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We present numerical analysis of the lateral movement of a spherical capsule in the steady
and pulsatile channel flow of a Newtonian fluid for a wide range of oscillatory frequencies.
Each capsule membrane satisfying strain-hardening characteristics is simulated for
different Reynolds numbers Re and capillary numbers Ca. Our numerical results showed
that capsules with high Ca exhibit axial focusing at finite Re similarly to the inertialess
case. We observe that the speed of the axial focusing can be substantially accelerated by
making the driving pressure gradient oscillate in time. We also confirm the existence of
an optimal frequency that maximises the speed of axial focusing, which remains the same
found in the absence of inertia. For relatively low Ca, however, the capsule exhibits off-
centre focusing, resulting in various equilibrium radial positions depending on Re. Our
numerical results further clarify the existence of a specific Re for which the effect of the
flow pulsation to the equilibrium radial position is maximum. The roles of channel size on
the lateral movements of the capsule are also addressed. Throughout our analyses, we have
quantified the radial position of the capsule in a tube based on an empirical expression.
Given that the speed of inertial focusing can be controlled by the oscillatory frequency,
the results obtained here can be used for label-free cell alignment/sorting/separation
techniques, e.g. for circulating tumour cells in cancer patients or precious haematopoietic
cells such as colony-forming cells.
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1. Introduction
In a pipe flow at a finite channel (or particle) Reynolds number Re (Rep), a rigid spherical
particle exhibits migration perpendicular to the flow direction, originally reported by
Segre & Silberberg (1962), the so-called inertial focusing or tubular pinch effect, where
the particles equilibrate at a distance from the channel centreline as a consequence of the
force balance between the shear-induced and wall-induced lift forces. The phenomenon is
of fundamental importance in microfluidic techniques such as label-free cell alignment,
sorting and separation techniques (Martel & Toner 2014; Warkiani et al. 2016; Zhou et al.
2019). Although the techniques allow us to reduce the complexity and cost of clinical
applications by using small amounts of blood samples, archetypal inertial focusing system
requires steady laminar flow through long channel distances L f , which can be estimated
as L f = πH/(Rep fl), where H is the dimension of the channel (or its hydraulic diameter)
and fl is a non-dimensional lift coefficient (Di Carlo 2009). So far, various kinds of
geometries have been proposed to achieve the required distance for inertial focusing in
a compact space, e.g. sinusoidal, spiral and hybrid channels (Bazaz et al. 2020). Without
increasing Rep, the recent experimental study by Mutlu et al. (2018) achieved inertial
focusing of 0.5 μm particles (Rep ≈ 0.005) in short channels by using oscillatory channel
flows. Since the oscillatory flows allow a suspended particle to increase its total travel
distance without net displacement along the flow direction, using oscillatory flow can be
an alternative and practical strategy for inertial focusing in microfluidic devices. Recently,
Vishwanathan & Juarez (2021) experimentally investigated the effects of the Womersley
number (α) on inertial focusing in planar pulsatile flows, and evaluated the lateral mi-
gration (or off-centre focusing) speed on a small and weakly inertial particle for different
oscillatory frequencies. They concluded that inertial focusing is achieved in only a fraction
of the channel length (1 %–10 %) compared with what would be required in a steady
flow (Vishwanathan & Juarez 2021). Sun et al. (2009) performed two-dimensional (2-D)
simulations of a neutrally buoyant circular particle in oscillatory pressure-driven channel
flows for Re � 50. Their results indicated that lower oscillatory frequency makes the
equilibrium position closer to the channel centreline, while higher oscillatory frequency
maintains the equilibrium positions similarly to the steady flow conditions. However, it
remains unknown whether the equilibrium position of deformable capsules under pulsatile
channel flows can be formulated in the same context as that of a rigid circular particle.

While a number of studies have analysed the off-centre focusing of rigid spherical
particles under steady flow by a variety of approaches, such as analytical calculations
(Ho & Leal 1974; Schonberg & Hinch 1989; Asmolov 1999), numerical simulations
(Bazaz et al. 2020; Feng et al. 1994; Shao et al. 2008; Yang et al. 2005; Yu et al. 2004)
and experimental observations (Di Carlo 2009; Karnis et al. 1966; Matas et al. 2004),
the inertial focusing of deformable particles such as biological cells, consisting of an
internal fluid enclosed by a thin membrane, has not yet been fully described, especially
under unsteady flows. Due to their deformability, the problem of inertial focusing of
deformable particles is more complex than with rigid spherical particles, as originally
reported by Segre & Silberberg (1962). It is now well known that a deformable particle at
low Re migrates towards the channel axis under steady laminar flow (Karnis et al. 1963).
Hereafter, we call this phenomenon ‘axial focusing’. A recent numerical study showed
that, in almost inertialess condition, the axial focusing of a deformable spherical capsule
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can be accelerated by the flow pulsation at a specific frequency (Takeishi & Rosti 2023).
For finite Re (>1), however, it is still uncertain whether the flow pulsation can enhance
the off-centre focusing or impede it (i.e. axial focusing). Therefore, the primary objective
of this study is to clarify whether a capsule lateral movement at finite Re in a pulsatile
channel flow can be altered by its deformability. The second objective is to clarify whether
the Re-dependent equilibrium radial position of a capsule in a channel or travelling time
are controllable by oscillatory frequency.

At least for steady channel flows, inertial focusing of deformable capsules including
biological cells have been investigated in recent years both by means of experimental
observations (Warkiani et al. 2016; Zhou et al. 2019) and numerical simulations (Raffiee
et al. 2017; Schaaf & Stark 2017; Takeishi et al. 2022). For instance, Hur et al. (2011)
experimentally investigated the inertial focusing of various cell types (including red blood
cells, leukocytes and cancer cells such as a cervical carcinoma cell line, breast carcinoma
cell line and osteosarcoma cell line) with a cell-to-channel size ratio 0.1 � d0/W � 0.8,
using a rectangular channel with a high aspect ratio of W/H ≈ 0.5, where d0, W and H
are the cell equilibrium diameter, channel width and height, respectively. They showed that
the cells can be separated according to their size and deformability (Hur et al. 2011). The
experimental results can be qualitatively described using a spherical capsule (Kilimnik
et al. 2011) or droplet model (Chen et al. 2014). In more recent experiments by Hadikhani
et al. (2018), the authors investigated the effect of Re (1 < Re < 40) and capillary number
Ca – ratio between the fluid viscous force and the membrane elastic force – (0.1 < Ca < 1)
on the lateral equilibrium of bubbles in rectangular microchannels and different bubble-to-
channel size ratios with 0.48 � d0/W � 0.84. The equilibrium position of such soft parti-
cles results from the competition between Re and Ca, because high Re induces off-centre
focusing, while high Ca, i.e. high deformability, allows axial focusing. However, notwith-
standing these recent advancements, a comprehensive understanding of the effect on the
inertial focusing of these two fundamental parameters has not been fully established yet.

Numerical analysis more clearly showed that the ‘deformation-induced lift force’
becomes stronger as the particle deformation is increased (Raffiee et al. 2017; Schaaf &
Stark 2017). Although a number of numerical analyses regarding inertial focusing have
been reported in recent years mostly for spherical particles (Bazaz et al. 2020; Banerjee
et al. 2021), the equilibrium positions of soft particles is still debated owing to the
complexity of the phenomenon. Kilimnik et al. (2011) showed that the equilibrium position
in a cross-section of a rectangular microchannel with d0/H = 0.2 shifts towards the wall as
Re increases from 1 to 100. Schaaf & Stark (2017) also performed numerical simulations
of spherical capsules in a square channel for 0.1 � d0/H � 0.4 and 5 � Re � 100 without
viscosity contrast, and showed that the equilibrium position was nearly independent
of Re. In a more recent numerical analysis by Alghalibi et al. (2019), simulations of a
spherical hyperelastic particle in a circular channel with d0/D = 0.2 were performed with
100 � Re � 400 and Weber number (W e) with 0.125 � W e � 4.0, the latter of which is
the ratio of the inertial effect to the elastic effect acting on the particles. Their numerical
results showed that regardless of Re, the final equilibrium position of a deformable particle
is the centreline and harder particles (i.e. with lower W e) tended to rapidly migrate towards
the channel centre (Alghalibi et al. 2019). The behaviour of a capsule subjected to pulsatile
channel flow was addressed in the pioneering work by Maestre et al. (2019), where the
migration velocity during axial focusing was investigated at O(Re)� 10−2 and d0/D =
0.5 for Ca = 0.075–1.2. Despite these efforts, the inertial focusing of capsules subjected
to pulsatile flow at finite inertia cannot be estimated based on these achievements.

Aiming for the precise description of the inertial focusing of spherical capsules in
pulsatile channel flows, we thus perform numerical simulations of individual capsules with
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Figure 1. Visualisation of a spherical capsule with radius a0 in a channel with radius of R (R/a0 = 2.5)
under a pulsatile flow with velocity V ∞, which can be decomposed into the steady parabolic flow V ∞

0 and the
oscillatory flow V ∞

osci in the absence of any capsule. The capsule, initially placed at off-centre radial position
r∗

c0 = rc0/R = 0.4, travels in the radial direction. In the figure, the lengths travelled by the capsule in the flow
(z) direction are not to scale for illustrative purpose. Hereafter, the same modification will be applied for
visualisation.

a major diameter of d0 = 2a0 = 8 μm in a cylindrical microchannel with D = 2R = 20–
50 μm (i.e. R/a0 = 2.5–6.25) for a wide range of oscillatory frequencies. Each capsule
membrane, following the Skalak constitutive (SK) law (Skalak et al. 1973), is simulated
for different Re, Ca and size ratio R/a0. Since this problem requires heavy computational
resources, we resort to GPU computing, using the lattice-Boltzmann method (LBM)
for the inner and outer fluids, and the finite-element method (FEM) to describe the
deformation of the capsule membrane. This model has been successfully applied in the
past for the analysis of the capsule flow in circular microchannels (Takeishi et al. 2022;
Takeishi & Rosti 2023). The remainder of this paper is organised as follows. Section 2
gives the problem statement and numerical methods, and § 3 presents the numerical results
for a single spherical capsule. Finally, a summary of the main conclusions is reported in
§ 4. A description of numerical verifications is presented in the Appendix.

2. Problem statement

2.1. Flow and capsule models and set-up
We consider the motion of an initially spherical capsule with diameter d0 (= 2a0 =
8 μm) flowing in a circular channel diameter D (= 2R = 20–50 μm), with a resolution of
32 fluid lattices per capsule diameter d0. The channel length is set to be 20a0, following a
previous numerical study (Takeishi et al. 2022). Although we have investigated in the past
the effect of the channel length L and the mesh resolutions on the trajectory of the capsule
centroid (see figure 7 of Takeishi & Rosti 2023), we further assess the effect of this length
on the lateral movement of a capsule in Appendix A (figure 12a).

The capsule consists of a Newtonian fluid enclosed by a thin elastic membrane, sketched
in figure 1. The membrane is modelled as an isotropic and hyperelastic material following
the SK law (Skalak et al. 1973), in which the strain energy wSK and principal tensions in
the membrane τ1 and τ2 (with τ1 � τ2) are given by

wSK

Gs
= 1

4

(
I 2
1 + 2I1 − 2I2 + C I 2

2

)
(2.1)
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and
τi

Gs
= ηi

η j

[
η2

i − 1 + C
(
η2

i η
2
j − 1

)]
for (i, j) = (1, 2) or (2, 1). (2.2)

Here, wSK is the strain energy density function, Gs is the membrane shear elastic modulus,
C is a coefficient representing the area incompressibility, and I1 (= η2

1 + η2
2 − 2) and I2

(= η2
1η

2
2 − 1) are the invariants of the strain tensor, with η1 and η2 being the principal

extension ratios. In the SK law (2.1), the area dilation modulus is Ks = Gs(1 + 2C). In this
study, we set C = 102 (Barthès-Biesel et al. 2002), which describes an almost incompress-
ible membrane. Bending resistance is also considered (Li et al. 2005), with a bending mod-
ulus kb = 5.0 × 10−19 J (Puig-de-Morales-Marinkovic et al. 2007). These values have been
shown to successfully reproduce the deformation of red blood cells in shear flow (Takeishi
et al. 2014, 2019) and the thickness of the cell-depleted peripheral layer in circular channels
(see figure A.1 of Takeishi et al. 2014). Neglecting inertial effects on the membrane
deformation, the static local equilibrium equation of the membrane is given by

∇s · τ + q = 0, (2.3)

where ∇s(= (I − nn) · ∇) is the surface gradient operator, n is the unit normal outward
vector in the deformed state, q is the load on the membrane and τ is the in-plane elastic
tension that is obtained using the SK law (2.1).

The fluids are modelled with the incompressible Navier–Stokes equations for the fluid
velocity v:

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ f + ρ f , (2.4)

∇ · v = 0, (2.5)

with

σ f = −p I + μ
(
∇v + ∇vT

)
, (2.6)

where σ f is the total stress tensor of the flow, p is the pressure, ρ is the fluid density,
f is the body force and μ is the viscosity of the liquid, expressed using a volume fraction
of the inner fluid I (0 � I � 1) as

μ = {1 + (λ− 1) I} μ0, (2.7)

where λ (= μ1/μ0) is the viscosity ratio, μ0 is the external fluid viscosity and μ1 is the
internal fluid viscosity. No density contrast is considered; that is, the ratio of densities
between the external and internal fluid is assumed to be one.

The dynamic condition coupling the different phases requires the load q to be equal to
the traction jump (σ

f
out − σ

f
in) across the membrane:

q =
(
σ

f
out − σ

f
in

)
· n, (2.8)

where the subscripts ‘out’ and ‘in’ represent the outer and internal regions of the capsule,
respectively.

The flow in the channel is sustained by a uniform pressure gradient ∂p0/∂z (= ∂z p0),
which can be related to the maximum fluid velocity in the channel by
∂z p0 = −4μ0V ∞

max/R2. The pulsation is given by a superimposed sinusoidal function,
such that the total pressure gradient is

∂z p(t) = ∂z p0 + ∂z pa sin (2π f t). (2.9)
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The problem is governed by six main non-dimensional numbers, including: (i) the
Reynolds number Re and (ii) the capillary number Ca defined as

Re = ρDV ∞
max

μ0
, (2.10)

Ca = μ0γ̇ma0

Gs
= μ0V ∞

max

Gs

a0

4R
, (2.11)

where V ∞
max (= 2V ∞

m ) is the maximum fluid velocity in the absence of any cells, V ∞
m is

the mean fluid velocity and γ̇m (= V ∞
m /D) is the mean shear rate. Note that increasing Re

under constant Ca corresponds to increasing Gs , namely, a harder capsule. Furthermore,
we have: (iii) the viscosity ratio λ; (iv) the size ratio R/a0; (v) the non-dimensional
pulsation frequency f ∗ = f/γ̇m and (vi) the non-dimensional pulsation amplitude ∂z p∗

a =
∂z pa/∂z p0. Considering the focus of this study, we decided to primarily investigate the
effect of Re, R/a0 and f ∗. Representative rigid and largely deformable capsules are
considered with Ca = 0.05 and Ca = 1.2, respectively.

When presenting the results, we will initially focus on the analysis of lateral movements
of the capsule in effectively inertialess condition (Re = 0.2) for R/a0 = 2.5, and later
consider variations of the size ratio R/a0, viscosity ratio λ, Reynolds number Re (>1)
and Ca. We confirmed that the flow at Re = 0.2 well approximates an almost inertialess
flow for single- (Takeishi & Rosti 2023) and multi-cellular flow (Takeishi et al. 2019).
Unless otherwise specified, we show the results obtained with ∂z p∗

a = 2 and λ= 1.

2.2. Numerical simulation
The governing equations for the fluid are discretised by the LBM based on the D3Q19
model (Chen & Doolen 1998). We track the Lagrangian points of the membrane material
points xm(Xm, t) over time, where Xm is a material point on the membrane in the
reference state. Based on the virtual work principle, the above strong-form equation (2.3)
can be rewritten in weak form as∫

S
û · qdS =

∫
S
ε̂ : τdS, (2.12)

where S is the surface area of the capsule membrane, and û and ε̂ = (∇s û + ∇s ûT
)/2

are the virtual displacement and virtual strain, respectively. The FEM is used to solve
(2.12) and obtain the load q acting on the membrane (Walter et al. 2010). The velocity at
the membrane node is obtained by interpolating the velocities at the fluid node using the
immersed boundary method (Peskin 2002). The membrane node is updated by Lagrangian
tracking with the no-slip condition. The explicit fourth-order Runge–Kutta method is used
for the time integration. The volume-of-fluid method (Yokoi 2007) and front-tracking
method (Unverdi & Tryggvason 1992) are employed to update the viscosity in the fluid
lattices. A volume constraint is implemented to counteract the accumulation of small
errors in the volume of the individual cells (Freund 2007): in our simulation, the relative
volume error is always maintained lower than 1.0 × 10−3 %, as tested and validated in
our previous study of cell flow in circular channels (Takeishi et al. 2016). All procedures
were fully implemented on a GPU to accelerate the numerical simulation. More precise
explanations for numerical simulations including membrane mechanics is provided in our
previous works (see also Takeishi et al. 2019, 2022).

Periodic boundary conditions are imposed in the flow direction (z-direction). No-slip
conditions are employed for the walls (radial direction). We set the mesh size of the LBM
for the fluid solution to 250 nm and that of the finite elements describing the membrane to
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Ca = 1.2
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Figure 2. (a) Side views of the capsule during its axial focusing under steady flow for Ca = 0.05 (top),
Ca = 0.2 (middle) and Ca = 1.2 (bottom). The capsule is initially placed at r∗

c0 = 0.55. The coloured dot on the
membrane is shown to measure the membrane rotation. (b) Time histories of the radial position of these capsule
centroids rc/R. The dashed lines are the curves given by r∗

c = C2 exp (−C1t∗), where r∗
c (= rc/R) is the

non-dimensional capsule centroid, t∗ (γ̇mt) is the non-dimensional time, and C1 and C2 are the coefficients
found by a least-squares fitting to the plot. The results in the figure are obtained for Re = 0.2, R/a0 = 2.5 and
λ= 1.

approximately 250 nm (an unstructured mesh with 5120 elements was used for the FEM).
This resolution was shown to successfully represent single- and multi-cellular dynamics
(Takeishi et al. 2019, 2022).

2.3. Analysis of capsule deformation
Later, we investigate the in-plane principal tension τi (with τ1 � τ2) and the isotropic
tension τiso in the membrane of the capsule. In the case of a two-dimensional isotropic
elastic membrane, the isotropic membrane tension can be calculated by τiso = (τ1 + τ2)/2
for the deformed capsule. The averaged value of τiso is then calculated as

〈τiso〉 = 1
ST

∫
T

∫
S
τiso(xm, t)dSdt, (2.13)

where T is the period of the capsule motion. Hereafter, 〈·〉 denotes a spatial-temporal
average. Time average starts after the trajectory has finished the initial transient dynamics,
which differs for each case. For instance, at finite Re conditions, a quasi-steady state is
usually attained around the non-dimensional time of γ̇mt = 200, and we start accumulating
the statistics from γ̇mt � 400 to fully cancel the influence of the initial conditions.

3. Results

3.1. Axial focusing of the capsule under steady channel flow (Re < 1)
We first investigate the axial focusing of a capsule under steady flow, which can be assumed
to be effectively inertialess (Re = 0.2). Figure 2(a) shows side views of the capsule
during its axial focusing in the channel of size R/a0 = 2.5 for different Ca (= 0.05, 0.2
and 1.2). The capsule, initially placed at r∗

c0 = rc0/R = 0.55, migrates after the flow onsets
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λ

Figure 3. Coefficient C1 (a) as a function of Ca for λ= 1 and (b) as a function of λ for Ca = 1.2. The results
are obtained with Re = 0.2, R/a0 = 2.5 and r∗

c0 = 0.55.

towards the channel centreline (i.e. capsule centroid is rc = 0) while deforming, finally
reaching its equilibrium position at the centreline where it achieves an axial-symmetric
shape. Although the magnitude of deformation during axial focusing depends on Ca, these
processes are commonly observed for every Ca. The time history of the radial position of
the capsule centroid rc is shown in figure 2(b). The results clearly show that the speed of
axial focusing grows with Ca. Interestingly, all trajectories are well fitted by the following
empirical expression:

r∗
c = C2 exp (−C1t∗), (3.1)

where t∗ (= γ̇mt) is the non-dimensional time, and C1 (>0) and C2 are two coefficients
that can be found by a least-squares fitting to the plot. Fittings are performed using data
between the initial (r∗

c0 = 0.55) and final state (	xLBM/R � 0.01 for R/a0 = 2.5), defined
as the time when the capsule is within one mesh size (	xLBM) from the channel axis.

Performing time differentiation of (3.1), the non-dimensional velocity of the capsule
centroid ṙ∗

c can be estimated as

ṙ∗
c = −C1r∗

c . (3.2)

This linear relation (3.2) may be understood by a shear-induced lift force propotional to the
local shear strength. A more detailed description of the relationship between the coefficient
C1 and the lift force on the capsule are provided in Appendix B.

Figure 3(a) shows the coefficient C1 as a function of Ca. As expected from figure 2(b),
the value of C1 increases with Ca. Since the capsule deformability is also affected by
the viscosity ratio λ, its influence on C1 is also investigated in figure 3(b). At a fixed Ca
(= 1.2), the value of C1 decreases with λ.

To further prove that C1 is independent of the initial radial position of the capsule
centroid, additional numerical simulations are performed with a larger channel (R/a0 = 5)
for different r∗

c0. Note that a case with larger channel for constant Re denotes smaller V ∞
max ,

resulting in a smaller Gs (i.e. softer capsule) for constant Ca. Figure 4(a) is one of the
additional runs at Ca = 0.2, where the capsule is initially placed at r∗

c0 = 0.75. Figure 4(b)
is the time history of the radial position of the capsule centroid rc for different initial
positions r∗

c0. We observe that the exponential fitting is still applicable for these runs, with
the coefficient C1 reported in figure 4(c). These results provide a confirmation that C1
is indeed independent of the initial radial position r∗

c0. Furthermore, the fitting provided
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Figure 4. (a) Side views of a capsule with Ca = 1.2 during its axial focusing for R/a0 = 5, where the capsule
is initially placed at r∗

c0 = 0.75. (b) Time histories of the radial position of the capsule centroids rc/R for
different initial positions r∗

c0. (c) Coefficient C1 as a function of the initial position r∗
c0. The results are obtained

with λ= 1.

in (3.1) is applicable even for a different constitutive law. Discussion of these results for
capsule described by the neo-Hookean model, which features strain-softening, is reported
in Appendix C (see also figure 13).

3.2. Capsule behaviour under pulsatile channel flow
Next, we investigate inertial focusing of capsules at finite Re and investigate whether
the equilibrium radial position of the capsule can be altered by pulsations of the flow.
Two representative behaviours of the capsule at low Ca (= 0.05) and high Ca (=
1.2) are shown in figure 5(a), which are obtained with f ∗ = 0.02 and Re = 10. The
simulations are started from an off-centre radial position r∗

c0. Hereafter, we consider the
viscosity ratio λ= 1 for simplicity. At the end of the migration, the least deformable
capsule (Ca = 0.05) exhibits an ellipsoidal shape with an off-centred position (figure 5a,
left), while the most deformable one (Ca = 1.2) exhibits the typical parachute shape
at the channel centreline (figure 5a, right). Detailed trajectories of these capsule
centroids rc/R are shown in figure 5(b), where the non-dimensional oscillatory pressure
gradient ∂z p∗(t∗) (= 1 + 2 sin (2π f ∗t∗)) is also displayed. The least deformable capsule
(Ca = 0.05) fluctuates around the off-centre position rc/R (≈ 0.2) and the waveform of
rc/R lags behind ∂z p∗(t∗). The capsule with large Ca (= 1.2), however, immediately
exhibits axial focusing, reaching the centreline within one flow period (figure 5b).
Therefore, axial and off-centre focusing strongly depend on Ca.

Figure 5(c) is the time history of the isotropic tension τiso. The major waveforms of
τiso are synchronised with ∂z p∗ in both Ca = 0.05 and Ca = 1.2, thus indicating that
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Figure 5. (a) Side views of the capsule during its migration at each time at f ∗ = 0.02 for Ca = 0.05 (left;
see the supplementary movie 1, available at https://doi.org/10.1017/jfm.2025.184) and Ca = 1.2 (right; see the
supplementary movie 2). (b and c) Time histories of (b) the radial position of these capsule centroids rc/R
and (c) isotropic tensions τiso, respectively. In panels (a)–(c), the results are obtained with ∂z p∗

a = 2. (d and e)
Time histories of (d) rc/R and (e) τiso for ∂z p∗

a = −2, where those in steady flow are also superposed. In panels
(b)–(e), non-dimensional pressure gradient ∂z p∗ is also displayed on the right axis. The results are obtained
with Re = 10, R/a0 = 2.5 and r∗

c0 = 0.4.

the membrane tension spontaneously responds to the background fluid flow. The Taylor
parameter, a classical index of deformation, is described in Appendix D (see figure 14).

To clarify whether fast axial focusing depends on the phase of oscillation or not, an
antiphase pulsation (i.e. ∂z p∗

a = −2) is given by ∂z p∗(t∗) = 1 − 2 sin (2π f ∗t∗). Time
histories of the capsule centroid rc/R and membrane tension τiso under such conditions
are shown in figures 5(d) and 5(e), where the case at the same Ca = 1.2 from figures 5(b)
and 5(c) are also superposed for comparison, together with the solution for steady flow.
Here, we define the focusing times T and Tst needed by the capsule centroid to reach the
centreline (within a one fluid mesh corresponding to ∼ 6 % of its radius to account for
the oscillations in the capsule trajectory) under pulsatile and steady flows, respectively.
Although the focusing time is decreased by almost 50 % in prograde pulsation (∂z p∗

a = 2)
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Figure 6. (a) Time history of the distance travelled along the flow direction (z-axis) z/D in the case shown
in figure 5, where the circle dots represent the points when the capsule has completed the axial focusing.
(b) Radial position of capsule centroids rc/R as a function of z/D.

compared with that in the steady flow, the time in antiphase pulsation is decreased by
only 1 %. Such small acceleration in antiphase pulsation comes from relatively small
deformation in early periods (figure 5e). We now understand that fast axial focusing relies
on the large membrane tension after flow onset, and our numerical results exhibit the even
faster axial focusing due to the pulsation of the flow.

Figure 6(a) is the time history of the distance travelled along the flow direction
(z-axis) rz/D. The distance to complete the axial focusing (Ca = 1.2) under pulsatile
flow increases compared with that in steady flow because the capsule speed along the
flow direction increases by adding flow pulsation, where the circle dots represent the
points when the capsule has completed the axial focusing. The capsule speed along the
flow direction at Ca = 0.05, however, decreases with the pulsation of the flow. Figure 6(b)
shows again the radial position of capsule centroids rc/R as a function of z/D. The capsule
trajectories obtained for Ca = 1.2 remains almost the same, while the capsule trajectory
for Ca = 0.05 reaches equilibrium within a shorter travelled distance with pulsation.
Following the classification by Vishwanathan & Juarez (2021), our problem is oscillatory
dominated, since the oscillation amplitude is one order of magnitude greater than the
steady flow component (i.e. O(sω/ū′) ∼ 101, where s is the centreline displacement
amplitude and ū′ is the centreline velocity in a steady flow component). Notwithstanding
this, the oscillatory motion was not enough to enhance the inertial focusing, in terms
of channel lengths needed for the inertial focusing, because of the capsule deformations
impeding the inertial focusing, consistent with previous numerical study (see figure 4a of
Takeishi et al. 2022).

We now focus on axial focusing (i.e. cases of relatively high Ca) at finite Re. As
discussed in figure 5(d), previous study showed that the speed of the axial focusing can
be accelerated by the flow pulsation (Takeishi & Rosti 2023). An acceleration indicator of
the axial focusing [1 − T/Tst ] at Re = 10 is summarised in figure 7, as a function of f ∗
(= f/γ̇m), where the results at Re = 0.2 (Takeishi & Rosti 2023) are also supperposed.
Although the initial radial position of the capsule r∗

c0 is slightly different between the
two Re, the focusing time is commonly minimised at a specific frequency in both cases.
Note that the values of the dimensional frequency depend on the estimation of Gs ,
which varies with the membrane constitutive laws and which is also sensitive to different
experimental methodologies, e.g. atomic force microscopy, micropipette aspiration, etc.
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Figure 7. Acceleration indicator of the axial focusing [1 − T/Tst ] as a function of the oscillatory frequency
f ∗ for different Re (= 0.2 and 10). T and Tst are the elapsed time needed by the capsule centroid to reach the
centreline under pulsatile and steady flows, respectively. The initial radial position of the capsule is set to be
r∗

c0 = 0.55 for Re = 0.2 (see also figure 4a of Takeishi & Rosti 2023) and r∗
c0 = 0.45 for Re = 10. The results

are obtained with Ca = 1.2.

(Bao & Suresh 2003); the estimation of the dimensional frequency is therefore not trivial.
We hereby conclude that capsules with large Ca exhibit axial focusing even at finite Re,
and that their equilibrium radial positions are not altered by the flow pulsation.

We speculate that the optimal focusing frequency of f ∗ ≈ 0.02, corresponding to
dimensional frequency of f = 20 Hz, is the membrane resonance frequency, given a
reference radius of a0 = 4 μm and the surface shear elastic modulus of Gs = 4 μN m−1

(Takeishi et al. 2014). However, there is currently no clear theoretical framework on the
resonance frequency of capsule. To provide further insights into the state of resonance,
we constructed a 2-D fluid membrane model (or hydrodynamic equations of bilayer
membrane), obtained by Onsager’s variation principle, wherein the fluid membrane is
assumed to be an almost planar bilayer membrane (Takeishi et al. 2024c). Our numerical
results showed that a membrane characteristic shift from an elastic-dominant to viscous-
dominant state appears within the range 40 Hz � f � 400 Hz, almost independently
of surface tensions (figure 5c of Takeishi et al. 2024c). Since the resonance frequency
can be formulated with intrinsic material (membrane) properties, it is expected that the
value remains the same even under multi-capsule interactions. Indeed, we discovered that
cross-over frequency of the storage and loss moduli in suspension of biconcave capsules
modelling red blood cells (RBCs), whose inverse is defined as a relaxation time, is almost
40 Hz, regardless of the volume fraction of the capsules (figure 7f of Takeishi et al.
2024b). However note that the critical frequency was commonly estimated in terms of
order of magnitude (O( f ) = 10 Hz) both in single- and multi-capsule dynamics as well
as theoretical principles, since its exact estimation depends on Gs . Our recent numerical–
experimental estimation strategy allows to quantify Gs of intact RBCs under dynamics and
derive its value as ∼ 0.5 μN m−1 (Takeishi et al. 2024a), which is one order of magnitude
smaller than that obtained by the stretch test (Takeishi et al. 2014). Consequently, the
dimensional optimal focusing frequency becomes O( f ) = 102 Hz, which is still in the
range of the critical frequency estimated by the 2-D fluid membrane model (Takeishi et al.
2024c). These results form a fundamental basis for further studies on resonance frequency
of plasma membrane.
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Figure 8. (a) Time histories of the radial position of the capsule centroid rc/R at Re = 30 and f ∗ = 0.02
for different initial positions r∗

c0 (= 0.1 and 0.4), where insets represent snapshots of the lateral view of the
deformed capsule at γ̇mt = (∗1) 60, (∗2) 75 and (∗3) 90. Dashed lines are the curves r∗

c = C2 exp (−C1t∗), and
the dash-dotted line denotes the equilibrium radial position of the capsule centroid. (b) Time histories of rc/R
for different Re, where dashed lines denote those in steady flow. (c) Time histories of rc/R and ∂z p∗ at Re = 7
(blue) and Re = 40 (red), where the values are normalised by the amplitude χamp , and are shifted so that each
baseline is the corresponding mean value χm . Data are shown after γ̇mt � 350. (d) Peak frequency f ∗

peak of the
capsule centroid rc/R. The solid line in panel (c) denotes the oscillatory frequency f ∗ = 0.02. The results are
obtained with Ca = 0.05, R/a0 = 2.5 and r∗

c0 = 0.4.

3.3. Effect of Reynolds number on capsule behaviour under pulsatile channel flow
We now focus on the inertial focusing of capsules at relatively small Ca, and, unless
otherwise specified, we show the results obtained for Ca = 0.05. Figure 8(a) shows
representative time history of the capsule centroid during inertial (or off-centre) focusing
at Re = 30 and f ∗ = 0.02 for different initial position of the capsule r∗

c0 (= 0.1 and 0.4),
where insets represent snapshots of the lateral view of the deformed capsule at various
times γ̇mt (= 60, 75 and 90), respectively. The results clearly show that the equilibrium
radial position of the capsule is independent of its initial position rc0 (except when rc0 = 0
for which the capsule remains at centreline). Hereafter, each run case is started from a
slightly off-centre radial position r∗

c0 = 0.4 (R/a0 = 2.5). For the trajectory at early times
(γ̇mt � 20), fitting by (3.1) still works. At quasi-steady state (γ̇mt > 20), the capsule
centroid fluctuates around an off-centre position rc/R (≈ 0.3). Thus, the trajectory of the
capsule during inertial focusing can be expressed as

r∗
c =

{
C2 exp (−C1t∗) for t∗ � t∗ax ,

r∗
e + 	r∗

osci for t∗ > t∗ax ,
(3.3)
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Figure 9. Time average of (a) the radial position of the capsule centroid 〈rc〉/R and (b) isotropic tensions
〈τiso〉 as a function of Re at f ∗ = 0.02, where the error bars represent the standard deviation during a period.
The error bars in panel (b) are displayed only on one side of the mean value for major clarity. The results are
obtained with Ca = 0.05, R/a0 = 2.5 and r∗

c0 = 0.4.

where t∗ax is the time period during axial focusing, r∗
e is the equilibrium radial position of

the capsule centroid due to inertia and 	r∗
osci is a perturbation due to the oscillatory flow.

Here, the equilibrium radial position is measured numerically by time averaging the radial
position of the capsule centroid as r∗

e = 〈r∗
c 〉 = (1/T )

∫ t∗+T
t∗ rc(t ′)dt ′.

Figure 8(b) shows the time histories of the capsule centroid rc/R at f ∗ = 0.02 for
different Re, together with those with steady flow. We observe that the radial positions
are greater than those at steady flow for all Re, due to the larger values achieved by the
pressure gradient during the pulsation. However, the actual contribution of the oscillatory
flow to the inertial focusing depends on Re. For instance, for Re � 7, the capsule exhibits
axial focusing at steady flow, but a pulsatile channel flow allows the capsule to exhibit
off-centre focusing. Therefore, the pulsation itself can impede the axial focusing.

Figure 8(c) shows the waveforms of rc/R at the end of the migration (γ̇mt � 350),
where the instantaneous values are normalised by their respective amplitudes χamp and are
shifted so that each baseline is the mean value χm . Although the delay of rc/R from the
oscillatory pressure gradient ∂z p∗ tends to decrease as Re increases, the overall waveforms
of rc/R well follow that of ∂z p∗, as shown in figure 5(b). To quantify the waveform of
rc/R and its correlation to ∂z p∗, we extract the dominant (or peak) frequency f ∗

peak of
rc/R with a discrete Fourier transform, whose principle and implementation are described
by Takeishi et al. (2024b), and the result are shown as a function of Re in figures 8(d).
In the cases of Re � 6, the capsule does not exhibit off-centre focusing and thus the plots
are displayed for Re � 7 only. The value of f ∗

peak collapses on the frequency of ∂z p∗ with
f ∗ = 0.02 for Re � 7 (figure 8d). The transition from the axial focusing to the off-centre
focusing thus requires a synchronisation, induced by capsule deformability, between the
capsule centroid and the background pressure gradient.

Figures 9(a) and 9(b) show the time average of the radial position or equilibrium
position 〈rc〉/R and the isotropic tension 〈τiso〉, respectively, as a function of Re, where
the error bars represent the standard deviation (SD) during a period. Overall, both these
values nonlinearly increase with Re, with the mean values in the oscillating flows always
greater than those in steady flows. The curves show steep increases for Re � 10, followed
by a more moderate increase for Re > 10; these general tendencies are the same in steady
or pulsatile flows. The effect of the flow pulsation is maximised at moderate Re (= 7), in
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Figure 10. Time average of (a) 〈rc〉/R and (b) 〈τiso〉/R as a function of f ∗. The error bars in panel (b) are
not displayed to increase clarity. All results are obtained with R/a0 = 2.5, Re = 10 and Ca = 0.05.

which the axial focusing is impeded by the pulsatile flow (figure 9a). The results also show
that small fluctuations of the capsule radial position (SD(rc/R) < 10−2) are accompanied
by large fluctuations of the membrane tension (SD(τiso) > 10−1).

3.4. Effect of oscillatory frequency on capsule behaviour under pulsatile channel flow
Finally, we investigate the effect of the oscillatory frequency f ∗ on the equilibrium radial
position 〈rc〉/R at Re = 10, with the results summarised in figure 10(a), where those at
steady flow are also displayed at the point f ∗ = 0. The results clearly suggest that there
exists a specific frequency to maximise 〈rc〉/R, independent of Re. Interestingly, such an
effective frequency ( f ∗ = 0.05) is close to or slightly larger than that maximising the
axial focusing speed (see figure 7). Compared with steady flow, the equilibrium radial
position 〈rc〉/R at the effective frequency was enhanced by 640 % at Re = 7, 40 % at
Re = 10, 13 % at Re = 20 and 7.6 % at Re = 30. The contribution of the oscillatory
flow to the off-centre focusing becomes negligible for higher frequencies, in which the
trajectory of the capsule centroid at the highest frequency considered ( f ∗ = 5) collapses
on that obtained with steady flow.

Figure 10(b) shows the time average of the isotropic tension 〈τiso〉 as a function
of f ∗. The values of 〈τiso〉 decrease as f ∗ increases because of the reduction of the shear
stress when moving closer to the channel centreline (i.e. small 〈rc〉/R). The results of
large capsule deformation at relatively small frequencies are consistent with a previous
numerical study by Matsunaga et al. (2015), who showed that at high frequency, a neo-
Hookean spherical capsule undergoing oscillating sinusoidal shear flow cannot adapt
to the flow changes, and only slightly deforms, consistent with predictions obtained
by asymptotic theory (Barthès-Biesel & Rallison 1981; Barthès-Biesel & Sgaier 1985).
Thus, capsules at low frequencies exhibit an overshoot phenomenon, in which the peak
deformation is larger than that its value in steady shear flow.

By increasing channel diameter D (= 2R = 30 μm, 40 μm and 50 μm), we also
investigate the effect of the size ratio R/a0 (= 3.75, 5 and 6.25) on the equilibrium
radial position 〈rc〉/R. Figure 11(a) is the time history of rc/R for different size ratios
R/a0 at Re = 30 and f ∗ = 0.02, where the trajectories obtained with the steady flow are
also displayed. All run cases are started from r∗

c0 = 0.4. The equilibrium radial positions
increase with R/a0, while the contribution of oscillatory flow to 〈rc〉/R becomes small
as well as its fluctuation. This is quantified in figure 11(b), where 〈rc〉/R is shown as a
function of the size ratio R/a0. Although the equilibrium radial position 〈rc〉/R increases
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Figure 11. (a) Time history of rc/R for different size ratios channel sizes R/a0. (b and c) Time average of
(b) 〈rc〉/R and (c) 〈τiso〉/R as a function of R/a0. The error bars in panels (b) and (c) are displayed only on
one side of the mean value for clarity. (d) Time average of 〈rc〉/R at Ca = 0.05 as a function of f ∗ for different
R/a0. All results are obtained with Re = 30, Ca = 0.05 and f ∗ = 0.02, and data at Re = 10 are superposed
in panel (d).

with R/a0, indicating that dimensional equilibrium radial position 〈rc〉 also increases
with R, the isotropic tension 〈τiso〉/Gs decreases, as shown in figure 11(c). This is
because the distance from the capsule centroid to the wall (R − 〈rc〉) increases with R,
resulting in lower shear stress. Oscillatory-dependent off-centre focusing is summarised in
figure 11(d), where the results are obtained with different channel size R/a0 and different
Re (= 10 and 30). The result shows that oscillatory-dependent off-centre focusing is
impeded as Re increases.

It is known that rigid particles align in an annulus at a radius of approximately 0.6R
for Re = DV /ν = O(1) (Segre & Silberberg 1962; Matas et al. 2004, 2009), and shift to
larger radius for larger Re (Matas et al. 2004, 2009), where V is the average axial velocity
(Matas et al. 2004). Our numerical results show that capsules with low deformability
(Ca = 0.05) are still in 〈rc〉/R ∼ 0.5 even for the largest channels (R/a0 = 6.25; R = 25
μm) and Reynolds number (Re = 30), both in the steady and pulsatile flows (figure 11b).
Therefore, off-centre focusing is impeded even at such small particle deformability. This
result is consistent with previous numerical study about a spherical hyperelastic particle
in a circular channel with R/a0 = 5 under steady flow for 100 � Re � 400 and 0.00125 �
W e � 4 (Alghalibi et al. 2019). There, the authors showed that the particle radial position
is 〈rc〉/R ∼ 0.5 at the highest Re (= 400) and lowest W e (= 0.00125). Our numerical
results further show that the contribution of the flow pulsation to the off-centre focusing
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decreases as the channel size R/a0 increases (figures 11b and 11d) because of the low
shear stress acting on the membranes (figure 11c). In other words, a large amplitude is
required for oscillaton-induced off-centre focusing in high-Re and large channels.

The Poiseuille flow in a rigid circular pipe subject to the action of an oscillation pressure
gradient was well described by Uchida (1956); Womersley (1955). At low frequency,
oscillatory flow in the tube is better able to keep pace with the changing pressure. In
the limit of zero frequency, the relation between flow and pressure is instantaneous as in
a steady Poiseuille flow (see figure 16a in Appendix E). Thus, the particle (or capsule) is
subject to shear stress, which results in its lateral movement due to the shear-induced
lift force at low frequency. We confirmed it in figure 10(a), which is also consistent
with the 2-D numerical results of a neutrally buoyant circular particle (Sun et al. 2009).
However, since the mechanism of axial focusing of capsules is primarily attributed to their
deformability, the frequency-dependent axial focusing of a rigid (circular) particle remains
unclear. At high frequency, however, oscillatory flow in a channel is less able to keep pace
with the changing pressure, thus reaching less than the fully developed Poiseuille flow
profile (almost flat velocity profile) at the peak of each cycle (see figure 16b in Appendix
E). In the limit of infinite frequency, the velocity reached at the peak of each cycle is zero,
that is, the fluid does not move at all. Thus, the particle does not experience shear stress
and maintains its lateral position at high frequency, consistent with the 2-D numerical
analysis by Sun et al. (2009).

Furthermore, we showed that 〈rc〉/R increased with Re(� 30), results consistent with
those of rigid spherical particles in three-dimensional (3-D) steady pipe flows (Sun et al.
2009). Such an increase in 〈rc〉/R with Re can also be found for a rigid spherical particle
on the square channel face, especially for Re � 100 (Nakagawa et al. 2015), and also
observed experimentally by Miura et al. (2014); Choi et al. (2011); Abbas et al. (2014).
It is also known that the channel face equilibrium positions decrease with Re, in particular
for Re > 100, while the channel corner equilibrium positions continue to increase with Re
(Nakagawa et al. 2015). Although our numerical results described in figure 11(d) suggest
that a large amplitude is required for oscillaton-induced off-centre focusing at high Re,
it remains an open question whether the off-centre focusing of capsules can indeed be
enhanced by large-amplitude pulsatile flow and whether the optimal frequency remains
consistent with the value measured in this study ( f ∗ ≈ 0.05).

Throughout our analyses, we have quantified the radial position of the capsule in a tube
based on the empirical expression (3.3). We have provided insights about the coefficient
C1 (>0) in r∗

c = C2 exp (−C1t∗), which potentially scales the lift force and depends on
shape, i.e. capillary number Ca and viscosity ratio λ.

4. Conclusion
We numerically investigated the lateral movement of spherical capsules in steady and
pulsatile channel flows of a Newtonian fluid for a wide range of Re and oscillatory
frequency f ∗. The roles of size ratio R/a0, and capillary number Ca on the lateral
movement of the capsule have been evaluated and discussed. The first important question
we focused on is whether a capsule lateral movement at finite Re in a pulsatile channel
flow can be altered by its deformability. The second question is whether equilibrium radial
positions or travelling time are controllable by oscillatory frequency.

Our numerical results showed that capsules with high Ca still exhibit axial focusing
even at finite Re (e.g. Re = 10) and that their equilibrium radial positions cannot be altered
by flow pulsation. However, the speed of axial focusing at such high Ca is substantially
accelerated by making the driving pressure gradient oscillating in time. We also confirmed
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that there exists a most effective frequency ( f ∗ ≈ 0.02), which maximises the speed
of axial focusing, and that it remains the same as that in almost inertialess condition.
For relatively low Ca, however, the capsule exhibits off-centre focusing, resulting in
an equilibrium radial position 〈rc〉/R that depends on Re. There also exists a specific
frequency to maximise 〈rc〉/R, which is independent of Re. Interestingly, such effective
frequency ( f ∗ ≈ 0.05) is close to that for axial focusing.

Frequency-dependent inertial focusing requires a synchronisation between the radial
centroid position of the capsule and the background pressure gradient, resulting in periodic
and large membrane tension, which impedes axial focusing. Such synchronisation abruptly
appears at O(Re) = 100 and shifts to an almost perfect syncronisation as Re increases.
Thus, there is almost no contribution of flow pulsation to 〈rc〉/R at relatively low Re
(� 5) or large Re (� 30), while the contribution of the pulsation to 〈rc〉/R is maximised
at moderate Re (≈ 7), allowing the capsule to exhibit axial focusing in steady flow. For
constant amplitude of oscillatory pressure gradient, oscillatory-dependent inertial focusing
is impeded as Re and the channel diameter increase, and thus a relatively large oscillatory
amplitude is required in such high Re and large channels. Throughout our analyses,
we have quantified the radial position of the capsule in a tube based on the empirical
expression. We hereby conclude that the knowledge obtained under inertialess conditions
(Takeishi & Rosti 2023) has been extended to cases involving finite Re (>1) conditions.

Given that the speed of inertial focusing can be controlled by oscillatory frequency,
the results obtained here can be used for label-free cell alignment/sorting/separation
techniques, e.g. for circulating tumour cells in cancer patients or precious haematopoietic
cells such as colony-forming cells.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.184.
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Appendix A. Numerical set-up and verification
To show that the channel length is adequate for studying the behaviour of a capsule that
is subject to inertial flow, we have tested the channel length L (= 20a0 and 40a0) and
investigated its effect on the radial positions of the capsule centroids. The time history of
the radial position of the capsule centroid rc is compared among these different channel
lengths in figure 12, where the centroid position rc is normalised by the channel radius R.
The results obtained with the channel length L used in the main work (= 20a0) are
consistent with those obtained with twice longer channel (L = 40a0).

Appendix B. Lift force on a capsule in a Poiseuille flow
We consider an object immersed in a Poisseulle flow, assuming that the flow is in the
(steady) Stokes regime and that the object size is much smaller than the channel size. We
also neglect any boundary effects acting on the object. Let y be the position relative to
the channel centre. Due to the linearity of the Stokes equation, the object experiences a
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L = 20a0 (Re = 40)
L = 40a0 (Re = 40)
L = 20a0 (Re = 30)
L = 40a0 (Re = 30)

Ca = 0.05, f * = 0.02)

0.20
0 100 200 300

0.25

0.30

0.35

0.40

r c
/
R

γmt·

Figure 12. Time history of the radial position r/R for different channel lengths L (= 20a0 and 40a0) and
different Re (= 30 and 40). In all runs, the capsule is initially placed at r∗

c0 = 0.4. The results are obtained with
R/a0 = 2.5 and Ca = 0.05.

hydrodynamic resistance proportional to its moving velocity, given by

f L
1 = −ξ1 ẏ. (B1)

Note that the drag coefficient ξ1 > 0 is only determined by the viscosity and the shape
(including the orientation) of the particle. We then consider the effects of the background
Poiseuille flow. We have assumed that the channel size is much larger than the particle
size, and hence the background flow to the particle is well approximated by a local shear
flow with its local shear strength,

γ̇ = −2
V ∞

max

R2 y. (B2)

In the presence of the background shear, the shear-induced lift force in general appears,
and this is proportional to the shear strength (Kim & Karrila 2005),

f L
2 = −ξ2γ̇ = 2ξ2

V ∞
max

R2 y, (B3)

where the coefficient ξ2 is again only determined by the viscosity and the shape. The force
balance equation on the y-direction therefore reads f L

1 + f L
2 = 0. If we introduce a new

shape-dependent coefficient, C1, as

C1 = 2
ξ2

ξ1

V ∞
max

R2 , (B4)

we obtain the evolution equation for the position y as

ẏ = −C1 y. (B5)

This equation is easily solved if C1 is constant and the result is the exponential
accumulation to the channel centre, consistent with the numerical results.

Appendix C. Neo-Hookean spherical capsule
In consideration of previous works by e.g. Lefebvre & Barthès-Biesel (2007) and Wang
et al. (2021), the trajectory of capsule centroids are compared among different types of
membrane constitutive laws for a comprehensive understanding of capsule motion in a
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(a) (b)

10–2

10–1

100

r c
/
R

γmt�

Fitting for Ca = 0.2 (NH)

Ca = 1.2 (SK)
Ca = 0.2 (NH)
Ca = 0.1 (NH)

Fitting for Ca = 0.1 (NH)
Fitting for Ca = 0.05 (NH)

Ca = 0.05 (NH)R/a0 = 2.5
Ca = 0.05

Ca = 0.2

Ca = 0.1

Steady flow

0 20 40 60 80 100

Figure 13. (a) Side views of the capsule during its axial focusing under steady flow for Ca = 0.05 (top),
Ca = 0.1 (middle) and Ca = 0.2 (bottom).The capsule is initially placed at r∗

c0 = 0.55. (b) Time histories of
the radial position of these capsule centroids rc/R. The dashed lines are the curves r∗

c = C2 exp (−C1t∗).
The result at the highest Ca (= 1.2) obtained with SK law is also superposed. The results are obtained with
Re = 0.2, R/a0 = 2.5 and λ= 1.

tube and to verify whether our empirical expression (3.1) works independently of the
membrane constitutive law. Here, let us take the NK constitutive law, which is given by

wNH

Gs
= 1

2

(
I1 − 1 + 1

I2 + 1

)
. (C1)

Figure 13(a) shows side views of the capsule during its axial focusing at each time
for different Ca (= 0.05, 0.1 and 0.2). Other numerical settings (Re, initial position
r∗

c0 and viscosity ratio λ) are the same as described in § 3.1. Even at relatively small
Ca (= 0.2), the neo-Hookean capsule exhibits large elongation after flow onsets, resulting
in fast axial focusing. The trajectory and fitting for it at each Ca are shown in figure 13(b),
where the result at the highest Ca (= 1.2) obtained with SK law described in figure 2(b) is
also superposed. The results suggest that (3.1) still works even for neo-Hookean spherical
capsules, although the applicable ranges of Ca are relatively small compared with those
described by the SK law.

Appendix D. Taylor parameter
The SK spherical capsule deformation is quantified by the Taylor parameter D12, defined
as

D12 = |a1 − a2|
a1 + a2

, (D1)

where a1 and a2 are the lengths of the semi-major and semi-minor axes of the capsule,
and are obtained from the eigenvalues of the inertia tensor of an equivalent ellipsoid
approximating the deformed capsule (Ramanujan & Pozrikidis 1998).
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D12

Ca = 0.05
Ca = 1.2
∂z p*

∂ z
 p

*

γmt�
100 2000 300 400

Re = 10, f * = 0.02, R/a0 = 2.5

0

0.1

0.2

0.3

0.4 4.0

3.0

2.0

1.0

–2.0

–1.0

Figure 14. Time histories of the Taylor parameter D12 for different Ca (= 0.05 and 1.2) at Re = 0.2. The
results are obtained with f ∗ = 0.02 and R/a0 = 2.5.

Figure 14 shows the time history of D12 at Re = 10, R/a0 = 2.5 and f ∗ = 0.02.
Different from what is observed for the isotropic tension shown in figure 5(c), the off-
centred capsule exhibits large D12, which well responds to the oscillatory pressure ∂z p∗.
Thus, the magnitude of D12 is strongly correlated with the capsule radial position (and the
consequent shear gradient).

Figure 15(a–c) shows the time average of D12. Overall, these results exhibit trends
comparable to those of 〈τiso〉, previously shown in figures 9(b), 10(b) and 11(c). Despite
the similarities, the axial-symmetric shaped capsule, typical of large Ca, exhibits small
D12 (figure 15a), and the capsule membrane state in pipe flows cannot be easily estimated
from the deformed shape. This is why we use the isotropic tension τiso as an indicator of
membrane deformation.

Appendix E. Oscillatory velocity profile in a rigid tube
Let us consider the Poiseuille flow in a rigid tube, with the radius of R, subject to the action
of an oscillation pressure gradient, as described by Uchida (1956); Womersley (1955). The
governing equation for oscillatory flow in cylindrical coordinates (r, θ, z) is

∂2vz

∂r2 + 1
r

∂vz

∂r
− 1

ν

∂vz

∂t
= 1

μ

∂p

∂z
, (E1)

where the pressure gradient can be represented by a Fourier series

∂p

∂z
=

∞∑
k=0

ckeikωt , (E2)

with c0 corresponding to the time average pressure gradient producing the Poiseuille
profile. The solution is sought in terms of the Fourier series

vz(r, t) =
∞∑

k=0

ŵkeikωt . (E3)
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1
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0.10

0.15

0.20
(c)
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R/a0
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Re f*

D12

0

0.05

0.10

0.15

0.20
(a)

D12

0

Re = 30, Ca = 0.05

Ca = 0.05, R/a0 = 2.5 Ca = 0.05, R/a0 = 2.5

10–110–2 100 101

(Steady flow)

Steady flow
f * = 0.02

Steady flow
f * = 0.02

0.05

0.10

0.15
(b)

D12

5 6 7

Figure 15. Time average of 〈D12〉 as a function of (a) Re (obtained with Ca = 0.05 and R/a0 = 2.5), (b) f ∗
(obtained with Ca = 0.05 and R/a0 = 2.5) and (c) R/a0 (obtained with Re = 10 and Ca = 0.05). The error
bars in panels (a) and (c) are displayed only on one side of the mean value and are not displayed in panel
(b) for clarity.

Inserting (E3) in (E1), one gets

d2ŵk

dr2 + 1
r

dŵk

dr
− iωk

ν
ŵk = ck

μ
, (E4)

where i2 = −1, and defining the dimensionless variable ζ = r/R, the non-homogeneous
equation (E4) becomes

d2ŵk

dζ 2 + 1
ζ

dŵk

dζ
− ikα2ŵk = ck

μ
, (E5)

where α is the Womersley number,

α = R

√
ω

ν
. (E6)

With the boundary conditions

ŵk
∣∣
r=R = 0,

dŵk

dr

∣∣∣∣
r=0

= 0, (E7)
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the particular solution of (E5) is easily found to be −(iωk/ν)ŵk = (ck/μ), and thus the
global solution of the equation (for k > 0) is given by

ŵk = ick R2

μkα2 + C1 J0

(
α
√

kζ i3/2
)

+ C2Y0

(
α
√

kζ i3/2
)

, (E8)

where C1, C2 are arbitrary constants, and J0, Y0 are Bessel functions of order zero of the
first and second kind, respectively. Recall that i1/2 = eiπ/4 = (1 + i)/

√
2.

The boundary conditions that the global solution must satisfy in a tube are the no-slip
at the wall and the finite velocity along the axis of the tube, i.e.

ŵk(R) = 0, |ŵk(0)| < ∞, (E9)

which provide the required conditions to determine the constants C1, C2. It is known from
the properties of Y0(ζ ) that Y0 → ∞ as ζ (or r ) goes to 0. Thus, the second boundary
condition in (E9) leads to C2 = 0, and the first boundary condition then gives

C1 = −ick R2

μα2
k J0(αki3/2)

, (E10)

where αk = α
√

k = R
√

kω/ν. With these values of C1, C2, the solution ŵk is finally

ŵk = ick R2

μα2
k

(
1 − J0(αk

r
R i3/2)

J0(αki3/2)

)
(E11)

and the velocity profile vz(r, t) is therefore

vz(r, t) = −c0 R2

4μ

(
1 −

( r

R

)2
)

+ R2

μ

∞∑
k=1

R

(
ick

α2
k

[
1 − J0(αk

r
R i3/2)

J0(αki3/2)

]
eikωt

)
, (E12)

where R means the real part of a complex expression.
Let us consider oscillatory flow at low frequency, i.e. small α. The Taylor series of

J0(ζ i3/2) is

J0(ζ i3/2) = 1− (ζ/2)4

(2!)2 + (ζ/2)8

(4!)2 − (ζ/2)12

(6!)2 · · · + i

(
(ζ/2)4

(1!)2 + (ζ/2)6

(3!)2 − (ζ/2)10

(5!)2 − · · ·
)

,

(E13)
and taking the dominant terms into account, one obtains

J0(αk
r
R i3/2)

J0(αki3/2)
= 1 − i

α2
k

4

(
1 −

( r

R

)2
)

− α4
k

64

(
3 − 4

( r

R

)2 +
( r

R

)4
)

sin ωt + O(α6
k ).

(E14)
The velocity is thus written as

vz(r, t) = −c0 R2

4μ

(
1 −

( r

R

)2
)

(E15)

− R2

μ

∞∑
k=1

{
ck

4

(
1 −

( r

R

)2
)

cos (kωt) + ckα
2
k

64

(
3 − 4

( r

R

)2 +
( r

R

)4
)

sin (kωt)

}
,

(E16)
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Figure 16. Oscillatory velocity profiles in a rigid tube at (a and c) low frequency (α = 1) and (b and d) high
frequency (α = 10). The continuous Poiseuille component of the maximum velocity V0 is neglected in panels
(a) and (b), while the finite value of V0/V1 (= 0.5), which is the same condition used in the main text, is shown
in panels (c) and (d). The lines represent the profiles at different phase angles (ωt) within the oscillatory cycle,
starting from ωt = 0 and increasing by steps of π/2.

and if we set Vi = −(ci R2/4μ) (i = 0, 1) and α1 = α, the first mode k = 1 becomes

vz

V1
= V0

V1

(
1 −

( r

R

)2
)

+
(

1 −
( r

R

)2
)

cos (ωt) + α2

16

(
3 − 4

( r

R

)2 +
( r

R

)4
)

sin (ωt).

(E17)
Figure 16(a) shows the velocity profile for α = 1 at each phase angle ωt
(= 0, π/2, π, 3π/4) when the Poiseuille component of the velocity is neglected (i.e.
V0/V1 = 0). Starting from the Poseuille flow at time ωt = 0, at the phase of ωt = π/2,
the Poiseuille is still positive while the corresponding pressure gradient vanishes. The
phase difference disappears at mid cycle (ωt = π) when the Poiseuille flow is recovered.
The profile reaches its peak form at the peak pressure gradient (ωt = 0, π). The velocity
profile for V0/V1 = 0.5, which is the same condition discussed in the main text, is also
shown in figure 16(c) for completeness.

At high frequency, the oscillatory flow in a rigid tube is less able to keep pace with the
changing pressure, thus reaching less than the fully developed Poiseuille flow profile at the
peak of each cycle. The parameter αr/R takes large values and the axis (r = 0) is excluded
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from the analysis. For high values of its argument, the asymptotic development of J0(ζ ) is
such that

J0(ζ ) =
√

2
πζ

cos
(
ζ − π

4

)
+ O(|ζ |−1), with |arg(ζ )| < 2π. (E18)

Using the relation i3/2 = ei3π/4 and s = αkr/R, we can perform the following algebraic
calculation:

J0(e
i3π/4s) = e−3π/8

√
2
πs

cos
(

ei3π/4s − π

4

)
(E19)

= e−i3π/8

√
2
πs

cosh
(

s√
2

+ i

(
s√
2

+ π

4

))
, (E20)

and neglecting the decaying exponential in cosh, since we deal with large values of the
argument, we obtain

J0(e
i3π/4s) = e−3π/8 1√

2πs
e

s√
2 e

i
(

s√
2
+ π

4

)
, (E21)

which leads us to find

J0(αk
r
R i3/2)

J0(αki3/2)
≈ 1√

r/R
e
−(1+i)

αk√
2 (1− r

R )
. (E22)

Finally, the first mode of the velocity profile yields

vz

V1
= V0

V1

(
1 −

( r

R

)2
)

+ 4
α2

[
sin (ωt) − 1√

r/R
e
− α√

2(1− r
R ) sin

(
ωt − α√

2

(
1 − r

R

))]
+ O

(
1
α4

)
. (E23)

Figure 16(b) shows the velocity profile for α = 10 at each phase angle, when the continuous
Poiseuille component of the velocity is neglected. While the velocity is everywhere close
to zero, the profile reaches its peak form at the phase of ωt = π/2 (and 3π/2), i.e. the
resulting flow is in complete phase shift (by π/2) with respect to the pressure gradient.
The velocity profile for V0/V1 = 0.5 is also shown in figure 16(d) for completeness. Thus,
in this case, the continuous Poiseuille component is retained at each time.
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