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1. Introduction and Main Results

In this paper ‘algebra’ means a connected, basic, finite-dimensional algebra (asso-
ciative, with 1) over an algebraically closed figiddFor an algebrad we denote

by A-mod the category of finite-dimensional lef-tmodules and byD?(A) the
derived category of bounded complexes a¢emod.

By Drozd’s ‘Tame and Wild Theorem’ ([Dd], see also [CB1] and [G-V]) the
class of algebras may be divided into two disjoint parts. Firstly, there are the tame
algebras for which the indecomposable modules occur, in each dimehsiprto
isomorphism in a finite number of discrete and a finite number of one-parameter
families. Secondly, there are the wild algebras whose representation theory is at
least as complicated as the study of finite-dimensional vector spaces with two non-
commuting endomorphisms, for which the classification up to isomorphism is a
well-known unsolved problem.

We are concerned with the problem of deciding when a given algebra is tame.
Frequently, using deformations and coverings, we may reduce it to the tameness
problem for algebras whose ordinary quiver is directed. For this class of algebras
we may often solve it by starting with known classes of tame algebras and applying
iterated one-point extensions and coextensions.

At present, the most developed is the representation theory of tame algebras
of polynomial growth (see [GP], [SK] for surveys and more references). In this
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theory an important role is played by the representation-infinite tilted algebras of
Euclidean type and their suitable enlargements ([AS], [AST], [Ri2]). The repre-
sentation theory of tame nonpolynomial growth algebras is rather poor and only
few classes of algebras are understood ([BR], [CB2], [DS], [Er], [WW]).

In [Ri1] it is shown that, ifH is a tame hereditary algebra of Euclidean tipe
andR is an indecomposable regulAr-module of regular length 2 in a tube of rank
n — 2, then the one-point extensid@h[ R] is tame but not of polynomial growth. In
general, it is open what happens if one considers the multiple one-point extension
H[R1,...,R/] := H[R4]...[R;] where theR; are H-modules likeR above. The
reason is that if one wants to work by induction, then the module categories of the
intermediate algebrald[R;, ..., R;] are not well-understood and consequently the
usual one-point extension technique based on the calculation of the vector space
category(H[Ry, ..., R;]-mod Homy g, . g;1(Ri+1, —)) fails.

The aim of this paper is to solve more general problems. In our approach we
apply derived categories as introduced in [Ha] and recent results on fiber sum
functors and generalized one-point extensions proved by the first named author
in [Dr1], [Dr3].

As preparation we need to introduce a generalization of one-point extension

and coextension algebras. For this purposeRlet .., R, and Ry, ..., R, be two
sequences of modules over an algeBraVe putR’ := @_; R which we consider
as anB-k*-bimodule. Analogously we consid&r:= @;_; R; as anB-k’-bimodule.
The biextension algebraRy, ..., R/1B[R1, ..., R;] of B by the two sequences
Ri, ..., R, andRq, ..., R, is by definition the matrix algebra

k' 0 0

R B 0

D(R)®ps R D(R) k'

equipped with the obvious addition and multiplication. o= 0 (resp.t = 0)
one obtains the usual iterated one-point exten®#¢Ry, ..., R;] (resp. iterated
one-point coextensiofR], ..., R;1B). If E is the right adjoint of the canonical
restriction functorB[R4, ..., R;]-mod — B-mod andL is the left adjoint of the
canonical restriction functdmR?, ..., R;]B-mod — B-mod, then

[R),....,RB[Ry, ..., R]
=[E(R). ..., E(R)I(B[Ry. ..., R/])
= ([R}..... RIB)[L(Ry), ..., L(R)].

We shall describe now the main results of the paper. Adte a finite, dir-
ected, connected quiver with underlying graph Following [Ha] an algebras
is said to be piecewise hereditary of typeif there is a triangle equivalence
F:D’(B) — D"(H) whereH is the finite-dimensional hereditary algelira. For
A a Euclidean graph the structuref (H) is known rather precisely. Namely, the
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Auslander—Reiten quiver consists of a sequefi¢e], v € Z, of directed compon-
ents of typeZ A and a sequenc®[v], v € Z, of families of stable tubes of tubular
type A where A is the Dynkin diagram attached naturally 2o By abuse of
language, we also denote B{v] and R[v] the corresponding full subcategories
of D?(H) which are known to be standard. Note that #Rp] are Abelian length
categories.

After embeddingB-mod into D?(B) in the usual way, we catlerived regular
just those moduleX € B-mod such thatF(X) lies in one of the subcategories
R[v]. For a derived regular modul€ we denote its length as object &f[v] as
derived regular lengtiof X.

We will denote by, the Auslander—Reiten translation & (H) and byT
the shift functor. Using, we will usually skip the index. The?[v] andR[v] are
arranged to satisff P[v] = £[v + 1] andT R[v] = R[v + 1].

Two objectsX, Y of an additive category are said to blm-orthogonalif
there is no nonzero map froi to Y and fromY to X. With these notations our
first theorem is the following

THEOREM A. Let B be a piecewise hereditary algebra of typewhereA is A,
orD,. SupposgRry, ..., R} and{Ry, ..., R,} are sets of indecomposable derived
regular B-modules of derived regular_length such that their images unde¥

lie in non-homogeneous tubes in ca&g and in oneT-orbit of tubes of rank

n—2in case[ﬁ,,. Then the biextension algebf&®’, ..., R,1B[R1, ..., R,] is of
tame representation type provided that for alE Z the following conditions are
satisfied
(i) The setF1R[v]N{R1, ..., R} consists of pairwise Hom-orthogonal mod-
ules
(i) The setFtR[vIN{R}, ..., R} consists of pairwise Hom-orthogonal mod-
ules.
(iii) There is no non-zero homomorphism from any modulethR[v]N{Ry, ...,
R,} to any module iF ~*R[v + 1] N {R}, ..., R.}.

It is easy to construct examples which are wild if one of the three conditions
on the modulesk; and R; is not satisfied. In this sense the theorem is optimal.
Nevertheless, our second main theorem will show how one can weaken the third
condition at the cost of allowing to factor out from the biextension alge®ja. . .,
R!]A[R;, ..., R/] an ideal which only relates the extension and coextension ver-
tices. Let us introduce these ideals systematically.

The tensor product (") ® 3 R appearing in the lower left corner of the biexten-
sion algebra carries the structure of‘ak’-bimodule. Any subbimodul&v yields
an ideal
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of the algebra[R}, ..., R;]1A[R1, ..., R;]. We will denote this ideal by (W).

To define the particular subbimodule we are interested in, let us deconi®ose
as®,czR, andR’ as®,cz R, whereR), is the coproduct over ak; such thatF'R;
isin R(v) andR) is the coproduct over a!k;. such thatFRf,. isin R(v). Then the
subbimodulep, zD(R;_ ;) ®3 R, of the bimodule RR’) ® 3 R allows to formulate
the following generalization of Theorem A.

THEOREM B.Let B be a piecewise hereditary algebra of typewhereA is A,
orD,. SupposéRry, ..., R} and{Ry, ..., R,} are sets of indecomposable derived
regular B-modules of derived regular regular leng?fsuch that their images under
F lie in non-homogeneous tubes in caseand in oneT -orbit of tubes of rank —2

in caseD,. Then the algebréR;, ..., R{1B[R1, ..., R;]/J(®,ezD(R;, 1) ®5 R))

is of tame representation type provided that fornak Z the following conditions
are satisfied

(i) The setR[v] N {FRy,..., FR,} consists of pairwise Hom-orthogonal mod-
ules
(i) The setr[v]N{FRy, ..., FR;} consists of pairwise Hom-orthogonal mod-
ules
(i) For all v € Z the setR[v] N {FR4,..., FR,} does not contain any object
which is isomorphic to an object in the sBt*r~(R[v + 1] N {FR}, ...,
FR)).

The first two conditions are identical with those appearing in Theorem A. We
used slightly different formulations in order to emphasize that in Theorem A all
the three conditions can be verified in the module catedgbmod once one can
identify the B-modules which are mapped to tiR{v] by F. In contrast, for veri-
fying condition (iii) in Theorem B one really has to work in the derived category
DP(H) because its endofunctots and7 ! are used. Thus Theorem A seems to
be easier applicable in concrete situations. On the other hand, it is easy to see that
Theorem A is an immediate corollary of Theorem B. Namely, the isomorphism
D(R)) ®p R; = DHomg(R;, R)) shows that under condition (iii) of Theorem A
the bimoduled®,zD(R} ;) ®3 R, and therefore its induced ideal is zero.

In order to apply Theorem A in practice, one should use the rather precise
description of piecewise hereditary algebras of Euclidean type and their module
categories presented in [AS]. It is shown that a representation infinite algebra
is piecewise hereditary of Euclidean type if and only if it is a domestic branch
enlargement of a tame concealed algebra.

The Sections 2-5 are devoted to the proof of Theorem B. Actually, we will only
deal with the cas®,, since the proof for cas&, is rather parallel. In Section 2 we
first translate the problem to the tameness of naturally associated multiple vector
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space categories with relations. In Section 3 we introduce some useful operations
on these categories. Finally, in Section 4 we translate the question back to one
special algebr& whose tameness is proved in Section 5. For this we observe that
C can be obtained inductively by generalized one-point extensions. This allows to
use ordinary vector space categories whose tameness can be established.

We use the notation from [GR] and [Ri2]. Morphisms in an aggredatare
composed from right to left. By inkl we denote a spectroid & . Usually we do
not distinguish between an indecomposable objed ahd its isomorphism class.
For ak-algebraA we denote bydA-mod the category of all finite-dimensional left
A-modules and by-ind a spectroid ofA-mod.

2. Multiple Vector Space Categories and Biextension Algebras

2.1. A vector space category is a palf, M) consisting of an aggregaf€ and a
k-functor M: K — k-mod. The attached subspace catedqtiigk, M) and factor-
space category’ (K, M) are again aggregates. The objectsUbdk, M) are the
triplesU=(U,,, yu, Ug) WherelU,, € k-mod,U; € K andyy € Hom,(U,,, M (Uyp)).

Analogously, the objects 017(1(, M) are the triplesU = (U, 8y, U,) Where
U, € k-mod, Uy € K andéy € Hom,(M(Uy), U,). The morphisms fronlJ

to V in the subspace category (resp. factorspace category) arefpairéf.,, fo)

(resp.f = (fo, fu)) wheref,:U, — V, (resp.f, : U, — V,) isk-linear andfq

is a morphism inK satisfyingyy f,, = M(fo)yu (resp. f.dy = Sv M (fo)).

A generalization of vector space categories was introduced in [Sil]. We will
use a variant of this generalization which we call multiple vector space category. A
multiple vector space categoiy a triple (M,,, K, M,,) consisting of an aggregate
K and twok-functors M,,: K — k’-mod, M,: K — k*-mod wheres,t € Ny
and k', k* are considered ak-algebras via the componentwise multiplication.
The categoryM (M,,, K, M,,) of representations of the multiple vector space cat-
egory(M,, K, M,) has as objects the quintupl&s= (U,, yu, Uo, 8v, U,) Where
U,, U, € k-mod,Uy € K andyy € Hom,(U,, M, (Up)), 8y € Hom,(M,(Uyp),
U,). The morphisms front/ to V in M(M,,, K, M,) are triplesf = (f., fo, fu)
where f,:U, — V,, f.:U, — V, arek-linear and fy is a morphism ink
satisfyingyy f, = M(fo)yy and f,8y = sy M(fy). Of course M(M,,, K, M,)
is again an aggregate.

If s +¢r = 1, then(M,, K, M,) is an ordinary vector space category and
WK, M,) = M(M,,K,M,) fort = 1 ands = O whereasV(K, M,) =
MM, K, M,) fort = 0ands = 1.

A multiple vector space catego,,, K, M,) is said to befaithful provided
the functorM := M, ® M, is faithful. If M fails to be faithful, one may pass to the
reduced multiple vector space categoM,,, K, My )req := (M, K/KerM, M,,)
which is obviously faithful. The full additive subcategoky of K defined by the
property that its indecomposable objeéfssatisfy M(U) = 0 contributes only
the trivial indecomposable®, 0, U, 0, 0) to the categoryM(Mw, K, M,). If we
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consider the categorical complemekit := K \ K’, then the canonical functor
which maps a morphisnf = (f.,, fo. fa) in M(M,,, K*, M,) to the morphism
(fos fo+ KerM, £,)in M(M,, K, My)reqis full and dense, its kernel being con-
tained in the radical oM (M,,, K*, M,). Hence, the categorieﬁt(Mw, K*, M)
and M(M,,, K, M,)req are representation equivalent.

2.2. If B is an algebra an& a B-module, then the one-point extension®by R

is the triangular matrix algebrB[R] := (2 g) and the one-point coextension of

B 0
D(R) k

B[R]-mod can be identified with the subspace categfb(y?-mod Homg (R, —))

of the vector space categofB-mod, Homg (R, —)) and[R]B-mod with the factor-
space category ofV(B-mod D(R) ®3 (—)) of the vector space category
(B-mod, D(R) ®p (—)).

This generalizes to the biextension algebRy, ..., R/|B[R1, ..., R,] of B
given by the two sequencey, ..., R, andRy, ..., R, of B-modules in the obvi-
ous way. Namely,[Ry,..., R/]B[R1,..., R,]-mod can be identified with
M(Homg (R, —), B-mod, D(R') ®; (—)) whereR is the B-k'-bimodule ®!_, R;
andR’ is the B-k*-bimodule®;_, R;.

B by R is the triangular matrix algebia&R]B := ( ) . It is well known that

2.3. In Theorem B we have to deal with a factor algebra of a biextension al-
gebra and therefore we have to translate the property of being a module over
this factor algebra into the language of representations of a multiple vector space
category. Lei(M,,, K, M,) be a multiple vector space category afde a set of
natural transformations: M, - M,. We call(M,,, K, M,; ®) amultiple vector
space category with relation#s category of representatiot(M.,,, K, M,; ©) is
defined as the full subcategory of &llin M(Mw, K, M,) such that;,60y,yy = 0
fqr all &6 € ©. Note, thatM(Mw, K, M,; ®),eq becomes a full subcategory of
M(Mw, K, Ma)red-

For a biextension algebi&, ..., R.1B[R1, ..., R;] and a subbimodul& of
D(R) ®g R, any elemend_"_, d; ® r; of W furnishes a natural transformation
6:Homg (R, —) — D(R’) ®3 (—) which for X in B-mod sends a homomorphism
fiR— Xto) " d;®f(r;). Letus denote by the set of all these natural trans-
formations. Under the natural identification PR, ..., R/]B[Rq, ..., R,]-mod

with M (Homg (R, —), B-mod, D(R) ® (—)) the full subcategoryR;, ..., R/1B
[R1, ..., R]/J(W)-maod is identified withM(HomB(R, —), B-mod D(R’) ®3
(—); ®y). Obviously, it is sufficient to put int®y only a generating set of the

bimoduleWw.

2.4. Note that for a fixed’-moduleW,,, a fixedk*-moduleW,, and a fixed object
X of K the set of objectd/ in MM, K, M,) satisfyingU, = W,, U, =
W, andUy = X can be identified with the linear variety of pairs of matrices
(G, D) over k where G has dig¥,, columns and dipM,,(X) rows whereasD
has dim M, (X) columns and dimW,, rows. Moreover, any natural transformation
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0:M, — M, furnishes a matrixty with dim;M,(X) columns and dimM, (X)

rows. Thus, the set of pai(&, D) lying in M(Mw, K, M,; ®) is the closed sub-
variety given by all(G, D) such thatDT,G = O for all 6 € ©. Let us call

this varietyM(Mw, K, My; ®)w,.x.w,- This allows us to define tameness for
M, K, M,; ®) inthe analogous way as for usual vector space categories. Namely,
(M,, K, M,; ®) is tame if for any choice of the triplew,,, X, W,) the indecom-
posable objects M (M, K, My: ©)w,.x.w, lie up to isomorphism on finitely
many 1-parameter families. By adapting the proof of [Dr1, Thm. 3.3] to this situ-
ation one obtains the following result.

LEMMA. Let us consider a biextension algebi&y, ..., R/1B[R1, ..., R/], let

W be a subbimodule dD(R’) ® 3 R and let (Homg(R, —), B-mod D(R’) ®p

(—); ®y) be the associated multiple vector space category with relations. Then
the algebra[Ry, ..., R/IB[R1, ..., R,]/J(W) is tame if and only if the following
three conditions are satisfied

() The algebraB is tame
(ii) For everyn € N the subset oB-ind given by allX such thatdim, X < » and
Homg (R, X) ® (D(R)) ®p X) # Ois finite
(i) (Homg(R, —), B-mod, D(R")®z(—); Ow),.q iS atame multiple vector space
category with relations

2.5. Let(M,, K, M,) be a multiple vector space category. We denot§hy. ., S;
(resp. Sy, ..., S;) the simplek’- resp.k*-modules. It is easy to see that in
M(Mw, K, M,) does not admit a summand isomorphic to saiie0, 0, 0, 0) or
(0,0,0,0,5%) if and only if y; is injective andéy is surjective. We denote by
M(M,, K, M,) the full subcategory defined by objects of this shape. In the case
of ordinary vector space categories this coincides with the usual constructions of
UK, M) andV(K, M).

For any set of relation® the objectds;, 0, 0, 0, 0) and (0, 0, 0, O, S}) belong
to M(M,,, K, M,; ®). Thus we can introduca((M,,, K, M,; ®) in the analogous
way. Since only finitely many isoclasses of indecomposable representations are lost
by passing fromM(M,,, K, M,;; ©) to M(M,,, K, M,,; ©), the representation type
remains unchanged.

3. Multipatterns

3.1. Returning to our particular situation we want to apply Lemma 2.4 to the
algebra[Ry, ..., R/1B[R, ..., R,]/J(W) whereB and the sequencdg, ..., R;
andRy, ..., R; are as in the assumption of Theorem B &id= ®©,zD(R;_ 1) ®5

R,. The conditions (i) and (ii) are well known for tame hereditary algebras and by
[AS] carry over immediately to iterated tilted algebras of these. Remembering the
isomorphism DR)) ®p (—) = DHomg(—, R)), it remains to establish the tame-
ness of the multiple vector space category with relatighiesmg (R, —), B-mod

163960.tex; 11/05/1999; 11:37; p.7

https://doi.org/10.1023/A:1000980906405 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000980906405

212 P. DRAXLER AND A. SKOWRONSKI

DHomg(—, R"); Ow)req. Clearly, it is sufficient to prove the tameness of
(Homps ) (R, —), D*(B), DHoMps ) (—, R'); Ow)red Which using the derived
equivalencer” is the same as showing the tamenesgHafmy ;,(Z, —), DY(H),
DHomMp ) (—, Z'); O)reqg Where zZ; := FR;, i = 1,...,1, Z} = FR;,j =
1...,8,Z == @ _1Z; and Z' := @jle}. Moreover, ® is the set of natural
transformations Hom 4, (Z, —) — DHomps 4y (—, Z’) induced from®y, via F.

We denote the multiple vector space categories with reIa(Idanb( m(Z, =),
D’(H), DHomps iy (—, Z'); O)red as multipatternsof type D, since they are a
natural generalization of the patterns of this type introduced in [Ril]. For the case
A, we obtain analogous multipatterns.

3.2. The following lemma is a special case of [Ha, Prop. 4.9]. Itis one of our major
tools since it allows to transform one-point extension into one-point coextension
and vice versa inside the derived category.

LEMMA. For all X, Y in D?(H) there is an isomorphisrhiome(H)(T‘lt‘X,
Y) = DHomp, 4 (Y, X) which is natural in both arguments

If we use the lemma to replace some functor DHpm, (—, Z) by Homps g,
(T~*t~Z), —) or some Homs 1 (Z:, —) by DHomMys 4y (—, Tt Z;), we will have
to modlfy the relation® in the corresponding way. Nevertheless we will denote
this modified relations by as well.

3.3. To understand the set of relatiofsn our situation, by the lemma above we
have to understand the spaces Ijﬁ;m)(T Z/ zZ) = D(R/) ®p R; where
Z; € R[vlandZ’ € R[v + 1]. More general, Iet us analyze the possible positions

of Z; andT~ 1r—Z/ in R[v].
LEMMA. In caseZ; € R[v] and Z} € R[v + 1] the following assertions hold
@ Tt Z, £t Z.
(b) If Homps (Tt~ Z, Z;) # 0, then eitherT 't~ 2, = Z; or T~ 't~ Z), =
‘L’Z,’.
Proof. For the proof of (a) we use [Ha Lem. 5.1] in order to see that the objects

R andT—lR} of D”(B) cannot both be3-modules. For the proof of (b) we only

have to remember thatflrfz; and Z; are both objects of length 2 in a tube of
rankn — 2. O

3.4. Remember thati = kA whereA is a directed quiver such that the under-
lying graphA is D,. Since reflections ofz induce automorphisms an’(H), we
may suppose without loss of generality that= A, whereA, is a quiver with
underlying graphD) bearing the ‘standard orientations’ used in the tables in [DR].
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as

Adapting the notation from [DR], we denote @, ..., E;1,d :=n — 2, the
simple regular modules in the tueof rankn — 2 of kA,,-mod. The tables in [DR]
display the dimension vectors of these modules.

o

)

[ R e Gy,

o

1

| | e} - |

B,

E,

To fix further notation, we calIE,ﬁ” the indecomposable regular module of
regular length/ with regular topE,. In particular, E\” = E,. Note, that the
Auslander-Reiten translatiory, acts on these modules by E\” = E;" | where
we calculate moduld = n — 2 in the obvious way.

By embeddingH-mod into D(H) in the usual fashion, we obtain that the
indecomposable objects of length 2 in the tubes of rank 2 which we are
considering coincide with the objecls’ E\2 € T"T wherev € Z andh € Z/d.
Thus we find our objectg; andZ’; among these.

3.5. For the final tameness proof in the next section we possibly will need to in-
creasen. It will consume the rest of this section to make this precise and work it
out. By Lemma 3.3(a) and the assumptions (i) and (ii) of Theorem B it is clear that
for eachv € Z there ish(v) in Z/d such thatE,(l()U) does not appear among ti@e

and T’lr’Z} lying in R[v]. We want to modify the functioh:Z — Z/d. The
following lemma shows how to do this.

LEMMA. Letu € Z. We may replace; by t~Z; for all i such thatZ; € R[v]
withv > pandZ’ byt~ Z’ for all j such thatZ’, € R[v] withv > w.

Proof. Let us define# as the ideal o”(H) formed by all morphisms which
factor through tubes different from tH#&"7 . Since we are only interested in the
multiple vector space categorgHomy: ) (Z, —), D*(H), DHomps gy (—, Z');
O)req, We may replaced”(H) by D”(H)/ ¥, because¥ is contained in the kernel
of the functor Homys ) (Z, —) @ DHOMps 1y (—, Z).

We assumer = 0 and define ag< the full subcategory of inb”(H) given
by all indecomposables lying in sons[v] or £[v] wherev < 0. To obtain7_
we skip the objects fronR[0]. We define7~ as the complement of. and7. as
the complement of < in indD’(H). The intersection off /# and 7~ /# is T .
Moreover, there is no non-zero morphism frém/ # to 7. /# in D (H)/#.

163960.tex; 11/05/1999; 11:37; p.9

https://doi.org/10.1023/A:1000980906405 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000980906405

214 P. DRAXLER AND A. SKOWRONSKI

We define a full and dense endofunc®@t of 7« /# which is the identity on
7. /# and the projection on the unique maximal factor object inrAnalogously
we define a full and dense endofunct@y of 7~ /# which is the identity oy~ / #
and the inclusion of the unique maximal subobjectfarRestricted tay” we have
G- = tG<. Therefore we can splice togethér. andtG< to a full and dense
endofunctorG of D?(H)/#.

Using Lemma 3.1 we can replace all objeésand Z) appearing in7™ by
TtZ; (resp.T*lr*Z}). The full and dense functar then yields an inclusion of
M(HOMp 11y (G Z, =), D*(H) /3, DHOMp 1y (—, GZ'); ©) into M (HOMp
(Z,-), D’(H)/3t, DHomps 4y (—, Z'); ©®) which preserves wildness. 0

The transformations performed above on our vector space category do not inter-
fere with the conditions imposed on t#, Z’ by the conditions (i), (ii), (iii) in
Theorem B.

3.6. Toincrease we embedk A, into kA,.1. We use again the notation of [DR]
and send the vertices, b; andz; of A simply to themselves as vertlcesmﬂ
Thus the only vertex not hit is,. We map the arrows ok, to compositions of
arrows ofA, ;1 in the only possible way. R

In order to distinguish the indecomposables in ¢he 1-tube ofkA,1-mod
from those in thei-tube ofkA,-mod, we denote them by(l) where nowh €
Z/(d + 1).

The left adjointL: kA,-mod — kAn+1 -mod of the restriction functokAnH-
mod — kA,-mod is a tensor product by a projective ngmn -module and con-
sequently exact. The moduleslin[kAn mod) are precisely thoskA,Hl -modules
X such that in the minimal projective presentati®h — P, — X — 0 the
projective indecomposable&,,ﬂ-module attached to the vertexdoes not appear
as summand of, or P;. Since this indecomposable projective is just the projective
cover of the simple modulg, ;, we obtain thaL(kA,z mod) is just the perpendic-
ular category- F,,1 which is defined as the full subcategorylm,,+1 -mod given
by all X satisfying Hom;z (X, Fs41) = 0 and EX)}AM(X, Fi1) =

The fully faithful functor L maps the projectivéﬁn-modules to the project-
ive kA,+1-modules. Hence it induces a fully faithful functat® (k A, —proj) —
K (- proj). Since L is exact, we obtain an extension of the funcior
kA,-mod — kA, 1-mod to a fully faithful functorD?(kA,) — DP(kA, 1)
which we denote byl. as well. It is then easy to see thB(D”(kA,,)) is the
perpendicular categoryF,.1 of F;,, inside D® (kA,,H) which is by definition
given by all X such that Hom 4, ,,) (X, T"Fas1) =0 forallv € Z.

Let us calculate the objecIsT”E;,Z). Up to shift it is sufficient to calculate the
moduIesLE,gz). SinceL happens to be exact, this reduces to calculate the modules
LE, which turn outto be.E, = F,forallh =1,...,d — 1butLE, = F\?. We
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obtainthatL T"E? = T'F® forallh = 1, ...,d—2 wheread. T'E\? = T*F>
andLT'E\?, = T”Fﬁ)l forallv € Z.

LEMMA. We may suppose that the objeZtsand 7 -1~ Z/, are among the™” E;?
with0< h <d-3.

Proof. We will increasen to n + 1 using the embedding ab’(kA,) into
D’ (kA1) outlined above.

By the previous lemma we may assume tﬁﬁfl is not isomorphic to any of the
Z;andT1 ~Z'. As we have seen above thaD? (kA,,) equalst F,.1, we may
identify (Hom(Z —), DP(kA,), Hom(T~1r=Z’, —): ®) with (Hom(LZ, —),*
Fy41, Hom(LZ', —); ©). Using the above formulas for tHel” E\”, we are almost
done. The only problem appears if some of the objeftor 7 1r‘Z’ is iso-

morphic to somd@™ E'?’ because in this case we observed that E'? = T”F(3)
Nevertheless, the proof is complete if we can show that the functors(Flbm
F® —)and Hon(T”Fﬁ)l, —) coincide on*F,.1. Without loss of generality we
may suppose that = 0 and consider the canonical exact sequenee (Fﬁl —
F® — F, — 0 which by [Ha] yields an exact sequence Hdip —) —
Hom(Fy®, ) — Hom(F{?;,—) — Hom(T F,;, —) of functors acting on
D’(kA,.1). The outer terms vanish on the subcategbfy_; because by Lem-
ma 3.1 we know that HotT" F,;, —) = DHom(—, T"*1F,,1). O

As in the previous lemma the transformations performed above on our vector
space category do not interfere with the conditions imposed oz thg’, by the
conditions (i), (ii), (iii) in Theorem B.

4. Reduction to One AlgebraC

4.1. Since gdimH = 1, by [Ha] the triangulated categofy’ (H) can be identified
with H—modwhich is the stable category of the the category of finite-dimensional
modules over the repetitive algebia (see [HW]). The repetitive algebi is an
infinite-dimensional algebra given by the following quiver endowed with all pos-
sible commutativity relations and a lot of zero-relations which we will not specify,
since they will not play any role.

LX7

Thus we have to studyHom, (Z, —), ﬁ—ml DHomy (—, Z'); ®). The re-
petitive algebrad has the usual Nakayama shift as an automorphism which induces
an automorphisng of H—mod The induced automorphism dfi—modwill be
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denoted bypy as well. The two shifts" and ¢y on H—mod are related by the
formulagy = T?r.

4.2. We want to pass fron(Hlng(Z,—),ﬁ—mi DHom, (-, Z'); ®) to
(Hom,(Z, —), FI-mod, DHomy (—, Z'); ®), but this multiple vector space cat-
egory with relations in general fails to be tame. In order to arrange this, we have
to modify theZ; and Z'; in an appropriate way. Using Lemma23we can re-
place each functor DHo(-, Z’) such thatZ’ is in someR[v] with v odd by
Hom(T~* Z/ —) where the objecT 1r*Z’ now sits inR[v — 1]. Dually we
replace each functor Haof#,, —) such thatZ is in someR[v] with v odd by
DHom(—, Tt Z;, —) where the objecT' t Z; sits inR[v + 1]. Thus we collect all
objects representing or corepresenting the functors in our multiple vector space
category into thoser[v] such thab is even.

Let us consider the set of representing objects in s®hg. From Lemma 3.6
we know that they do not form a completeorbit but at least two objects which are
subsequent underare missing. Applying Lemma 3.5, we can rearrange these ob-
jects such that precisely!, (E?) and ¢!, (E) are missing. We perform
these arrangements with the representing and corepresenting objects in all
R[v]. Under this condition we will prove the tamenesgldbm; (Z, —), H-mod
DHomy (—, Z); ©).

4.3. Letus convince ourselves that for showing the tameness of the above multiple
vector space category with relations it is sufficient to show the tameness of the
infinite-dimensional algebr& given by the following quiver endowed with all
commutativity relations and the indicated zero-relations.

We want to establish thau (Homy (Z, —), H-mod, DHom,; (—, Z'); ©) can
be identified with a full subcategory @-mod. Then the wildness of((Homy
(Z,-), Fl-mod DHomy (—, Z’); ®) would obviously imply the wildness af.

Let us consider an obje& = (U,, yu, Uo, 8y, U,) of the categoryM (Hom
(Z,-), H-mod, DHom(—, Z'); ®). ThusU,, is at-tuple (UYL, ..., U") andU,
an s-tuple (UM, ..., UY) of k-spaces. Analogously the map is a t-tuple
AR and8U is as-tuple 8y, ..., 8) of k-linear maps. IZ/ is in some
R[v] such thaw is odd, then we replace ttkeepimorphisrmg): Hom(T—lr—Z;.,
Uo) — U by its kemeldy: U9 — Hom(T~1r~Z}, Up). In the dual way
we replace th&-monomorphismy,”: U® — DHom(Uy, TtZ;) — UY by its
cokernely,”: DHom(Uy, Tt Z;) — U if Z; is in someR[v] such thaw is odd.
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It remains to take into account the set of relatiéhsA nontrivial relation only
appears provided Ho{‘iﬂ*lr*Z}, Z;) # 0forsomeZ; in R[v] andZ} in R[v+1]
or dually Horr(Z}, TtZ;) # 0 for someZ; in R[v — 1] and Z; in R[v]. By
duality we will only deal with the first case. Using Lemma.3b), we know that
eitherT-1t=Z7Z, = Z; or T‘lr‘Z; = 1Z;. The first case is excluded by condi-
tion (iii) of Theorem B. Let us choose a generat¢oof the 1-dimensionat-space
Hom(T—lr—Z;, Z;). ThatU satisfies the relation® implies that the composition
8 Hom(e, Up)y,” equals 0. Hence there existskdinear mapy: U\ — U
such thaB,/’n = Hom(e, Up)y,. In this way we transformed the objeigtinto a
representation of the quiver 6fwheren represents the corresponding arrow at the
rim of the quiver ofC. Moreover, all relations are satisfied with the possible excep-
tion of the zero relations at the upper and lower rims. To get also this we use Lemma
3.3.(a) and the conditions (i) and (ii) to see that if H()T?Tlr_Z;, Z;) # 0, then
neithert2Z; nor t~Z; can occur among the representing object®{m].

5. Tameness of” via Generalized One-Point Extensions

5.1. Finally we are left with the problem to show the tameness of the infinite-
dimensional algebr& which amounts to showing the tameness of finite-dimen-
sional convex truncation€ of C given by a quiver of the following shape again
endowed with all commutativity relations and the indicated zero-relations. Certain
vertices are encircled which we will need below to widtas inductive generalized
one-point extension.

5.2. The vertices of the quiver &f appear in vertical slices. We use the technique

of generalized one-point extensions developed in [Dr3] to build wtice by slice

from left to right using the encircled vertex in the previous slice as extension point.
In each step we can show that the appearing ordinary vector space category is
actually tame. Clearly, various calculations corresponding to the ‘nodes’ of the
guiver are necessary. We leave these to the reader and only will show in detail the
‘general step’. But let us note the the calculations in the particular cases are very
similar to those we will give.

Thus we want to show the tameness of the algebnahich is given by the
following quiver endowed with all commutativity relations and the indicated zero
relations. By induction we know that the algeb#a obtained by removing the
vertices 1,2,3 is tame.
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Let P be the indecomposable projectidemoduleAe(s) with e(s) the primitive
idempotent ofA associated with the encircled vertexWe denote byK the full
subcategory ofi-mod given by all module¥ satisfying Hom (P, t,V) = 0 and
consider the vector space categ@®, Hom, (P, —)). By [Drl] [Thm. 3.3] the
algebraA is tame if and only if the following three conditions are satisfied:

(i) The factor algebrad/Ae(s) A is tame.
(ii) The vector space categotK™* \ P, Hom, (P, —))req iS tame.
(iii) For everyn € N the set of object¥ in indK* satisfying dimV < n is finite.

From now on we will use the notation introduced in [Dr3]. It is easy to see that
A is a generalized one-point extensionshyhich means that each indecomposable
module inA/Ae(s)A-mod lies either inA*-mod or inA;-mod. The algebra® is
by definition obtained fromA by removing all predecessors afHence it can be
constructed from the tame algeltaby firstly removing the vertex and secondly
gluing the vertex 3 using a splitting zero relation. Th4$,is tame. The algebra
A, which is defined dually by removing all successors @ obviously of finite
representation type. Consequently, condition (i) is satisfied.

By [Dr3] [Prop. 3.3]K*\ P is a disjoint union o * andK ~ where(K*, Hom,

(P, —))req can be identified with(A*-mod Hom,s (R™, —))req and (K, Homy
(P, —))red can be identified withiA;-mod R~ ® 4, (—))req, WhereR™ is the radical
of the left A-moduleAe(s) and R~ is the radical of the righ#-modulee(s) A.

The algebrad’ is by definition obtained froma by removing all proper prede-
cessors of. Hence, it can be constructed from the tame algefray gluing the
vertex 3 using a splitting zero relation. Consequentlyjs tame. The categori *
is the same fort andA’ . Therefore property (iii) is satisfied for idd". As indk ~
has only finitely many objects, property (iii) is also satisfied £or.

It remains to check property (ii). We calculate the preinjective component of
the Auslander—Reiten quiver of’, the Auslander—Reiten quiver of; and the
actions of Hom: (R*, —) resp.R~ ®4, (—) = DHom,, (—, R™) on the vertices of
these quivers. In order to gek*\ P, Hom, (P, —))reqWe have to glu¢K +, Hom,

(P, —))red@nd(A;-mod, R~ ®4, (—))reqUsing [Dr3] [Sect. 4,5]. It turns out that the
computed components contain all object in which connecting arrows start and end.
Below we display the obtained quiver. The bullets correspond to indecomposable
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objectsV in K* \ P with dim;Hom,(P, V) = 1 and the squares to those with
dim;Hom, (P, V) = 2. The solid bullets (resp. squares) correspond to objects of
K ~, the empty ones t& *. The relations on the obtained component of the quiver
of (K*\ P)/KerHom, (P, —) are induced from the preinjective componentof
In L we comprise all indecomposable objectskifi\ P which do not come from
this component.

We enlarge the quiver by some ‘imaginary’ vertices in order to see(#yat
P)/KerHomy (P, —) is a finite ‘prolongation’ ofA*-mod/Ker Homys (R, —).

______ NN
L \O O/ O,
______ ANV AN
NS N /
O/ o T‘

5.3. The tameness GfK* \ P)eq, HOm, (P, —)) finally follows by shifting back
to the vector space categofy®-mod Homys (R, —)) whose tameness is known
because the algebr is tame.

The shifting is done using the following lemma from [DG1]. Note, that the
assumptions of the lemma are satisfied because by [Dr3] [Cor. 4.3] the category
K*\ P has almost split morphisms.

LEMMA. Let (K, M) be a faithful vector space category aiid X, Y be a par-
tition of indK into subspectroids. Suppose that there exists an isomorphism
(10, To): (@ddX, M) — (addr, M), there exist objects,, ..., x, in X and nonzero
morphismsy;: x; — y; := tox; such that the following properties are satisfied

(@) dimM(x;) = land M (u;) = (t,),, foralli =1,... n.

(b) K(X,L)=0=K(Y, L).

(c) K(z,x) =) 1 K(z,x)K(x;,x) forall zin L andx in X.

(d) K(z,y) =Y ! 1Kz, y)K(y,y) forallzinLandyinY.

(e) K(z, ®'_1yi) = K(z, ®}_,x;)u for all zin L whereu: &', x; — @"_,y; is

the map whose components afe= u; andu;; = 0fori # ;.
If all these conditions are satisfied, théedd L U X), M) = (addL U Y), M).

6. Applications and Comments

6.1. In general the converses of the Theorems A and B are not true. The reason
is that although we can show that the multiple vector space category obtained by
embedding mod B into D?(B) is still tame, it will usually be much bigger, be-
cause only few relevant complexes may be modules. The algegrgen below as

a tree with relations is an example for this effect. It is of the shape B[R1, R5]

where the two bold vertices are the extension points associated with the modules
R1 and R,. The algebraB is tilted of typeD;. The indecomposable modul&s
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are preinjective but derived regular of derived regular length 2 lying in the same
tube of rank 5 in the derived category. Althoudgh and R, are obviously not
Home-orthogonal, the algebr&is tame.

We are in a better situation in the following special case where it is easy to
construct a wild full subcategory of the multiple vector space categond— B,
Homg (R, —)) if the orthogonality condition is not satisfied.

COROLLARY. Let H be a connected tame hereditakyalgebra of typef&n or
D,. Supposé is a tilting A-module without preinjective direct summands—=
Endy (T) is the associated tilted algebra afi= Homy (T, —) the corresponding
tilting functor.

If Ry, ..., R, is asequence of indecomposabldorsion H-modules of regular
length2 lying in the nonhomogeneous tubes in casend in one tube of rank—2
in caseD,, then the multiple one-point extensiBfiF (R,), ..., F(R,)] is of tame
representation type if and only if the modulRsare pairwiseHom-orthogonal

6.2. Using recent results from [DG2] one can see that the category of represent-
ations of the multiple vector space category without relations corresponding to
Theorem A is equivalent to the category of representations of a clan. This gives
another tameness proof in this special situation but fails in the general situation of
Theorem B.

For the tameness of the algebfathere is an alternative proof. Namel,
degenerates to the clannish algebra obtained ffdoy transforming the commut-
ativity relations in the squares at the rim of the quiver to zero relations. Neverthe-
less, our proof using generalized one-point extensions preserves some information
about the structure of the indecomposabtlenodules which we will study in a
subsequent paper.
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