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Abstract. A new formalism for studying three-body interactions is dis-
cussed. It introduces the concept of forced modes of oscillation of a bi-.
nary, and relies on the chaos theory concept of resonance overlap. The
treatment provides a powerful tool for studying stability and scattering
in hierarchical systems, and is not restricted by mass ratios, eccentricities
or orientations.

1. Introduction

Almost all areas of astrophysics involve some aspect of the three-body. problem.
At the very least we can associate it with every area discussed at this sympo-
sium, and since the latter covered all length scales in astrophysics, it is clear that
an understanding of three-body interactions in fundamental. Starting from the
smallest scales (and revealing my interest in planetary dynamics), the follow-
ing processes involve three-body interactions, and in particular illustrate that
stability and scattering processes are most important: Bound-orbit scattering

.processes responsible for the formation of planet cores; migration of systems of
newly formed planets as they interact with each other and the protoplanetary
disk (the latter providing sources and sinks of energy and angular momentum);
the stability of planetary systems once the disk is cleared; resonant capture pro-
cesses which result in systems such as the 2:1 resonant pair of planets orbiting the
star GJ 876; the stability of triple and higher-order star systems; scattering pro-
cesses in star clusters including binary-single star interactions and binary-binary
interactions, the latter including scattering, capture, and collisions resulting in
the formation of new triples; scattering and collision processes in star-forming
clouds; scattering and collision processes in clusters of galaxies.

Most astrophysical applications of the three-body problem have relied on
studies of the planar circular restricted problem where one of the bodies is as-
sumed to have negligible mass, although perturbation analyses involving small
eccentricities and inclinations have been successfully applied to Solar System
problems (Murray & Dermott, 1999). Studies of stability of hierarchical triples
have focussed mainly on what is referred to as "Hill stability" which uses energy
and angular momentum considerations to predict which configurations are capa-
ble of suffering close encounters. It seems to be widely assumed that the escape
of a body from a hierarchical triple is necessarily preceded by a close encounter,
however this is definitely not the case! It is possible for the eccentricity of the
outer orbit of a such a triple to random walk its way out past unity, thereby
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disrupting the configuration without a close encounter. This is related to a more
general concept called "Lagrange stability", and a Lagrange stable system is one
which remains bound for all time. While it is still impossible to predict which
configurations are stable in this sense, the formulation discussed here allows one
to predict which systems are dynamically Lagrange unstable in the sense that
they are short-term unstable, irrespective of whether or not they are "allowed"
to have close encounters. It may be used to study any hierarchical triple system
and is not restricted by the mass ratios, eccentricities or orientations.

In addition to stability, the formalism may be used to study anyone of the
problems listed above including resonance capture, and in particular, is proving
to be a powerful analytical tool for the study of scattering processes (Mardling,
in preparation).

Section 2 reviews some general physical and mathemathical concepts, while
section 3 introduces the concept of the forced modes of oscillation of a binary
and presents some results which illustrate the success of the treatment. Section
4 presents a summary.

2. General Concepts

The new formalism relies on the concept of gravitational resonance and uses
Hamiltonian mechanics as its mathematical basis. In particular, it utilizes a se-
ries of ideas beginning with the fundamental work of Poincare on perturbed in-
tegrable systems (Poincare 1993) and culminating in a paper by Wisdom (1981)
in which stability in the restricted three-body problem is studied. The present
work adds a crucial new concept to this elegant body of work, so that hierar-
chical triple systems (including unbound systems) can be studied in all their
generality. Thus there is no restriction on the masses, the inner and outer ec-
centricities, or the relative orientation of the inner and outer orbits. The system
should, however, have a clear hierarchical structure initially, although the study
of subsequent exchange is possible.

A review of the mathematical ideas on which the present work relies may be
found in Mardling (2001), while the complete theory will be published elsewhere.
The following contains a summary.

2.1. Gravitational Resonance

Most people are used to thinking of what one might call linear resonance, that
is, the kind of resonance which occurs if a linear oscillator is forced at its natural
frequency. Resonance is associated with a large transfer of energy, and occurs
because the forcing conditions are such that energy tends to flow in the same
direction each forcing cycle. Now consider a stable system of two planets whose
orbital periods are in the ratio 2:1, and imagine that their periastra are aligned
and their conjunction point is near periastron' (Figure l(a), (b)(i)). Because the
planets are in conjuction at around the same place in their orbits each cycle, there
tends to be a net flow of energy to (or from) the outer orbit from (or to) the inner

1 In fact, stable 2:1 resonant planetary systems tend to align their periastra or have them 1800

apart.
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Figure 1. (a): A 2:1 planetary resonance with conjunction near peri-
astron. (b)(i): A 2:1 resonance with masses m1 == 1, m2 == m3 == 0.001,
a circular inner orbit and outer eccentricity 0.1. (ii): Same as (i) but
with the outer semi-major axis increased by 7%. (iii): Same as (i)
but with the outer semi-major axis doubled. Note that high frequency
oscillations are not shown.

orbit. This is in contrast to non-resonant systems for which the orbital energies
(and hence semi-major axes) remain secularly constant (Figure l(b)(iii)). This
flow of energy will, however, move the system away from resonance, reducing
the amount per outer orbit until the direction of flow reverses and the system
moves back towards resonance, and the conjunction points move back towards
periastron. Thus the semi-major axes vary secularly, with the period of variation
depending on how far the system is from exact resonance.

For a 2:1 resonance, the quantity 2nout - nin ~ 0, where nin and nout are
the inner and outer orbital frequencies (mean motions) respectively. The corre-
sponding quantity 1>21 == 2Aout - Ain then varies slowly, where Ain == Jnindt and
similarly for Aout. Since the kinds of problems for which the treatment is useful
(dynamical stability and scattering) involve short timescales, it is assumed that
secular motions such as apsidal motion, precession and nutation are negligible.
The angle 1>21 is called a resonance angle, and plays a fundamental role in the
study of stability. For a resonant system, 1>21 librates around zero, while for a
system far from resonance, 1>21 circulates. These concepts are familiar from the
phase-space plot of the motion of a pendulum as Figure 2 illustrates. The width
of a linear resonance is usually defined to be something like the full-width half
maximum, but one may equally choose some other definition. In the present
case, however, the width of a resonance has a precise definition and is the ex-
tent of the librating region, that is, the maximum vertical distance between
separatrices.

2.2. Resonance Overlap

Poincare introduced his General Problem of Dynamics in 1892 which asked the
question: given an integrable system, that is, a Hamiltonian system for which the
number of integrals of the motion is equal to the number of degrees of freedom
(the number of independent coordinates), by how much can one perturb such a
system before integrability is lost. This represented the birth of chaos theory, his
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Figure 2. Variation of (either) semi-major axis with resonance angle
4>21 == 2Aout - Ain, illustrating libration and circulation. The amplitude
of variation reduces away from resonance (see Figure 1). a and ares
are the inner or outer semi-major axis and the corresponding value at
exact resonance respectively.

work inspired by the desire to win (pour la gloire de la France) a lucrative prize
offered by King Oscar II of Sweden in 1885 (vive la concurrence!). He showed
that a series solution to the (restricted) three-body problem could be expected
to diverge because of small denominators caused by internal resonances. In 1954,
Kolmogorov outlined a proof which was completed in the 1960s by Arnol'd and
independently by Moser, which showed that such a series solution is convergent
provided the natural frequencies associated with the orbital configuration are
not "close" to resonance.e This is the celebrated KAM theorem.

From a practical point of view, divergent series correspond to chaotic be-
haviour, and for the three-body problem this in turn corresponds to systems
unstable to the escape of one body. But given its abstract form, it was not
clear how to use the KAM theorem for practical purposes until Chirikov (1979)
proposed what we now refer to as the Chirikov resonance overlap criterioti".
In particular, he studied the interaction of nonlinear oscillators and showed
that one can quite accurately predict chaotic behaviour simply by calculating
the width of individual resonances (in the "pendulum" sense of Figure 2) and
then ask for what system parameters do neighbouring resonances "overlap". In
reality, separatrices do not overlap, but rather exhibit extremely complex be-
haviour as they vie for the same phase space while not being allowed to cross
(uniqueness). Nonetheless, this simple criterion provides a powerful method for
determining the onset of chaos in Hamiltonian systems. In essence (and af-
ter a series of canonical transformations), the Hamiltonian is expanded around

2In fact their work was not restricted to the three-body problem.

3Which itself was inspired by the work of Walker and Ford (1969).
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Figure 3. The forced oscillations of an equal mass binary. The inner
binary is initially circular, and aout = 4 and eout = 0.2 initially. The
amplitude increases during outer periastron passage.

the unperturbed state at resonance and in doing so, is cast in the form of the
Hamiltonian for a pendulum. One can then calculate the width of a resonance
using the equations for the separatrices and ask for what system parameters do
neighbouring resonances overlap.

Finally Wisdom (1981) used the Chirikov resonance overlap criterion to
study stability of the restricted three-body problem. It is his formulation upon
which the present work is based.

3. The Forced Modes of Oscillation of a Binary

The concept introduced by the new formalism is that of forced modes of oscilla-
tion of a binary. Figure 3 shows the evolution of the inner semi-major axis, ain,

and inner eccentricity, ein, over two outer orbits for an equal-mass triple with
ein = 0.0, ain = 1, eout = 0.2 and aout = 4 initially. The oscillation frequency
of the inner semi-major axis is twice the inner orbital frequency, nin, while the
fundamental and third harmonics of the inner orbit dominate the inner eccen-
tricity. These oscillations are fundamental to the stability of the system because
it is these to which the outer orbit is coupled. It is useful to regard the inner
orbit as an elliptic ring of material whose density decreases near periastron and
increases near apastron, a device introduced by Gauss (at least for a static ring;
see Murray & Dermott 1999). Here, the ring oscillates as it exchanges energy
with the outer orbit, at all times keeping the form of an ellipse (an "osculating"
orbit). Note that this oscillatory motion is not associated with the interaction
energy which is a separate part of the energy budget. Rather it is a part of the
energy associated with the inner orbit.

The Hamiltonian for a hierarchical triple consisting of an inner binary with
masses ml and m2, and an outer body of mass m3 can be written as

where

H = Hs« + Hout + Hint, (1)

1 ·2 Gm12m3
H out = 2J-LoutR - R (2)
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(3)

Hin == H~ + Hose, (4)

where Hi:. == !J-tinr·02 - GmIm2/ro is the Hamiltonian associated with an unper-
turbed inner binary (m3 == 0) with ro the position vector of m2 relative to ml,
and Hose is the Hamiltonian associated with the oscillatory motion of a perturbed
inner binary. Since Hi~ is constant, it does not affect the dynamics and can be
ignored. Hose is defined such that

describes the tidal interaction between the inner and outer orbits. Here r is the
position vector of m2 relative to ml, and R is the position vector of m3 relative
to the centre of mass of the inner binary. These are called Jacobi coordinates.
Parameters associated with the masses are mI2 == ml + m2, J-tin == mIm2/mI2,
J-tout == mI2m3/mI23, Qi == mi/ml2 and Ml == (mi- I + (-1)lm~-I)/mi21. Note
that M2 == 1 for any masses, while Ml == 0 when 1 is odd and ml == m2. Thus,
for example, the 1 == 3 octupole term is important for planetary systems but
not when the inner masses are similar. The sets of angles (f), 'P) and (8, 'ljJ) are
spherical polar coordinates associated with the vectors QIr and R, both of which
are measured from the centre of mass of the inner binary. The Ylm are spherical
harmonics. Since secular motions are ignored, it is convenient to orientate the
coordinate system such that 'P is the true anomaly of the inner orbit, and hence
f} == 7r /2. For present purposes the spherical harmonic expansion (3) is truncated
after the quadrupole (l == 2) term, however it is easy to generalize the formalism
to include higher order terms.

The Hamiltonian for the inner binary is now written as the sum of two
parts:

r == ro + 1J and <P == <Po + (, (5)

where
00 00

1J== L bn(t)eincp and (== L an (t)ein<p, (6)
n=-oo n=-oo

and ro and <Po are associated with the unperturbed inner binary. Since 1J and
( are real, b_n == b~ and a_ n == a~. These expressions are consistent with
regarding the inner binary as an oscillating Gauss ring, so that eincp is a forced
mode of oscillation of such a ring and bn(t) is its amplitude. Note, however, that
there are no free modes of oscillation as there are in the case of tidally forced
modes of oscillation of a star. If the expressions (5) and (6) are substituted into
the equations of motion of the (perturbed) inner binary and these equations are
then expanded to first order in 1J and (, one can show that when the inner orbit
is (initially) circular, 1J satisfies the equation for forced simple harmonic motion.
Equations for the complex amplitudes may be derived by taking advantage of
the orthogonality of the mode functions eincp. These equations are particularly
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simple for the case of a circular inner binary, otherwise they are also functions
of ein (which may be regarded as constant).

Scattering processes can be studied analytically using the above normal
mode analysis, together with a formulation similar to that of Press & Teukolsky
(1977) who studied stellar tidal capture. The following focuses on stability anal-
ysis and gives a brief overview of how the Chirikov resonance overlap criterion
can be used to determine the stability of hierarchical triples.

Recall that the aim is to cast the Hamiltonian in the form of that for a
pendulum, so that the widths of resonances may be calculated and hence their
overlap. This is done in a series of steps. First the interaction term is trun-
cated after the quadrupole term, expanded to first order in 1J and integrated
over the binary "ring". This produces an expression which governs the interac-
tion between the modes of oscillation of the inner binary and the outer orbit.
Subtracting the constant Hf:., the new Hamiltonian, H, becomes

H == Hose + Hout + Hint == Ho+ Hint, (7)

where Hint is the truncated (and smoothed) interaction term. Ho is the inte-
grable part of the Hamiltonian, consisting of a series of coupled linear oscillators
and an uncoupled Kepler orbit, and Hint is the perturbation which mayor may
not destroy the integrability, depending on the configuration and hence whether
or not neighbouring resonances "overlap". The first step towards a pendulum
Hamiltonian is to write equation (7) in terms of action-angle variables. The two
standard systems which many text books on classical mechanics use when they
discuss action-angle variables are the harmonic oscillator and the Kepler orbit
which are precisely the two systems used in this treatment. The interaction term
is expanded in a Fourier series in these variables (and is simplified by the fact
that secular frequencies are ignored). The next step is to ignore all Fourier terms
except one resonant term which will be of the form cos(nAout - iJm) == cos <Pnm,
where iJm == mAin is the angle variable associated with the resonant oscillator of
interest. The angle nAout is associated with the nth harmonic of the outer orbit,
the strength of which increases with increasing eout, and similarly for mAin. The
resonant angle <Pnm is associated with the n : m resonance. Another canonical
transformation to "resonance variables" is performed, and the resulting Hamil-
tonian is expanded in a Taylor series "about resonance", being truncated after
the quadratic term leaving the Hamiltonian for a pendulum. Figure 4(a) shows
how the widths of the n : 1 resonances depend on eout by plotting eout against
r == nin/nout == Tout/Tin, where Tin and Tout are the inner and outer orbital peri-
ods respectively. Exact resonance corresponds to integer values of r. The dashed
line corresponds to the 2:1 resonance which is the only n : 1 resonance which has
finite width for eout == o. Unstable triples have values for eout and r which are
common to two or more resonances. Figure 4(b) shows the stability boundary
for an equal-mass triple. The dots are determined numerically and correspond
to unstable systems (see Mardling (2001) for a discussion of how these are ob-
tained); the circles correspond to where neighbouring resonances first overlap;
the solid curve comes from the semi-analytical formula aout/ain == C r4 , where
C ~ 0.013 for circular inner binaries with ml == m2 (again, see Mardling (2001)).
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Figure 4. (a): The overlap of neighbouring n : 1 resonances for a
hierarchical triple with a circular inner binary and ml == m2 == 1, m3 ==
0.05. (b): The stability boundary for an equal-mass triple with ein == O.
Dots indicate unstable systems and are determined numerically; circles
are theoretical predictions; the solid curve is semi-empirical. R~ut is
the outer periastron distance.

4. Summary

The new formalism which introduces the concept of the forced modes of-oscil-
lation of a binary and uses the theory of resonance overlap is clearly successful
at predicting the stability of similar-mass triples. It has been tested for a range
of mass ratios and is equally successful for these, although some systems with
small eout are sensitive to the omission of secular frequencies. All the informa-
tion about masses, eccentricities and orientation appears in the interaction term
(see equation (3)), and so the theory can in principle be used for any hierar-
chical system. For practical applications such as triple formation in star cluster
simulations, the formula in the previous paragraph is used, with C depending
on other parameters (Mardling & Aarseth, 2001). Use of the normal mode anal-
ysis introduced here is also proving to be a powerful tool for studying scattering
processes (Mardling, in preparation).
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