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Abstract

We consider the Prym map from the space of double coverings of a curve of genus g
with r branch points to the moduli space of abelian varieties. We prove that P :Rg,r→
Aδg−1+r/2 is generically injective if

r > 6 and g > 2, r = 6 and g > 3, r = 4 and g > 5 or r = 2 and g > 6.

We also show that a very general Prym variety of dimension at least 4 is not isogenous
to a Jacobian.

1. Introduction

Let C be a complex projective curve of genus g > 1, and let π :D→ C be a two-sheeted covering
of C ramified at r points. The Prym variety P of π is the identity component of the kernel of
the norm homomorphism

N : J(D)→ J(C).
Note that if r 6= 0, then kerN is connected (see, for example, [Mum74, § 3, Lemma] and [Kan04,
§ 1, Lemma 1.1]). The Prym variety P of π is an abelian variety of dimension g − 1 + r/2, and
the divisor ΘP := ΘJ(D) ∩ P gives a polarization of type

δ = (1, . . . , 1, 2, . . . , 2︸ ︷︷ ︸
g

) (1)

(see, for instance, [Kan04, § 1, Lemma 1.1]).
In this paper we deal with the generic Torelli theorem for Prym varieties of ramified coverings.

The infinitesimal Torelli theorem stated in [NR95] (see also Proposition 2.2) and the étale case
suggest that the result should hold when the dimension of the space of coverings is strictly
smaller than the dimension of the moduli space of abelian varieties.

Let C be a curve, η a line bundle on C and R a multiplicity-free divisor in the linear system
|η2|. Following [Mum74], we can provide the coherent OC-module OC ⊕ η−1 with a natural
OC-algebra structure depending on R. The natural projection

π :D := Spec(OC ⊕ η−1)→ C = Spec(OC)

is a ramified double covering with branch points in the support of R and, conversely, each double
covering π comes in this form. Let Rg,r denote the scheme parametrizing triples (C, η, R) up to
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isomorphism; the Prym map is the morphism

P :Rg,r→Aδg−1+r/2

which associates to (C, η, R) the Prym variety P of π. We call the closure of the set of Prym
varieties in Aδg−1+r/2 the Prym locus and denote it by Pδg−1+r/2.

In the étale case, the Prym map is generically finite for g > 6 (Wirtinger’s theorem;
see [Bea77b]), and it is never injective [Don81, DS81, Nar92, Nar96]. Kanev [Kan82] and
Friedman and Smith [FS82] proved independently that the Prym map has generically degree 1
for g > 7. This is the so-called generic Torelli theorem for Prym varieties. It is known
(see [GL85, LS96, NR95] and § 2.1) that the Prym map is generically finite (onto its image)
if and only if

dimRg,r 6 dimAδg−1+r/2.

In [NR95], Nagaraj and Ramanan proved that if

r = 4, g > 4 and h0(η2) = 1,

then the triple (C, η, R) can be recovered from the Prym variety P(C, η, R). Furthermore, the
Prym map

P :R3,4→Aδ4
is a dominant morphism of degree 3 (see [NR95, Theorem 9.14] and [BCV95, Theorem 5.11]).
We shall prove the following.

Theorem 1.1 (Generic Torelli theorem). If one of the conditions

r > 6 and g > 2, r = 6 and g > 3, r = 4 and g > 4, r = 2 and g > 6

holds, then the Prym map is generically injective.

This shows that our expectation is essentially satisfied. In the bi-elliptic case (r > 6 and g = 1)
the generic injectivity of the Prym map has recently been proved by the first author and Naranjo
(see [MN11]) by using the techniques we develop in this paper together with a construction of
Del Centina and Recillas (see [DR89]). Thus there are only two cases left (r = 2 and g = 5, r = 6
and g = 2) that will be the object of future studies.

The proof consists of two parts. In the spirit of [CG80, GT84], the first part is based on the
infinitesimal variation of Hodge structures approach to Torelli problems (the Prym étale case is
described in [SV02]). We prove that, for a general point, the inclusion

dP(T(C,η,R))⊂ TP(C,η,R), (2)

i.e. the position of the image of the differential as a subspace of the tangent space of Aδg−1+r/2

at P(C, η, R), determines the semi-canonical model Cη of C, that is, the image of the curve C
through the embedding associated to ωC ⊗ η. Since Cη identifies, up to isomorphism, the pair
(C, η), this proves the theorem when h0(η2) = 1, i.e. when g > r. As in the étale case (cf. [Deb89]),
the kernel of the co-differential of the Prym map at (C, η, R) is the space of quadrics vanishing
on Cη. We show that we can recover Cη in the intersection of the quadrics. It turns out that the
more interesting and difficult case is where g = 6 and r = 2. In this case, the intersection of
the quadrics consists of, scheme-theoretically, the curve Cη and five projective lines corresponding
to the five morphisms of degree 4 from C to P1.

In the second part, using degeneration methods (see [Bea77a, FS86] for the étale case), we
prove the theorem for g < r. We fix a general curve C and show that the Prym map is generically
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Generic Torelli theorem for Prym varieties

injective on the space of double coverings of C. To do this, we extend the Prym map to some
admissible coverings of C (see, for example, Figure 1 on page 1157) and obtain a proper morphism
to a suitable compactification of Aδg−1+r/2. Then we prove that the infinitesimal Torelli theorem
holds also at the boundary, and we give a lemma that allows us to compute the degree of the
Prym map once we know the behaviour at the boundary.

We then consider two applications. By Theorem 1.1, a general Prym variety P arises from
a unique covering π :D→ C. Thus there is a canonical choice of divisor ΘP inducing the
polarization. In analogy with the hyperelliptic case of Andreotti’s proof of the Torelli theorem
(see [And58]), we prove that the Gauss map of ΘP in P allows us to determine the branch locus
of π.

The second application is the following.

Theorem 1.2. A very general Prym variety of dimension at least 4 is not isogenous to a Jacobian
variety.

We recall that a Prym variety is said to be very general when it is outside a countable union of
proper subvarieties of the Prym locus. The argument is again based on degeneration techniques
and is similar to the ones used in [BP89, NP94]. However, the comparison of extension classes
requires a more sophisticated geometric analysis. In particular, we use the fact that a very general
Prym variety of a ramified covering is simple (see [BP02, Pir88]).

In [Mar] it is proved that on a very general Jacobian variety of dimension n> 4 there are
no curves of genus g with n < g < 2n− 2 and, by using Theorem 1.2, that there are strong
obstructions to the existence of curves of genus 2n− 2. For example, there are no curves of
genus 6 on a very general Jacobian variety of dimension 4. This was our original motivation.

1.1 Plan of the paper

In §§ 2 and 3 we prove Theorem 1.1. In § 2.1 we prove an infinitesimal version of the Torelli
theorem and determine when the Prym map is finite. In § 2.2 we describe the intersection of
the quadrics vanishing on the semi-canonical model Cη of C. In particular, we show that Cη is the
only non-hyperplane curve in the intersection. This concludes the proof of the theorem when
g > r.

In § 3.1 we fix a curve C and show that it is possible to define a rational map

S : Υ 99K Āδg−1+r/2 ,

from the space of admissible coverings of C to a suitable compactification of the moduli space
of abelian varieties, which coincides with the Prym map on the space of smooth coverings. In
§ 3.2 we blow up S in its indeterminacy locus to get a proper map. Then we give a result on the
cardinality of the general fibre of a proper morphism and apply it to our case in order to show
that S is generically injective (if g > 2).

In § 4.1 we describe the Gauss map of a Prym variety, while in § 4.2 we prove Theorem 1.2.

1.2 Notation and preliminaries

(i) We work over the field C of complex numbers. Each time we have a family of objects
parametrized by a scheme X (respectively, by a subset Y ⊂X), we say that the general
element of the family has a certain property p if p holds on a dense Zariski-open subset of X
(respectively, of Y ). Moreover, we say that a very general element ofX (respectively, of Y ) has the
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property p if p holds on a dense subset that is the complement of a union of countably many
proper subvarieties of X (respectively, of Y ).

(ii) Given an effective line bundle L on C, we will often need to consider the natural map

m : Sym2 H0(C, L)→H0(C, L2)

and its dual

m∗ :H1(C, ωC ⊗ L−2)→ Sym2 H1(C, ωC ⊗ L−1).

Let f : C→ PN be the projective morphism associated to the linear system |L|. We recall
(cf. [GL85, Laz89]) that the kernel ofm can be identified with the space of homogeneous quadratic
polynomials vanishing on f(C). Furthermore, m∗ can be identified (up to multiplication by a
non-zero scalar) with the map

Ext1(L, ωC ⊗ L−1)→Hom(H0(C, L), H1(C, ωC ⊗ L−1))

which sends an extension of L by ωC ⊗ L−1 to the connecting homomorphism it determines.

(iii) Let P be the Prym variety of a ramified covering π :D→ C, and let i :D→D be the
involution induced on the curve D by π. The Abel–Prym map of π is the morphism

a :D→ J(D)
x 7→ [x− i(x)].

The image of a is a curve D′ contained in P , called the Abel–Prym curve. If D is hyperelliptic,
a has degree 2; otherwise it is birational.

(iv) Given an abelian variety A, its Kummer variety K(A) is the quotient of A by the
involution that maps x to −x. We denote by K0(A) the Kummer variety of Pic0(A).

(v) A semi-abelian variety G of rank n is an extension 0→ T →G→B→ 0 of an abelian
variety B by an algebraic torus T =

∏n Gm (see [Cha85, ch. II, § 2] and [FC90]).

(vi) Let D be a projective curve having only nodes (ordinary double points) as singularities.
The generalized Jacobian variety of D is defined as the semi-abelian variety Pic0(D). If D is
obtained from a non-singular curve C by identifying p, q ∈ C, the semi-abelian variety J(D)
is the extension of J(C) by Gm determined by ±[p− q] ∈ K0(J(C)) (see [Ser88]).

(vii) Given a smooth curve C of genus greater than 1, we denote by ΓC the image of the
difference map

C × C→ J(C) ∼−−→ Pic0(J(C)) (3)
(p, q) 7→ [a− b].

The image Γ′C of ΓC through the projection σC : Pic0(J(C))→K0(J(C)) is a surface, in the
Kummer variety, that parametrizes generalized Jacobian varieties of rank 1 with compact part
J(C). Given an integer n ∈ N, we denote by nΓC the image of ΓC under multiplication by n and
by nΓ′C the projection of nΓC in K0(J(C)).

2. A first Torelli-type theorem

2.1 Finiteness of the Prym map

In the present subsection our aim is to determine when the Prym map is finite. Here we state a
simple lemma that will be used throughout the paper.
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Lemma 2.1. Let (C, η, R) be a general point of Rg,r.

(i) If r = 6 and g = 3, then h0(η) = 1.

(ii) Suppose that one of the following conditions holds:

(a) r = 2 and g > 5;
(b) r = 4 and g > 3;
(c) r = 6 and g > 4.

Then η is not effective.

(iii) Suppose that one of the following conditions holds:

(a) r = 2 and g > 4;
(b) r = 4 and g > 5.

Then, given any point p ∈ C, the line bundle η ⊗OC(p) is not effective.

(iv) If r = 2 and g > 6, then given any two points p, q ∈ C, the line bundle η ⊗OC(p+ q) is not
effective.

Proof. Statements (i) and (ii) are trivial. We prove (iii)(a), the other cases being analogous.
Assume, by way of contradiction, that for each η there exists a point p ∈ C such that η ⊗OC(p)'
OC(a1 + a2) for some a1, a2 ∈ C. Then R+ 2p≡ 2a1 + 2a2 and so C has a two-dimensional
family of g1

4 of type |2a1 + 2a2|. Since the moduli space of coverings of degree 4 of P1 with two
ramification points over the same branch point has dimension 2g + 2, a general curve of genus
g > 4 has, at most, a one-dimensional family of g1

4 of this type, and we get a contradiction. 2

We now give conditions under which the Prym map is a local embedding. We recall
that the tangent space of Rg,r at (C, η, R) can be identified with the space of first-order
deformations of the r-pointed curve C, i.e. with H1(C, TC(−R)) (see [HM98, ch. 3, §B]).
Following the computation in [Bea77b, Proposition 7.5] (see also [LO11, Proposition 4.1] and
[NR95, Proposition 3.1] for the ramified case), we can identify the co-differential of the Prym
map at (C, η, R) with the natural map

dP∗ : Sym2 H0(C, ωC ⊗ η)→H0(C, ω2
C ⊗OC(R)).

By [GL85, Theorem 1] (see also [LS96, Theorem 1.1]), to prove the surjectivity of dP∗ it is
sufficient to show that ωC ⊗ η is very ample and that the following inequality holds:

deg(ωC ⊗ η) > 2g + 1− Cliff(C).

By a straightforward computation we get the following proposition (cf. [LO11, § 5]).

Proposition 2.2. Let (C, η, R) ∈Rg,r, and assume that one of the following conditions holds:

(i) r > 6 and g > 1;

(ii) r = 4, C is not hyperelliptic and h0(η) = 0;

(iii) r = 2, Cliff(C)> 1 and h0(η ⊗OC(p)) = 0 for each p ∈ C.

Then the differential of the Prym map at (C, η, R) is injective.

In view of Lemma 2.1, we can restate Proposition 2.2 in a more compact form.

Corollary 2.3. The Prym map is generically finite (onto its image) if and only if r > 6 and
g > 1, or r = 4 and g > 3, or r = 2 and g > 5.
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Proof. Lemma 2.1 proves that the statement of Proposition 2.2 is realized for a general point
(C, η, R). Thus the if part is proved.

For the only if direction, we notice that if r = 4 and g < 3, or r = 2 and g < 5, then
dimRg,r >Aδg−1+r/2. 2

2.2 Quadrics vanishing on the semi-canonical model

We start with the following definition.

Definition 2.4. Let (C, η, R) be a point of Rg,r. The projective map

fη : C→ PH0(C, ωC ⊗ η)∗

defined by the linear system |ωC ⊗ η| is called the semi-canonical map, and Cη := fη(C) is the
semi-canonical model of C (cf. [Deb89]).

In this subsection we consider a point (C, η, R) ∈Rg,r that satisfies the hypotheses of
Proposition 2.2. In particular, ωC ⊗ η is very ample and fη is an embedding. We recall that
the co-differential of the Prym map at (C, η, R) is the surjective map

dP∗ : Sym2 H0(C, ωC ⊗ η)→H0(C, ω2
C ⊗OC(R)).

As we have remarked in (ii) of § 1.2, I2(C) := ker dP∗ is the space of homogeneous quadratic
polynomials vanishing on Cη; thus the image of dP in TP(C,η,R) determines the projective space
PI2(Cη) of the quadrics containing Cη (see (2) in § 1). The aim is to recover the curve Cη in the
intersection of the quadrics. We remark that, by a dimensional count, in the cases

r = 6 and g = 2, r = 4 and g = 4, r = 2 and g = 5

this is not possible.

We recall that there is a natural bijective correspondence between the points of
PH0(C, ωC ⊗ η)∗ lying in the intersection of the quadrics of PI2(Cη) and the extensions (up
to isomorphism and multiplication by a scalar)

0→ η−1→ F → ωC ⊗ η→ 0

with connecting homomorphism δ :H0(C, ωC ⊗ η)→H1(C, η−1) of rank 1 (see [LS96,
Lemma 1.2]). Given p ∈ PH0(C, ωC ⊗ η)∗ in the intersection of the quadrics, the image of the
corresponding δ in H1(C, η−1) =H0(C, ωC ⊗ η)∗ is the one-dimensional vector space defining p.

In the proof of Theorem 2.8 we will classify all extensions of the previous type. In order to
do this, we will need the following technical results on the number of points of order 2 lying on
the theta divisor of a Jacobian. For a more exhaustive analysis of this topic we refer to [Mar11].

Proposition 2.5. Let C be a general curve of genus g, then the following hold.

(i) Let Θ be a symmetric theta divisor in J(C). For each a ∈A there exists a point of order 2
not contained in t∗aΘ.

(ii) Let M1, . . . , MN be a finite number of line bundles of degree d6 g − 1 on C. Given an
integer k 6 g − 1− d, if η is a general line bundle of degree k such that h0(η2)> 0, then

h0(η ⊗Mi) = 0 for i= 1, . . . , N.
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Proof. Statement (i) can be proved by reducing J(C) to the product of elliptic curves. In this
case, t∗aΘ contains at most 22g − 3g points of order 2.

We will prove statement (ii) for N = 1. The general case follows immediately.

Let Λ := {η ∈ Pick(C) : h0(η2)> 0}; we prove that Λ′ := {η ∈ Λ : h0(M1 ⊗ η)> 0} is a proper
subset. Specifically, we claim that given an effective L ∈ Pic2k(C), there exists a line bundle
η ∈ Λ\Λ′ such that η2 ' L. Setting n := g − 1− k − d and considering the line bundle M2

1 ⊗ L⊗
OC(p)2n where p is an arbitrary point of C, we can assume M1 'OC and k = g − 1. Then the
result follows from (i). 2

Remark 2.6. Statement (i) of Proposition 2.5 can be further improved. Specifically, let A

be a principally polarized abelian variety of dimension g and let Θ be its symmetric theta
divisor. For each a ∈A there are at most 22g − 2g points of order 2 lying on t∗aΘ (see [Mar11,
Proposition 2.21]). If Θ is irreducible and t∗aΘ is not symmetric with respect to the origin, the
statement also holds for 22g − (g + 1)2g points. One might expect the right bound to be 22g − 3g,
as in the product of elliptic curves.

In the proof of Theorem 2.8 we will also use the following lemma (see, for instance, [Bea83,
Lemma X.7]).

Lemma 2.7. Let C be a smooth projective curve and let F be a vector bundle of rank 2 on C.

If

2h0(F )− 3> h0(det F ), (4)

then there exists a line bundle L⊂ F such that h0(L) > 2 and F/L is a line bundle.

Theorem 2.8. Let (C, η, R) ∈Rg,r and let PI2(Cη) be the space of quadrics vanishing on the

semi-canonical model Cη of C.

(i) Suppose that one of the following holds:

– r > 8 and g > 1;

– r = 6, C is not hyperelliptic and h0(η) = 0;

– r = 4, Cliff(C)> 1 and h0(η ⊗OC(p)) = 0 for each p ∈ C;

– r = 2, Cliff(C)> 2 and h0(η ⊗OC(p+ q)) = 0 for any p, q ∈ C.

Then the intersection of the quadrics of PI2(Cη) is, set-theoretically, Cη.

(ii) If r = 6, g = 3, C is not hyperelliptic and h0(η) = 1, then the intersection of the quadrics

of PI2(Cη) consists of the curve Cη and a line (note that Cη is not a plane curve).

(iii) If r = 2, g = 6 and (C, η, R) is a general point ofRg,r, then the intersection of the quadrics

of PI2(Cη) consists of the curve Cη and five projective lines.

Proof. In view of the previous discussion, we want to classify the extensions of type

0→ η−1→ F → ωC ⊗ η→ 0 (5)

with connecting homomorphism of rank 1. Since, by hypothesis, g > 7− r, we can apply
Lemma 2.7: F has a sub-line bundle L such that h0(L) > 2 and F/L is a line bundle. Fixing such
a sub-line bundle, the situation is summarized in the following diagram, in which (5) appears as
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the horizontal sequence.

0

��
L

τ

&&MMMMMM

��
0 // η−1 // F

��

// ωC ⊗ η // 0

ωC ⊗ L−1

��
0

(6)

We note that, since the map τ in diagram (6) is not zero, we must have

h0(ωC ⊗ η ⊗ L−1)> 0. (7)

If L is not special, h0(L) = h0(F ) = h0(ωC ⊗ η)− 1 and so L= ωC ⊗ η ⊗OC(−p) for some p ∈ C.
By diagram (6) we get

h0(L) + h0(ωC ⊗ L−1) > h0(F ),
h0(L)− h0(ωC ⊗ L−1) = deg L+ 1− g.

Thus, when L is special, we obtain

3− r

2
> Cliff(L) > 0. (8)

Proof of (i). In the hypotheses of (i), equations (7) and (8) are never simultaneously satisfied.
Thus L is not special and Cη is, set-theoretically, the intersection of quadrics.

Proof of (ii). By (8) and (7), we get L= ωC and F = ωC ⊕OC . Furthermore, by hypothesis,
there is only one non-zero morphism ωC → ωC ⊗ η. Therefore there is a two-dimensional family
of extensions of type

0→ η−1→ ωC ⊕OC → ωC ⊗ η→ 0
corresponding to the points of the line determined by

H0(ωC)⊂H0(ωC ⊗ η).

Proof of (iii). The proof is long and we will divide it into four steps. First, recall that on a
general curve C of genus 6 there are exactly five non-isomorphic line bundles M1, . . . , M5 of
degree 4 such that h0(Mi) = 2 (see [ACGH85, ch. 5]).

Step I: L'Mi for some i.
By (8) we have Cliff(L) = 2. Since C is a general curve of genus 6, either deg L= 4 and h0(L) = 2,
or deg L= 6 and h0(L) = 3, or deg L= 8 and h0(L) = 4. In the last case, L' ωC ⊗OC(−p− q)
for some p, q ∈ C, but this contradicts (iv) of Lemma 2.1. It follows that either L'Mi or
L' ωC ⊗M−1

i for some i= 1, . . . , 5. By (ii) of Proposition 2.5,

h0(Mi ⊗ η) = 0 for i= 1, . . . , 5, (9)

for a general η. Then there are no non-zero maps from ωC ⊗M−1
i to ωC ⊗ η, and we can assume

L'Mi.
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Step II: the vector bundle F is determined by Mi ⊂ F .
Notice that

h0(Mi) + h0(ωC ⊗M−1
i ) = 5 = h0(F ).

It follows that the vertical exact sequence in diagram (6) (see Proposition 2.2), namely

0→Mi→ F → ωC ⊗M−1
i → 0, (10)

is exact on the global sections. Furthermore, by (9), it cannot split. The dimension of the space
of extensions of this type is the dimension of the co-kernel of the map

m : Sym2 H0(C, ωC ⊗M−1
i )→H0(C, ω2

C ⊗M−2
i ).

The image of C under the morphism associated to |ωC ⊗M−1
i | is a plane curve of degree 6.

Therefore m is injective and dimH0(C, ω2
C ⊗M

−2
i )− rkm= 1.

Step III: the intersection of the quadrics of PI2(Cη) is, set-theoretically, contained in the union
of Cη with five projective lines.
Dualizing and tensoring (10) with ωC ⊗ η, we get

0→Mi ⊗ η→ F ∗ ⊗ ωC ⊗ η→ ωC ⊗M−1
i ⊗ η→ 0.

By (9), h1(C, Mi ⊗ η) = 0 and

h0(C, F ∗ ⊗ ωC ⊗ η) = h0(C, ωC ⊗M−1
i ⊗ η) = 7 + 1− 6 + h0(Mi ⊗ η−1) = 2.

It follows that there is a two-dimensional family of maps F → ωC ⊗ η.

Step IV: the intersection of the quadrics of PI2(Cη) coincides, as a scheme, with the union of
Cη with five projective lines.
We recall that

dim I2(Cη) = 4 and dim PH0(C, ωC ⊗ η) = 5.
Thus the intersection of the quadrics is complete and, consequently, Cohen–Macaulay [Har77,
ch. II, Proposition 8.23]. It follows that it has degree 16 (see [Har77, ch. I, Theorem 7.7]) and
has no embedded components [Mat80, ch. 6, § 16, Theorem 30]. Since the degree of Cη is 11, this
concludes the proof. 2

Remark 2.9. Cases (i) and (ii) of Theorem 2.8 can be also deduced from [Sai72, § 1, Proposition]
and [LS96, Theorem 1.3].

Corollary 2.10. Let (C, η, R) be a general point of Rg,r. If one of the conditions

r > 6 and g > 1, r = 6 and g > 3, r = 4 and g > 5, r = 2 and g > 6

holds, then the image of the differential of the Prym map at (C, η, R) determines the pair (C, η).

Proof. Lemma 2.1 shows that the statement of Theorem 2.8 is realized for a general point
(C, η, R). 2

3. The generic Torelli theorem

3.1 The Prym map at the boundary
In the following, we assume C to be a general curve of genus 1< g < r, with r > 6. Set

Υ := {(η, R) ∈ Picr/2(C)× Cr :R ∈ |η2|} (11)
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and consider the partition

Υ =
r⊔

k=1

Yk,

where

Yk :=
{(

η,
∑
i

niyi

)
∈Υ :

∑
i

(ni − 1) = k − 1
}
. (12)

We remark that Υ is an étale 22g-covering of the symmetric product Cr of C and, in particular,
Y1 is an étale covering of the open set of divisors with no multiple points. The rational map

T : Υ 99KRg,r
(η, R) 7→ (C, η, R)

(13)

is clearly defined over Y1, and for g > 2 it is an isomorphism there. If g = 2, the map T |Y1 has
degree 2; specifically, if i : C→ C is the hyperelliptic involution, then

T −1(C, η, R) = {(η, R), (i∗η, i(R))}. (14)

Let

P ′ : Υ 99KAδg−1+r/2 (15)

be the composition (regular over Y1) of T with the Prym map. In this subsection we extend the
rational map P ′.

Let (η, R) be a point of Yk, and let ϕ : ∆→Υ be a non-constant map from the complex unit
disk to Υ such that ϕ(0) = (η, R) and ϕ(∆\{0})⊂ Y1. By pullback, up to a finite base change,
we have a map of families of curves

D Γ //

  @@@@@@@ C

����������

∆

(16)

with the following properties:

– for t 6= 0, the curve Ct is isomorphic to C and Γt :Dt→Ct is the double covering of smooth
projective curves corresponding to (C, ϕ(t)) ∈Rg,r;

– D0→C0 is a double admissible covering of semi-stable curves (see [HM82] and [HM98, ch. 3,
§G]).

The family of coverings in (16) determines a family of semi-abelian varieties

P/∆ (17)

where for each t ∈∆\{0}, Pt is the Prym variety of the double covering Dt→Ct, while P0 is the
kernel of the morphism of semi-abelian varieties

J(D0)→ J(C0).

Proposition 3.1. Let ϕ : ∆→Υ be a non-constant map from the complex unit disk to Υ such
that ϕ(0) = (η, R) ∈ Yk and ϕ(∆\{0})⊂ Y1. Consider the family of semi-abelian varieties P/∆
defined as in (17).

(i) If k = 2, the semi-abelian variety P0 has rank 1 and its compact part is irreducible.
Furthermore, it is uniquely determined by the point (η, R).
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E px

qx

G 1

F

x

1

Figure 1. Admissible double covering (k = 2).

(ii) If k = 3, P0 is either a trivial extension of rank 1, or a product of an abelian variety and
an elliptic curve, or a semi-abelian variety of rank 2.

(iii) If k > 3, P0 is either a semi-abelian variety of rank 1 with reducible compact part or a
semi-abelian variety of rank greater than 1.

Proof. In the following, we want to describe the possible admissible coverings D0→C0. Roughly
speaking, the covering is obtained as the limit of a smooth double covering of C when two
or more branch points come together. If, for example, R=R′ + kx, then k branch points on C
collapse on the point x. In order to get the stable limit of the double covering, we have to attach a
rational curve to C in x. More generally, if (η, R) ∈ Yk, we have C0 ' C ∪ F , where F is a union of
(possibly singular and reducible) rational curves intersecting C in the points of the support of R
of multiplicity greater than 1. The curve D0 is isomorphic to E ∪G, where E is a smooth double
covering of C and G is a union of (possibly singular and reducible) curves mapping two to one
on F (see [HM82, HM98]).

We want to describe the admissible covering D0→C0 and the semi-abelian variety P0 for
k = 2, 3 and k > 3.

(i) If k = 2, then R=R′ + 2x (see Figure 1). The double covering π : E→ C has r − 2> 0
branch points. Since x is not a branch point for this covering, G intersects E in two different
points px and qx such that π−1(x) = {px, qx}. We can conclude that G' P1 and F ' P1.
The semi-abelian variety P0 has rank 1 and is the extension of the Prym variety P of π determined
by ±[px − qx] ∈ K0(P ).

(ii) If (η, R) ∈ Y3, then either R=R′ + 2x+ 2y or R=R′ + 3x. In the first case, the double
covering π : E→ C has r − 4> 0 branch points and so g(E) = 2g − 3 + r/2. It follows that P0

is a semi-abelian variety of rank 2.
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Figure 2. Admissible double covering (k = 3).

In the second case, π : E→ C has r − 2 branch points and x is a branch point for this covering.
Therefore G intersects E in the point px = π−1(x) and, consequently, the arithmetic genus of E
is 1. There are two possibilities: E is either a rational nodal curve (see Figure 2) or a smooth
elliptic curve. Then P0 either is a trivial extension of the Prym variety P of π by an algebraic
torus of rank 1, or it is the product of P by an elliptic curve.

(iii) If (η, R) ∈ Yk and k > 3, the situation is more complicated and, as in the k = 3 case, there
are different possible limits. We observe only that E has genus strictly lower than 2g − 2 + r/2.
It follows that either the compact part of P0 is reducible or P0 is a semi-abelian variety of rank
greater than 1. 2

Proposition 3.1 suggests that, in order to extend P ′ (see (15)), we need to compactify the
moduli space of abelian varieties Aδg−1+r/2. We consider the normalized blowing up of the Satake
compactification ofAδg−1+r/2 and denote it by Āδg−1+r/2 (see [Gru09, Nam76a, Nam76b, Nam80]).
It is a projective variety and its boundary points parametrize polarized semi-abelian varieties.

From Proposition 3.1 and its proof we have the following corollary.

Corollary 3.2. It is possible to extend P ′ to a rational map

S : Υ 99K Āδg−1+r/2

such that:

(i) the indeterminacy locus of S is contained in
⊔
k>3 Yk;

(ii) S(η, R) = P(C, η, R) for (η, R) ∈ Y1;
(iii) given z = (η′ ⊗OC(x), R′ + 2x), if π : E→ C denotes the double covering associated to

(C, η′, R′), then S(z) is described by the following data:

– the compact Prym variety P of π;
– the class ±[px − qx] ∈ K(P ), where π−1(x) = {px, qx}.
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The next section is devoted to proving the following proposition. This is the last step in
completing the proof of Theorem 1.1.

Proposition 3.3. Let C be a general curve of genus 1< g < r and assume r > 6. The rational
map

S : Υ 99K Āδg−1+r/2

has generically degree 1 for g > 2 and degree 2 for g = 2.

3.2 Proof of Proposition 3.3
We want to apply to S an abstract lemma on the degree of a proper morphism.

Lemma 3.4. Let f :X → Z be a generically finite, surjective, proper morphism of varieties over
an algebraically closed field k. Consider an integral, locally closed subset Y of X of codimension 1
that is not contained in the singular locus of X, and set H := f(Y ) ∩ f(Y c). Assume that:

(i) the codimension of the closure H̄ of H in Z is at least 2;

(ii) the differential df is injective in a non-empty open set of Y ;

(iii) there is a non-empty open set V of f(Y ) such that f−1(y) has cardinality n for each y ∈ V .

Then there is a non-empty open set U of Z such that f−1(y) has cardinality m6 n for each
y ∈ U .

Proof. We can prove the statement when Y is a closed subset of X. Specifically, given Y locally
closed, conditions (ii) and (iii) clearly hold also for Ȳ . In order to prove (i), notice that

f(Ȳ ) ∩ f(Ȳ c)⊂H ∪ (f(Ȳ \Y ) ∩ f(Y c))⊂H ∪ f(Ȳ \Y ).

It follows that

codim(f(Ȳ ) ∩ f(Ȳ c)) > min{codim H̄, codim f(Ȳ \Y )}> 2.

Observe that, up to restriction, we can assume X to be smooth. We claim that we can
also assume f to be a finite morphism. Let W ⊂ Z be the maximal open subset of Z such
that f−1(W )→W is a proper quasi-finite morphism. By [Gro67, Theorem 8.11.1], f |f−1(W ) is
a finite morphism. We show that f(Y ) is not contained in the complement of W and so, by (i),
Y ∩ f−1(W ) 6= ∅. This implies that all the hypotheses still hold when we replace X with f−1(W ),
Z with W and Y with Y ∩ f−1(W ). Assume, for contradiction, that f(Y )⊂W c; then, by (ii),
f(Y ) is an irreducible component of W c. Let us consider the union of the closure of W c\f(Y )
and f(Y )\V . The complement of this set is open and it has the same property as W , thus we
get a contradiction.

Let Z̃ be the normalization of Z. By the universal property of normalization, we can factorize
f as

X
g−−→ Z̃

π−−→ Z

where π and g are finite morphisms. Furthermore, there is an open set T of Z such that T c has
codimension at least 2 and T̃ := π−1(T ) is smooth. This implies that

g : g−1(T̃ )→ T̃

is a finite flat morphism. We recall that f(Y ) has codimension 1 in Z; then Y ′ := Y ∩ g−1(T̃ ) is
a non-empty set. By (ii), Y ′ is not contained in the ramification locus of g and, by (i), we can
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assume that g−1(g(Y ′)) = Y ′. By (iii), we can conclude that the degree of g is at most n. Since
π is birational, the statement is proved. 2

Solving the indeterminacy locus (by a suitable blow up) of the rational map

S : Υ 99K Āδg−1+r/2,

we obtain a proper map

Q : B(Υ)→Q(B(Υ))⊂ Āδg−1+r/2

where B(Υ) has a projection

p : B(Υ)→Υ.

Set X := B(Υ), Z :=Q(B(Υ)), f :=Q and Y := p−1(Y2), where we recall that

Y2 :=
{(

η,
∑
i

yi + 2x
)
∈Υ

}
.

By Corollary 2.3 the morphism Q is generically finite. Moreover, when g = 2, degQ> 2 (see
(14)). Proposition 3.3 will follow from a direct application of Lemma 3.4, once we have shown
that conditions (i), (ii) and (iii) are fulfilled (with n= 1 when g > 2 and n= 2 when g = 2).

By Proposition 3.1, the points in Q(Y ) ∩Q(Y c) parametrize semi-abelian varieties of rank 1
that are trivial extensions. On the other hand, by Corollary 3.2, associated to the general point of
Q(Y ) is an irreducible semi-abelian variety of rank 1. Therefore Q(Y ) ∩Q(Y c) is a proper closed
subset of Q(Y ) and condition (i) is satisfied. Statements (ii) and (iii) will follow, respectively,
from Lemmas 3.5 and 3.7 (or Lemma 3.8 if g = 2) below. We recall that, by Corollary 3.2, the
indeterminacy locus of S is contained in

⊔
k>3 Yk. Therefore Q|Y coincides with S|Y2 .

In the following lemma, we adapt to our case the proof of the infinitesimal Torelli theorem
for curves at the boundary (see, for instance, [Usu91]).

Lemma 3.5. The differential of the map S at a general point z ∈ Y2 is injective.

Proof. Let z be a general point in Y2, and write z := (η, R), R :=R′ + 2x and η := η′ ⊗OC(x).
Moving x ∈ C, we define a one-dimensional subvariety of Y2,

W := {(η′ ⊗OC(y), R′ + 2y) : y ∈ C\suppR′}.

Clearly, W is birational to C. The inclusions W ⊂ Y2 ⊂Υ induce a filtration

T ′′z ⊂ T ′z ⊂ Tz, (18)

where Tz is the tangent space of Υ at the point z, T ′z is the tangent space of Y2 at z, and
T ′′z is the tangent space of W at z. We recall (see (11)) that Υ is an étale covering of the
symmetric product Cr and so we can identify Tz with the tangent space of Cr at R. Note that,
under this identification, T ′z is the tangent space of the diagonal of Cr passing through R and,
consequently, we can identify it with the tangent space of Cr−1 at the point R′ + x. We have
two exact sequences

0→ T ′z→ Tz→N → 0,
0→ T ′′z → T ′z→N ′→ 0,

where N ′ corresponds to the tangent space of Cr−2 at the point R′.
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The next step is to describe the tangent space at S(z). We can write the period matrix M̄
corresponding to the point S(z) in the form

M̄ =
(

0 wt

w M

)
where M is the period matrix of P := P(C, η′, R′) and, with the notation of Corollary 3.2(iii),
the vector w represents essentially the class of ±[px − qx] ∈ K(P ). We consider now a filtration

T ′′S(z) ⊂ T
′
S(z) ⊂ TS(z),

analogous to that in (18), where T ′S(z) is the tangent space of Āg−1+r/2\Ag−1+r/2 at S(z), i.e.
the space of infinitesimal deformations of the matrix M̄ such that the first entry is always zero.
We define T ′′S(z) as the space of infinitesimal deformations of M̄ such that M is constant, the
first entry of M̄ is zero and w varies. We again have two exact sequences

0→ T ′S(z)→ TS(z)→NS(z)→ 0,

0→ T ′′S(z)→ T ′S(z)→N ′S(z)→ 0,

where NS(z) is the normal space of Ag−1+r/2 in Āg−1+r/2 and N ′S(z) is the space of infinitesimal
deformations of the compact Prym variety P .

The differential dS preserves the filtration and defines the diagram

0 // T ′′z

dS|T ′′z
��

// T ′z

dS|T ′z
��

// N ′z
//

d
��

0

0 // T ′′S(z)
// T ′S(z)

// N ′S(z)
// 0

where d is the map that makes the diagram commutative. We identify d with the differential
of the Prym map Rg,r−2→Aδg−2+r/2 at a general point (C, η′, R′). By Proposition 2.2, d is
injective. The restriction

dS|T ′′z : T ′′z → T ′′S(z)

is the differential of the map

C → K(P )
x 7→ ±[px − qx]

at the point x. Since the map is finite on the image and x is a general point of C, dS(T ′′z ) 6= 0.
We can conclude that dS|T ′z is injective.

To complete the proof, let 0 6= v ∈ Tz\T ′z; we claim that dS(v) 6= 0. Since dim Tz = dim T ′z + 1,
this implies ker dS ⊂ T ′z. Consider the complex unit disk ∆, a non-constant map ϕ : ∆→Υ such
that ϕ(0) = z and dϕ(d/dt) = v, and the family of coverings (16) described in § 3.1. We define
the map

τ : ∆→M̄2g−2+r/2

which sends t to the class of isomorphisms of Dt. Let

T : ∆→ Ā2g−1+r/2

be the composition of τ with the Torelli map. Note that J(Dt) is isogenous to J(C)× Pt for each
t ∈∆\{0}. Thus, in order to prove that dS(v) 6= 0, it is sufficient to show that dT/dt|t=0 6= 0.
Since dτ0(v) is different from zero, this is a consequence of the infinitesimal Torelli theorem at
the boundary [Usu91]. 2
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In order to compute the degree of S on Y2, we need the following lemma.

Lemma 3.6. Let π :D→ C be a double covering of a curve of genus g > 1 with r > 0 branch
points.

(i) If D is not hyperelliptic, then the Abel–Prym curve D′ ⊂ P determines the covering π.

(ii) Assume that π :D→ C defines a general point in Rg,r. The curve D is hyperelliptic (and
in particular the Abel–Prym map has degree 1; see (iii) of § 1.2) if and only if g = 1 and r = 2.

Proof. (i) Let us consider the natural projection σ : P →K(P ) and set C ′ := σ(D′). The
morphism σ :D′→ C ′ is a double covering. Passing to the normalization, we get π :D→ C.

(ii) If g = 1 and r = 2, then g(D) = 2 and D is hyperelliptic. To prove the converse, assume
for contradiction that D is hyperelliptic, and denote by j :D→D the hyperelliptic involution
and by i :D→D the involution associated to π. Since j commutes with i (see, e.g., [FK80, § III.8,
Corollary 3]), it induces a non-trivial involution j′ : C→ C that is invariant on the branch divisor
of π. If g > 2, we get a contradiction, since a generic curve has only trivial automorphisms.
Otherwise, when g = 2 and r > 2 or g = 1 and r > 4, it is always possible to find an effective
divisor of degree r that is not fixed by any involution. 2

Lemma 3.7. If g > 2,

S : Y2→S(Y2)⊂ Āδg−1+r/2

is generically injective.

Proof. We recall that, by Corollary 3.2, a point

S(η′ ⊗OC(x), R′ + 2x) ∈ S(Y2)

is determined by the Prym variety P = P(C, η′, R′) of dimension (g − 1 + r/2)− 1 and by the
class ±[px − qx] ∈ K(P ). Let P be a general Prym variety and let V ⊂ S(Y2) be the set of points
that parametrize semi-abelian varieties of rank 1 with compact part isomorphic to P . To prove
the statement, it is sufficient to prove that S is generically injective on W := S−1(V ).

Let us consider the Prym map

P :Rg,r−2→Aδg−2+r/2.

By Corollary 2.3, there are only finitely many points

{(C, ηk, Rk) ∈Rg,r−2}k=1,...,n

such that P = P(C, ηk, Rk). Denote by πk :Dk→ C the double covering of smooth curves
associated to (C, ηk, Rk), and for x ∈ C set (πk)−1(x) = {pkx, qkx}. We have

W =
n⋃
k=1

W k,

where
W k := {(ηk ⊗OC(x), Rk + 2x) ∈Υ : x ∈ C\suppRk}.

To prove that S|W is generically injective, we show that, for each i 6= j, the curve S(W i) intersects
S(W j) only in a finite number of points and that, for each i, the map S|W i :W i→S(W i) is
generically injective.

We recall that
S(ηi ⊗OC(x), Ri + 2x) = S(ηj ⊗OC(y), Rj + 2y)
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if and only if
±[pix − qix] =±[pjy − qjy] ∈ K(P ).

It follows that S(W i) = S(W j) if and only if the image of the Abel–Prym curve of πi in K(P )
coincides with that of πj , i.e. (see Lemma 3.6) if and only if i= j. Furthermore, the map S|W i

is generically injective (see Lemma 3.6(ii)). 2

Lemma 3.8. If g = 2,

S : Y2→S(Y2)⊂ Āδg−1+r/2

has generically degree 2.

Proof. Let i : C→ C be the hyperelliptic involution. With the same notation used in Lemma 3.7,
we have

W =
n⋃
k=1

W k ∪
n⋃
k=1

W k
∗ ,

where
W k
∗ := {(i∗ηk ⊗OC(x), i(Rk) + 2x) ∈Υ : x ∈ C\supp i(Rk)}.

Furthermore, for each x,

S(ηk ⊗OC(x), Rk + 2x) = S(i∗ηk ⊗OC(x), i(Rk) + 2i(x)).

The rest of the proof is analogous to that of Lemma 3.7. 2

3.3 End of the proof of Theorem 1.1
We are now ready to complete the proof of the generic Torelli theorem for Prym varieties of
ramified coverings. We denote by

UC := {(C, η, R) ∈Rg,r} ⊂Rg,r
the moduli space of double coverings of a fixed curve C with r branch points.

Lemma 3.9. Let C be a general curve of genus 1< g < r, with r > 6. Then the Prym map is
generically injective on UC .

Proof. We recall that on the open set Y1 ⊂Υ (see (12)), the map S coincides with the composition
of T : Υ 99KRg,r (see (13)) with the Prym map. Furthermore, T is an isomorphism for g > 2 and
a map of degree 2 for g = 2. Since UC = T (Y1), the statement follows from Proposition 3.3. 2

Proof of Theorem 1.1. If r = 4 and g = 4, the theorem is a direct consequence of [NR95,
Theorem 7.7]. By Corollary 2.10 the theorem is proved for g > r. Let us assume g < r and
consider a general point y ∈ P(Rg,r). By Corollary 2.3,

P−1(y) = {(Ci, ηi, Ri)}i=1,...,n.

Furthermore, since we can assume that y is smooth in the Prym locus, by Corollary 2.10 we have
that Ci = Cj for any i, j. Finally, by Lemma 3.9, n= 1. 2

4. Applications

4.1 The Gauss map of a Prym variety
We recall the definition of the Gauss map. If M is a complex torus of dimension n+ 1, then the
tangent spaces {TxM}x∈M are all naturally identified with T0M ' Cn+1. Let X be an analytic
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subvariety of dimension k + 1 of X, and denote by Xns the smooth locus of X and by G(k, n)
the Grassmannian of the k-planes in Pn. The Gauss map of X in M is the map

Xns→G(k, n)
x 7→ PTx(X)⊂ PTx(M) = Pn.

Note that a Prym variety P is not principally polarized; in fact, if L is the polarization on P ,
then h0(P,OP (ΘP )) = 2g, where g is the genus of C. Thus, given P , there is no natural choice of
divisor in the associated linear system. However, we have proved in Theorem 1.1 that a general
Prym variety P arises from a unique covering π :D→ C, so in this case we may assign to P
the divisor ΘP := ΘJ(D) ∩ P , which is well-defined up to translation. In analogy with the case of
Jacobian varieties of hyperelliptic curves (see [And58]), the pair (P,ΘP ) allows us to determine
the branch locus of the covering π. In fact, we have the following result.

Proposition 4.1. Let P := P(C, η, R) be the Prym variety of π :D→ C. If we identify the
tangent space at any point of P with H0(C, ωC ⊗ η)∗, then the branch locus B of the Gauss
map

(ΘP )ns→ PH0(C, ωC ⊗ η)

of ΘP in P is dual to the branch locus of fη ◦ π, where fη : Cη→ PH0(C, ωC ⊗ η)∗ is the semi-
canonical map. In particular, if ωC ⊗ η is very ample, B consists of r distinct hyperplanes.

Proof. Set d := 2g − 2 + r/2 = g(D)− 1 and define

P̂ := π−1(ωC ⊗ η)⊂ Picd(D), Θ
P̂

:= Θ̃ ∩ P̂ ,

where Θ̃ is the set of the effective line bundles of degree d on D. Owing to the isomorphism
between J(C) and Picd(C) that maps 0 to ωC ⊗ η, we can identify (P̂ ,Θ

P̂
) with (P,ΘP ).

Consider the vector spaces

H :=H0(D, ωD)∗, H+, H−

where H+ and H− are the eigenspaces of 1 and −1 for the involution induced on H by π. The
map π∗ identifies canonically H+ and H− with, respectively, H0(C, ωC)∗ and H0(C, ωC ⊗ η)∗

(cf. [Ver01] for the étale case). Thus we have the commutative diagram

D

π

��

fωD // PH

h−

���
�
�

C
fη // PH−

where fωD is the canonical map of D and h− is the projection of centre PH+. Notice that H
can be identified with the tangent space of Picd(D) at any point and, consequently, H− is the
tangent space to P̂ .

Denote by G the Gauss map of Θ
P̂

in P̂ and by G′ the Gauss map of Θ̃ in Picd(D).
Given

∑d
j=1 pj ∈ (Θ

P̂
)ns, we have

∑d
j=1 pj ∈ Θ̃ns, and G(

∑d
j=1 pj) is simply the projection of

G′(
∑d

j=1 pj) (the hyperplane spanned by the points {fωD(pj)}dj=1) under h−. We can conclude
that G(

∑d
j=1 pj) is the hyperplane of PH− which intersects the semi-canonical model Cη in the

points {fη ◦ π(pj) = h− ◦ fωD(pj)}dj=1. 2
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Remark 4.2. Observe that if r > 6, then ωC ⊗ η is very ample. When this condition is not
satisfied, the description of the branch locus B is trickier. If, for example, r = 4 and g > 2,
there are two more possible situations.

(i) If h0(η) = 1 and η = p+ q (respectively, η = 2p), the semi-canonical model Cη is the nodal
curve obtained from C by identifying p and q (respectively, a cuspidal curve). The branch locus
B is made up of four (respectively, five) hyperplanes counted with multiplicities.

(ii) If h0(η) = 2, C is hyperelliptic and the linear system |η| defines the g1
2. Then Cη is a

rational normal curve and deg fη = 2. The branch locus B is made up of 4g + 8 hyperplanes
counted with multiplicities: there are 2g + 2 hyperplanes of multiplicity 2, which are dual to the
branch points of fη, and a hyperplane with multiplicity 4 (possibly not distinct from
the previous ones), which is dual to the image of the branch points of π in Cη.

Note that in these cases also, it is always possible to recover the branch locus of π from B.

4.2 Proof of Theorem 1.2.
In this section we prove that a very general Prym variety of dimension at least 4 is not isogenous
to a Jacobian variety. For some values of g and r the statement is a simple consequence of the
fact that the Prym locus has dimension larger than the moduli space of Jacobian varieties (see
Proposition 4.3(i)). In the other cases the moduli count shows that a general Prym variety is not
isogenous to a Jacobian of a hyperelliptic curve (see Proposition 4.3(ii)). Using this fact together
with degeneration techniques, as in the proof of Theorem 1.1, we can conclude the proof of
Theorem 1.2.

Proposition 4.3. Let P be a general Prym variety in the Prym locus Pδg−1+r/2.

(i) If

r = 4 and g > 3 or r = 2 and g > 4,
then P is not isogenous to a Jacobian variety.

(ii) If

r > 6 and g > 1 or r = 4 and g = 2,
then P is not isogenous to a Jacobian of a hyperelliptic curve.

Remark 4.4. Notice that if r = 6 and g = 1 or r = 4 and g = 2, then P has dimension 3 and,
consequently, is isogenous to a Jacobian.

Proof. We compare the dimension of the Prym locus Pδg−1+r/2 with that of the Jacobian locus
(respectively, hyperelliptic locus). When the Prym map is generically finite (see Corollary 2.3),
the result follows from a count of parameters. Hence we only need to consider the case of r = 2
and g = 4, or r = 4 and g = 2. We claim that in these cases the differential of the Prym map is
generically surjective, which implies that

dim Pδg−1+r/2 = dimAδg−1+r/2.

To see this, we show that the co-differential is injective. We recall (see § 2.2) that the co-
differential of the Prym map

dP∗ : Sym2 H0(C, ωC ⊗ η)→H0(C, ω2
C ⊗OC(R))

is injective if and only if the semi-canonical model Cη of C is not contained in any quadric. If
r = 4 and g = 2, the statement follows from the fact that Cη is a plane curve of degree 4. In the
other case, it is a consequence of the following lemma. 2
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Lemma 4.5. Let C be a non-hyperelliptic curve of genus 4, and let η ∈ Pic1(C) be a general line
bundle of degree 1 on C such that h0(η2)> 0. Then the image Cη of the semi-canonical map

fη : C→ P3

does not lie on any quadric.

Proof. We recall that, since C is not hyperelliptic, ωC ' L1 ⊗ L2 where deg Li = 3, h0(Li) = 2
and the line bundles may coincide [ACGH85, ch. 5]. As in Lemma 2.1, one can prove that the
semi-canonical map is an embedding. Assume for contradiction that Cη lies on a quadric Q. If
Q is isomorphic to P1 × P1, then by the adjunction formula, since deg Cη = 7 we have that the
bidegree (d1, d2) of Cη satisfies the relations

(d1 − 1)(d2 − 1) = 4,
d1 + d2 = 7.

Thus, either d1 = 2 or d2 = 2, that is, C is hyperelliptic, contradicting the hypothesis. If Q is a
cone, let g : C→ P2 be the composition of fη with the projection from the vertex of the cone.
The image of g is a conic and so g factors as

C→ P1 |OP1 (1)|
−−−−−−→ P2,

where the first morphism has degree 2 6 d6 3 and the second has degree 2. Since C is not
hyperelliptic, deg g = 6. It follows that g is the map associated to |ωC ⊗ η ⊗OC(−p)| or,
equivalently, that p ∈ Cη is the vertex of the cone. By the previous discussion we can conclude
that

ωC ⊗ η ⊗OC(−p)' L2
1

and so, since ωC ' L1 ⊗ L2,
η ' L1 ⊗ L−1

2 ⊗OC(p).
If L1 ' L2, this implies that η is effective and we get a contradiction. Otherwise, η varies at most
in a one-dimensional family. On the other hand, by hypothesis, η depends on two parameters.
This yields a contradiction. 2

Remark 4.6. We note that the argument of Proposition 4.3 shows that, in the étale case also,
a general Prym variety of dimension greater than or equal to 4 is not isogenous to a Jacobian
variety.

To complete the proof of Theorem 1.2, we need the following lemma concerning the difference
surface (see (vii) in § 1.2).

Lemma 4.7. Let C be a non-hyperelliptic curve and n ∈ N a non-zero integer. Then:

(i) nΓC is birational to C × C;

(ii) nΓ′C is birational to the symmetric product C2 of C.

In particular, ΓC is birational to C × C and Γ′C is birational to C2.

Proof. Arguing as in [BP89, Lemma 3.1.1 and Proposition 3.2.1], we can assume n= 1. To
prove (i), notice that if for the general point (a, b) ∈ C × C there exists (c, d) ∈ C × C such that
[a− b] = [c− d], then C is hyperelliptic. Statement (ii) follows from (i). 2

Proof of Theorem 1.2. By Proposition 4.3, we have to consider only the cases where r > 8 and
g > 1 and where r = 6 and g > 2. We assume, by way of contradiction, that a very general Prym
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variety is isogenous to a Jacobian. Then there exists a map of families

J /U G−−→P/U , (19)

where U is a finite étale covering of a dense open subset of Rg,r and, for each t ∈ U :

(i) Pt is a Prym variety of dimension g − 1 + r/2;

(ii) Jt is the Jacobian of a curve of genus g − 1 + r/2;

(iii) Gt : Jt→Pt is a surjective morphism of abelian varieties.

Step I: limits of G in (19) at the boundary.
We want to extend the map G to some point on the boundary of Υ (see (11)) associated to an
admissible covering, as in Figure 1 on page 1157.

Let π : E→ C be a very general double covering of a curve of genus g with r − 2 branch
points, and assume that π is determined by the triple (C, η′, R′). For each non-branch point
x ∈ C, we consider a family of admissible coverings

Dx/∆→Cx/∆

obtained as in § 3.1 (see (16)) by choosing a unit disk centred at the point (η′ ⊗OC(x), R′ + 2x).
Let us restrict our initial map of families (19) to ∆\{0}. Changing base, if necessary, by
completion, we obtain a map of families

J x/∆→Px/∆.

The semi-abelian variety Px0 is the kernel of the morphism J(Dx0 )→ J(Cx0 ), where J(Cx0 ) = J(C),
J(Dx0 ) = J(Ex), and Ex is the singular curve obtained from E by identifying px and qx, with
π−1(x) = {px, qx}. We denote by P the compact part of Px0 . The semi-abelian variety J x0 is
a generalized Jacobian variety of a singular curve Hx, obtained from H by identifying two
distinct points ax and bx. We denote by ϕ : J(H)→ P the isogeny induced on the compact
quotients.

Step II: comparing the extension classes of E and H.
By varying x ∈ C, we can perform different degenerations of the families in (19). Notice that
the compact quotient P of Px0 does not depend on x. It follows that the normalization H of Hx

and the isogeny ϕ : J(H)→ P are also independent of the chosen degeneration. Thus, for each
non-branch point x ∈ C, there exist ax, bx ∈H such that

ϕ∗([px − qx]) = nx[ax − bx], (20)

for some nx different from zero.

Step III: conclusion.
Let us consider the diagram

P

σ

��

ψ // Pic0(P )

σ◦

��

ϕ∗ // Pic0(J(H))

σ◦H
��

K(P )
ψK // K0(P )

ϕ∗K // K0(J(H))

where ψ is the isogeny induced by the polarization, the vertical arrows are the natural projections,
and ψK and ϕ∗K are the maps induced, respectively, by ψ and ϕ∗ on the Kummer varieties.
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Set

E′′ = ψ(E′)⊂ Pic0(P ),
C ′′ = ψK(C ′) = σ◦(E′′)⊂K0(P ),

where E′ is the Abel–Prym curve of π and C ′ is its projection in the Kummer variety. Denote by
ΓH the image of the difference map in Pic0(J(H)) (see (vii) in § 1.2) and by Γ′H its projection in
the Kummer variety. By (20), arguing as in [BP89, § 2], we find n 6= 0 such that ϕ∗(E′′)⊆ nΓH .
It follows that

ϕ∗K(C ′′)⊆ nΓ′H .

Since H is not hyperelliptic (Proposition 4.3), by Proposition 4.7 we have that nΓ′H is
birational to the symmetric product H2 of H. By composition, we obtain a non-constant rational
map

C ′
ϕK−−−→ C ′′

ϕ∗K−−−→ ϕ∗K(C ′′) ↪→ nΓ′H 99KH2 ↪→ J(H).

Observe that, since by hypothesis r > 6, we have g < g − 2 + r/2 = dim P = dim J(H). Moreover,
the geometric genus of C ′ is at most g. Thus we can conclude that J(H) is not simple. On the
other hand, P is very general and so, by [BP02], the Néron–Severi group NS(P ) is isomorphic
to Z. It follows that P , and hence J(H), is simple. Thus we get a contradiction. 2
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