result for impulsive start-up from rest of an
impermeable solid surface.

For more general R, the transform pairs (Abramowitz & Stegun 1972)

f ∗1 =
1

s+ R
, f1 = exp(−Rt) (3.11a,b)

and

f ∗2 =
1

s1/2(s+ R)1/2[(s+ R)1/2 + s1/2]
, f2 =

1
R1/2

exp(−Rt/2)I1/2(Rt/2) (3.12a,b)
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FIGURE 3. (a) The additional force F(t) (3.14), for R = 1. Also shown are asymptotes
for (b) t� 1 (3.17), (c) t� 1 (3.15) (leading term only), (d) t� 1 (3.15) (two terms).

(where I1/2(z) = sinh(z)(2/πz)1/2 is a modified Bessel function) can be combined to
find the inverse transform of F∗ (3.9), with

F(t) = R2
∫ t

0
f2(u)f1(t− u) du (3.13)

= R
( t

π

)1/2
[∫ 1

0

exp(−Rtv)
(1− v)1/2

dv − 2 exp(−Rt)
]
. (3.14)

When Rt� 1 we expand the exponential in (3.14) to obtain

F∼
2R2t3/2

3π1/2
−

7R3t5/2

15π1/2
+ · · ·, (3.15)

which could alternatively have been obtained by inverting term-by-term the expansion
of F∗ (3.9) in the limit s→∞

F∗ ∼
R2

2s5/2

(
1−

7R
4s
+ · · ·

)
. (3.16)

The t−1/2 singularity (3.10) when k= 0 has been removed. When Rt� 1 we expand
(1− v)−1/2 in (3.14) as a power series for small v, to obtain

F∼
1

(πt)1/2
+

1
2Rπ1/2t3/2

+ · · ·. (3.17)

We now pick the length scale L = k1/2, so that R = 1. (The only reason for not
adopting this natural choice straight away was so that we could consider the limit
k= 0 and thereby obtain (3.10).) Figure 3 shows the force F (3.14), together with the
asymptotes for t� 1 (3.15), and t� 1 (3.17).

The Laplace transform of the velocity on y= 0 is u∗(s, y= 0)=A(s), given by (3.5).
To invert this, we note that the Laplace transform pair

f ∗3 =
1

s1/2
, f3 =

1
(πt)1/2

(3.18a,b)
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Unsteady flow adjacent to a porous wall 894 A1-9

can be combined with the pair (3.12) to give

u(t, 0) = R
∫ t

0
f2(u)f3(t− u) du

=
1
π

∫ 1

0

1− exp(−Rtv)
v1/2(1− v)1/2

dv. (3.19)

When Rt� 1, we expand the exponential in (3.19) to obtain

u(t, 0)=
Rt
2
−

3R2t2

16
+ · · ·, (3.20)

which can be obtained alternatively by inverting term-by-term the expansion of A(s)
for s� R. We see that non-zero permeability smooths out the step change in fluid
velocity that occurs adjacent to an impermeable surface at t= 0. When Rt� 1,

u(t, 0)∼ 1−
1

(πRt)1/2
, (3.21)

and the expansion of (3.4b) for s� R leads to

u(t, y)∼ 1− exp(Rt)−
exp(R1/2y)
(πRt)1/2

, y< 0, Rt� 1. (3.22)

4. Concluding remarks

The above Brinkman analysis includes an inertial ρ ∂u/∂t term, but studies of
high Reynolds number flow inside model porous media have shown that nonlinear
ρ u · ∇u inertial contributions due to tortuosity can be important within the porous
medium, even when Darcy flow is nominally rectilinear (Mei & Auriault 1991; Koch
& Hill 2001; Graham & Higdon 2002) and such nonlinear terms are absent from
the Brinkman equation (2.4). A recent study by Lasseux, Valdés-Parada & Bellet
(2019) of high Reynolds number unsteady flow in a porous medium (of porosity 0.4)
compared direct numerical simulations and an upscaling model against a heuristic
model based solely on the fluid inertia ρ ∂u/∂t and the steady Darcy permeability.
The heuristic model, equivalent to Brinkman’s equation when flow is unidirectional,
overestimated the effect of oscillatory pressure gradient fluctuations by a factor ≈ 2.
Although Brinkman’s equation should capture the essential physics of the problems
discussed in §§ 2 and 3, the quantitative accuracy of its predictions will depend upon
the details of the geometry of the porous medium and the flow regime within it.
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Appendix A. The oscillating permeable wall when φ < 1 and µB 6=µ

In §§ 2 and 3 the porosity φ was assumed to be unity, and in this limit it is natural
to assume that the tangential velocity ũ and shear stress µ∂ ũ/∂ ỹ are continuous at
the interface ỹ = 0. When φ < 1 there is no reason to suppose that the Brinkman
viscosity µB in (2.3) within the porous medium is equal to the fluid viscosity µ. An
attempt to determine µB by a self-consistent cell model (Koplik, Levine & Zee 1983)
suggested µB 6 µ (with equality when φ = 1), whereas Kim & Russel (1985) (using
averaged equations) found µB >µ (again with equality when φ=1). Any experimental
test of our analysis would in practice be performed at porosities φ < 1, so that µB is
unknown. A one-domain analysis of the oscillating permeable wall discussed in § 2
would require a transition region in which the porosity varies continuously from φ= 1
at the interface ỹ= 0 to some value φ0 < 1 in the interior of the porous medium. The
parameter µB would similarly vary continuously from µ at ỹ = 0 to some unknown
value µ0 in the interior, and the permeability k would vary continuously from infinity
at ỹ = 0 to k0 in the interior. We instead investigate a two-domain representation of
the flow, in which the fluid velocity ũ obeys the Navier–Stokes equation (2.1) in ỹ> 0
and the scaled velocity ũD=φ〈ũ〉 obeys the Brinkman equation (2.3) within the porous
medium in ỹ<0, with µB, φ and k uniform within the porous medium, and we require
appropriate boundary conditions at the interface ỹ= 0.

Valdés-Parada et al. (2013) suggest two general boundary conditions relating the
stresses µ∂ ũ/∂ ỹ and µB∂ ũD/∂ ỹ at ỹ = 0 to the velocities ũ and ũD (again at ỹ = 0),
and show that the boundary conditions adopted by Beavers & Joseph (1967) and by
Ochoa-Tapia & Whitaker (1995) are particular cases of these general conditions. Our
aim here is merely to illustrate how the analysis proceeds when φ < 1, and we restrict
our attention to one simple example. We assume that the tangential Darcy velocity
ũD within a stationary porous medium is related to the tangential fluid velocity ũ
immediately outside by a jump condition

ũ−
ũD

α
= λ̃

∂ ũ
∂ ỹ
, ỹ= 0, (A 1)

where α and λ̃ are constants. Ochoa-Tapia & Whitaker (1995) take α=1, λ=0, which
must hold (by continuity) for flow normal to the interface between the two regions.
The Beavers & Joseph (1967) boundary condition for tangential flow corresponds to
α=1, λ>0. For our second boundary condition (again in the frame in which the solid
matrix is at rest), we assume that there is a jump in the shear stress of the form

µ
∂ ũ
∂ ỹ
−µB

∂ ũD

∂ ỹ
= β̃ũ, ỹ= 0, (A 2)

for some constant β̃. This resembles boundary conditions adopted by Ochoa-Tapia &
Whitaker (1995) and by Valdés-Parada et al. (2013). If we now allow the solid matrix
to move with velocity ũs, the fluid velocity in y > 0 relative to the solid is ũ − ũs,
and the mean fluid velocity relative to the solid in y < 0 is 〈ũ〉 − ũs. The boundary
conditions (A 1) and (A 2) become

ũ−
ũD

α
= λ̃

∂ ũ
∂ ỹ
+ ũs

(
1−

φ

α

)
, ỹ= 0, (A 3)

and

µ
∂ ũ
∂ ỹ
−µB

∂ ũD

∂ ỹ
= β̃(ũ− ũs), ỹ= 0. (A 4)
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We make the same non-dimensionalizations as in § 2. The Navier–Stokes equation
(2.1) and Brinkman equation (2.3) become

iu=
∂2u
∂y2

, y> 0, (A 5a)

iuD =M
∂2uD

∂y2
− γ (uD − φ), y< 0, (A 5b)

where

M =
µB

µ
, γ =

L2
d

k
=

µ

ρωk
. (A 6a,b)

The solution of this pair of equations is (cf. (2.8))

u=U3 exp
(
−i1/2y

)
, y> 0, (A 7a)

uD =
γφ

γ + i
+U4 exp

(
(γ + i)1/2M−1/2y

)
, y< 0, (A 7b)

where U3, U4 are constants that will be found when we apply the boundary conditions
on y = 0. We see in (A 7b) that higher shear stresses when M > 1 lead to a slower
spatial rate of decay of the velocity uD as y→−∞.

After non-dimensionalization, the boundary conditions (A 3) and (A 4) become

u−
uD

α
= λ

∂u
∂y
+

(
1−

φ

α

)
,

∂u
∂y
−M

∂uD

∂y
= βu− β, y= 0, (A 8a,b)

where β̃ = βµ/Ld = β(ρωµ)
1/2 and λ̃= Ldλ= λ(µ/ρω)

1/2. These boundary conditions
lead to (cf. (2.9))

U3 =
β +M1/2(γ + i)1/2[α − φi/(γ + i)]
β + i1/2

+ αM1/2(γ + i)1/2(1+ i1/2λ)
(A 9)

and

U4 =
β(1+ i1/2λ)α − (β + i1/2)[α − φi/(γ + i)]
β + i1/2

+ αM1/2(γ + i)1/2(1+ i1/2λ)
. (A 10)

We note that when φ = 1, α= 1, M= 1, β = 0, λ= 0 we recover the analysis of § 2,
i.e. U3 =U1, U4 =U2.

The force that the solid exerts on the fluid due to relative motion is µ(φũs− ũD)/k,
and so the dimensionless rate of working of the solid as it oscillates is now (cf. (2.10))

W(y, t)= γRe
{[
φ −

γφ

γ + i
−U4 exp

(
(γ + i)1/2M−1/2y

)]
eit

}
Re
{

eit
}
. (A 11)

The rest of the analysis continues along the same lines as in § 2. We see that the
use of these predictions to interpret experiments designed to investigate the Brinkman
viscosity µB would involve a simultaneous investigation of the boundary conditions at
the interface y= 0.
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