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A GENERALIZATION OF THE BERNSTEIN POLYNOMIALS

by HAUL ORUC* and GEORGE M. PHILLIPS

(Received 9th September 1997)

Dedicated to Philip J. Davis

This paper is concerned with a generalization of the classical Bernstein polynomials where the function is
evaluated at intervals which are in geometric progression. It is shown that, when the function is convex, the
generalized Bernstein polynomials Bn are monotonic in n, as in the classical case.

1991 Mathematics subject classification: 41A10.

1. Introduction

Recently the second author proposed (see [7]) the following generalization of the
Bernstein polynomials, based on the q-integers. For each positive integer n, we define

ifx), (1.1)
j = 0

where an empty product denotes 1 and fr =f([r]/[n]). The notation requires some
explanation. The function / is evaluated at ratios of the ^-integers [r] and [n], where q
is a positive real number and

• i : q=\.

Then, in a natural way, we define the q-factorial [r]! by

[r]!=f[rl'Ir"11'"[11> r=[' (1.3)f [ r ] . [ r - l j . . . [ l ] , r = l , 2 , . . . ,

l l , r = 0
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and the ^-binomial coefficient ["] by

[r\ [r]\[n-r]l

for integers n > r > 0. The Pascal identities

[:H[::.HV]
and

are readily verified from (1.4). The ^-binomial coefficients are also called Gaussian
polynomials (see Andrews [1]) and an induction argument using either (1.5) or (1.6)
readily shows that ["] is a polynomial of degree r(n - r) in q with positive integral
coefficients.

When q=\, the ^-binomial coefficient reduces to the ordinary binomial coefficient
and (1.1) gives the classical Bernstein polynomial. (See, for example, Cheney [2], Davis
[3], Rivlin [10].) It is clear from (1.1) that, as in the case when q = 1, the generalized
Bernstein polynomial interpolates the function / " a t x = 0 and 1 and that, for
0 < q < 1, Bn is a monotone linear operator.

The generalized Bernstein polynomial defined by (1.1) can be expressed in terms of
^-differences. For any function/ we define

for i = 0 , 1 , . . . n and, recursively,

t+1 V ^ t (1.7)

for k = 0, 1,. ..,n — i— 1, whe re / denotes /([«]/[«])• See Schoenberg [11], Lee and
Phillips [6]. When q = 1, these ^-differences reduce to ordinary forward differences and
it is easily established by induction that

\ r ] , d-8)
L ' J

Then we may write, as shown in Phillips [7],

["] (1.9)
r=0
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which generalizes the well-known result (see, for example, Davis [3]) for the classical
Bernstein polynomial. We may deduce from (1.9), as in Phillips [7], that if/ e Pk, the
linear space of polynomials of degree at most k, then Bn(J; x) e Pk. In particular, if
f & P\ its second and higher ^-differences are zero and we may deduce from (1.9) that,
for any real numbers a and b,

Bn(ax + b; x) = ax + b. (1.10)

For what follows, we also require the Euler identity

r=0

We observe that this identity, which may be verified by induction, generalizes the
binomial expansion.

In [7] there is a discussion on convergence and a Voronovskaya type theorem on the rate
of convergence. Results concerning the convergence of derivatives of the generalized
Bernstein polynomials are given in [8]. The following de Casteljau type algorithm (see
[9]) may be used for evaluating generalized Bernstein polynomials iteratively.

ALGORITHM

for r = 0 to n
J?] :=/(M/[nD

next r
for m = 1 to n

for r = 0 to n — m

next r
next m

It is shown in [9] that fo"] = BJJ; x). This generalizes the well known de Casteljau
algorithm (see [5]) for evaluating the classical Bernstein polynomials.

2. Non-negative differences

In Davis [3] it is shown that, for any convex function /, the classical Bernstein
polynomial (that is, (1.1) with q= 1) is also convex and the sequence of Bernstein
polynomials is monotonic decreasing. It is also shown in [3] that if the fcth ordinary
differences of / are non-negative then the fcth derivative of the classical Bernstein
polynomial Bn(f; x) is non-negative on [0,1]. We will discuss extensions of these results
to the generalized Bernstein polynomials in this and the following section. We begin
by recalling the following definition.
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Definition 2.1. A function/ is said to be convex on [0,1] if, for any t0, t, such that
0 < t0 < r, < 1 and any X, 0 < X < 1,

+ (1 - A)t.) < Xf(t0) + (1 - A)/(t,). (2.1)

Geometrically, this definition states that no chord of/ lies below the graph of/.
With X = q/(\ + q), t0 = [m]/[n] and r, = [m + 2]/[n] in (2.1), where 0 < q < 1, we see
that, if/ is convex,

from which we deduce that

Ui - (1 + «)/m+i + qfm = A2/m > 0.

Thus the second ^-differences of a convex function are non-negative, generalizing the
well known result for ordinary differences (where q = 1).

For any fixed natural number k we now construct a set of n — k + 1 piecewise
polynomials whose kth q-differences take the value 1 at a given knot, say ([m]/[n]), and
the value 0 at all the other knots. For 0 < m < n — k define

10

/M(x),10 0<x<[m + k- l]/[n),

~ (2-2)
/ M ( ) [ + * l ] / [ ] lwhere

When k = 1 in (2.3) the empty product denotes 1 and then (2.2) is the piecewise
constant function

fO, 0<x<[m]/[n],
gim(x)={ (2.4)

(1 , [m]/[«]<x<l,

for 0 < m < n - 1. For a general value of k, the values of these piecewise polynomials
at the knots are given by

. . (0, 0 < ; < / n + fe-l,
k t ) = \ r h m _ n , . . (2.5)

I L J + k< <

https://doi.org/10.1017/S0013091500020332 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020332


A GENERALIZATION OF THE BERNSTEIN POLYNOMIALS 407

Since the "polynomial part" of gkm(x) is of degree k — 1, the fcth ̂ -differences involving
knots from that part of the domain are zero. From this and (1.8), and noting where
gkm(x) is zero, we see that

AV-f1' j ' (2.6)
(0, j^m,0<j <n-k.

We can use the functions gkm(x), 0 < m < n — k, and the monomials 1, x , . . . , xk~' as a
basis for the space of functions whose feth ^-differences are non-negative on the knots
([/]/[«]), 0 < 7 < n. Let pt_, e Pt_, denote the polynomial which interpolates/ on the
first fe of these knots, ([/)/[«]), 0 < j < k — 1, and let us write

fix) = p,_, (x) + ] T tffmgkm{x). (2.7)

This is a piecewise polynomial of degree k — 1 with respect to the knots. On the
interval [0, [k — l]/[n]], all of the n — k + 1 functions gkm(x) are zero and thus

/(M/M) = P*-,(L/]/M) =/([;!/[»]). o < ; < fe - l, (2.8)

so that

A7o = A r / 0 , 0 < r < f c - l . (2.9)

Also, we deduce from (2.7) and (2.6) that

and so

Ar/0 = A%Ffc<r<n . (2.10)

Combining (2.9) and (2.10), we deduce that

/(L/l/M) =f(U\/[n]), 0 < ; < « . (2.11)

Thus the function / , a piecewise polynomial of degree fc — 1, takes the same values as
/ on all n + 1 knots. When fe = 1, / is a step function which interpolates / on all n + 1
knots and, when fe = 2, the function / is the linear spline which interpolates / . For a
general value of fe, we deduce that

Bn(f; x) = Bn(J; x) (2.12)
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and thus, from (2.7) and the linearity of the Bernstein operator Bn,

n-k
Bn(/; x) — Bn(pt_,; x) + ^2 A*/mCtm(x) (2.13)

m=0

say, where

Ck.m(x) = Bn(g
km; x). (2.14)

We now state:

Theorem 2.1. The kth derivatives of the generalized Bernstein polynomials of order n
are non-negative on [0, I] for all functions f whose kth q-differences are non-negative if
and only if the kth derivatives of the generalized Bernstein polynomials of the n — k + 1
functions gkm(x), 0 <m <n — k, are all non-negative.

Proof. This follows from (2.13) and (2.14). •

We will find it useful to derive an alternative expression for the fcth derivative of
Bn(g

km; x). We begin by expressing higher order q-differences (of order not less than fc)
in terms of the fcth q-differences. For 0 < s < n — k, we may write

(2.15)
i=o

This is easily verified by induction on s, using the recurrence relation for ^-differences
(1.7) and the Pascal identities. We now write the ^-difference form of the generalized
Bernstein polynomial (1.9) as

Using (2.15) to replace the higher order differences in the second summation and
rearranging the resulting double summation, we obtain

: x) = £ f "1 A'/ox'
m = 0

say, where

" E '̂ 2*-"2 [ " ] [m + ' ] * (2.17)
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On comparing (2.13) and (2.16), which hold for all functions/, we deduce that

£rCfe.m(x) = £jDM(x). (2.18)

Thus, given that we are interested only in their fcth derivatives, the sets of polynomials
Ckm and Dkm are equivalent.

It is well known (see Davis [3]) that, with q = 1, the fcth derivatives of Dkm are
non-negative. This is easily verified from (2.17) since with q = 1 we have

so that, mindful of (2.18),

for 0 < x < 1. From (2.17) we can also see that, as q tends to zero from above, each
^-integer tends to 1 and we have the limiting form

and so its kth derivative is non-negative. We conjecture that the kth derivative of each
Dkm is non-negative for 0 < q < 1, but have not found a proof, except for certain
values of m which we will mention below.

We will now work with Ckm rather than Dkm. From (2.14), (1.1) and (2.5) we have

j=0

for 0 < m < n — k. With m = n — k, we have

whose kth derivative is clearly non-negative on [0,1]. With m = n — k-l, we obtain
from (2.19) that

and, with a little work, we find that the kth derivative of the latter polynomial is also
non-negative on [0,1].

We can express Ck m(x) in another way, as follows. Since Bn is a linear operator, we
may write
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Cfc-M = Bn(g
km; x) = BAyk'm; x) + Bn(g

km - yKm; x), (2.20)

where yKm is defined in (2.3). Let

Bn(y
km; x) = pkm(x)

say, where pKm(x) e Pk_t. Then we obtain from (2.20) that

CKm(x) = PUx) + q-i2m+m->)/2(-\)kSk,m (2.21)

say, where

In particular, (2.21) gives

CM(x) = pk,0(x) + q-«k-l)l2(-l)k f l ( l - <fx).
j = 0

Since, for 0 < q < 1, the zeros of the function (-l)*]~£!oO ~ i'x) a r e a ^ greater than
unity, the repeated application of Rolle's theorem shows that this is true of each of its
first n derivatives. Also, Euler's identity (1.11) shows that its feth derivative is positive
at x = 0 and so is positive on [0, 1]. Since A,o(x) € Pt_, it follows that the /cth derivative
of Ck0 is also positive on [0, 1].

3. Monotonicity for convex functions

It is well known (see Davis [3]) that, when the function / is convex on [0,1], its
Bernstein polynomials are monotonic decreasing, in the sense that

*„_,(/; x) > Bn(f; x), » = 2 , 3 , . . . , 0 < x < l .

We now show that this result extends to the generalized Bernstein polynomials, for
0 < q < 1. In Figure 1, which illustrates this monotonicity, the function is concave
rather than convex and thus the Bernstein polynomials are monotonic increasing.
Figure 1 here is modelled on Fig. 6.3.1 in Davis [3], which relates to the classical
Bernstein polynomials. The function is the linear spline which joins up the points (0,0),
(0.2,0.6), (0.6,0.8), (0.9,0.7) and (1,0) and the Bernstein polynomials are those of
degrees 2, 4 and 10, with q = 0.8 in place of q = 1 in [3].

Theorem 3.1. Let f be convex on [0, 1]. Then, for 0 < q < 1, Bn_,(/; x) > Bn(f; x)
for 0 < x < 1 and all n > 2. Iff € C[0, 1] the inequality holds strictly for 0 < x < 1 unless
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FIGURE 1: Monotonicity of generalized Bernstein polynomials for a concave function. The polynomials
are B2, Bt and B10, with q = 0.8

f is linear in each of the intervals between consecutive knots[r]/[n — 1], 0 < r < n — 1, in which
case we have the equality Bn_,(/; x) = Bn(J; x).

Proof. The key to the proof in Davis [3] for the case q = 1 is to express the difference
between the consecutive Bernstein polynomials in terms of powers of x/(l - x). Since
the generalized Bernstein polynomials involve the product n^o" 0 ~~ i'x) rather than
(1 — x)"~r we need to modify the proof somewhat. For 0 < q < 1 we begin by writing

ffj (1 - - Bn(J; x))

We now split the first of the above summations into two, writing

fjfj (1 - '-V,+1 W.
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where

The resulting three summations may be combined to give

fl(l - cfxY\BnM; x)- Bn(J; x)) = JT ["] ar^(x), (3.2)

say, where

From (3.1) it is clear that each \frr{x) is non-negative on [0, 1] for 0 < q < 1 and thus, in view
of (3.2), it suffices to show that each a, is non-negative. We return to (2.1) and put
to = [r- !]/[" - 1]. h = [r]/[n - 1] and k = q""[r)/[n]. Then 0 < t0 < t, < 1 and 0 < X < 1
for 1 < r < n — 1 and, comparing (2.1) and (3.3), we deduce that, for 1 < r < n - 1,

a, = A/(to) + (1 - ^)/(t,) -/(At0 + (1 - A)t,) > 0.

Thus Bn_i(/; -x) > Bn(f; x). Of course we have equality for x — 0 and x = 1 since all
Bernstein polynomials interpolate / on these end-points. The inequality will be strict
for 0 < x < 1 unless each ar = 0 which can only occur when / is linear in each of the
intervals between consecutive knots [r]/[n -1 ] , 0 < r < « — 1, when we have Bn_,(/; x) =
Bn(f; x) for 0 < x < 1. This completes the proof. •

For a convex function, Goodman, Oru? and Phillips [4] show that the generalized
Bernstein polynomials are also monotonic in the parameter q, for 0 < q < 1.
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