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Prediction of odd-mode instabilities under
output mismatch effects

almudena sua’ rez, franco rami’rez and sergio sancho

A methodology is presented to predict odd-mode instability in power amplifiers under output mismatch effects, as in the case
of amplifiers connected to an antenna. This kind of instability is often observed in multi-device configurations, due to their
symmetry properties. Unlike the single-ended situation, there is a cancellation of odd multiples of the oscillation frequency at
the circuit output, so there is no impact of the load-impedance values at the sideband frequencies. The odd-mode instability
only depends on the impedance terminations at the fundamental frequency and its harmonic terms, and can only be detected
within the circuit unstable loop, instead of the antenna-connection terminals. The possible unstable modes are related with
the eigenvectors of an outer tier conversion matrix accounting for the symmetry properties of the circuit topology. Under suf-
ficient low-pass filtering of the amplifier output network, the analysis parameters can be limited to the magnitude and phase of
the reflection coefficient at the fundamental frequency. This analysis involves a computationally efficient graphical technique
to detect potential instabilities and a bifurcation-detection method to determine the instability boundaries in the Smith chart.
The two main types of instability from periodic regime are considered, respectively associated with incommensurable and
subharmonic oscillations. Results have been validated through pole-zero identification and experimental measurements.
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I . I N T R O D U C T I O N

The instability of power amplifiers (PAs) under termination
conditions other than 50 V, usually due to antenna mismatch
[1, 2], can lead to serious malfunctioning, involving the obser-
vation of incommensurable oscillations and frequency divi-
sions by two [2]. To guarantee a reliable operation in a
variety of conditions, some applications impose stable oper-
ation even under highly reflective loads [3]. This stability ana-
lysis must be carried out under unknown values of the load
impedance, which will be different from 50 V. Due to its fre-
quency dependence, this impedance will be different at the
fundamental frequency fin and its various harmonic compo-
nents, mfin, and sideband frequencies, mfin + f, where m is
an integer and f is a perturbation frequency, to be swept in
the stability analysis [4, 5]. Even- and odd-mode instabilities
can be distinguished, which, as described next, require differ-
ent analysis procedures.

In the even-mode instability, the mismatched-termination
impedances at the harmonic frequencies mfin and sideband
frequencies mfin + f must be taken into account. Due to the
low-pass filtering action of the output network, it will be pos-
sible to limit the mismatch effects to fin and the lowest side-
band frequencies f, 2fin + f and fin + f, with all the rest of

components arbitrarily terminated in 50 V. Taking this into
account, the work [4] relies on the definition of a 3 × 3 scat-
tering matrix at the reference plane, where the PA output is
connected to the antenna. This is done considering three
virtual ports, corresponding to the three mismatched side-
bands, with the rest of harmonics and sideband frequencies
constituting an inner tier. Under fulfillment of an equivalent
of the Rollet’s proviso [6] established in [4], the potential
instability can be detected at PA output reference plane,
using three large-signal equivalents of the stability factor (m)
[7], defined in [4]. These large-signal m factors depend on
the reflection coefficient Go at fin, the perturbation frequency
f, and the input power Pin.

In the odd-mode stability analysis, the components at
mfin + f are inherently cancelled at the PA output reference
plane. This is due to the 1808 phase shift between different
amplifier branches, which gives rise to a virtual short circuit
at mfin + f at the circuit output. There is a cancellation of
the possible unstable poles with right-hand side (RHS)
zeroes [8–10], so the instability cannot be detected from the
circuit output plane. On the other hand, the impedance termi-
nations at mfin + f will not have any impact on the potential
instability, which will only depend on the terminations at
mfin. The stability analysis must be necessarily carried out at
the internal circuit nodes or loops. This situation is similar
to the one described by Freitag [11] in the small-signal stabil-
ity analysis of multi-device PAs. However, the analysis in [11]
assumes a small-signal operation of the amplifier, though, in
general, the PA will be in a non-linear regime [10, 12] with
respect to the input source at fin. Unlike the linearization
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with respect to the dc solution considered in [11], in the pres-
ence of the perturbation at f, the circuit must be linearized
about the periodic steady-state periodic solution, which will
depend on the input power Pin. This linearization should be
carried out with the conversion-matrix approach [13–15].

In the odd-mode case, despite the cancellation of the side-
band frequencies mfin + f at the PA output reference plane,
the antenna mismatch may lead to instability, due to the
impact of the impedance terminations at the harmonic fre-
quencies mfin on the periodic steady-state solution about
which the circuit is linearized with the conversion-matrix
approach. Under the assumption of a sufficient low-pass filter-
ing action of the output network, the impact on the stability
properties of the Go termination impedances at frequencies
mfin, where |m| . 1, can be considered negligible, even if all
these frequencies, as well as the sideband frequencies mfin + f
are duly taken into account in the analysis. For simplicity,
they are assumed to be terminated in 50 V, so the mismatch
effects are limited to the termination at fin, given by Go. In
the absence of filtering effects, the analyses presented in this
work would still be applicable, but would need the consider-
ation of all passive termination impedances Go, m at the har-
monic components |m| . 1. Nevertheless, to protect the PA
against mismatch-induced instability, it will be convenient
to use a low-pass output network to minimize the impact of
the termination impedances at |m| . 1.

The practical analysis method presented in this work
involves three different stages. In the first stage, the possible
oscillation modes are identified through the eigenvalue/eigen-
vector analysis of the outer tier conversion matrix that
describes the active subcircuit. This is defined at the nodes
where this active subcircuit is connected to the power-
combining network. The eigenvalue/eigenvector analysis is
formally identical to the one proposed by Freitag [11]. In
the second stage, a graphical method is used to detect potential
instabilities associated to the various operation modes, excited
with the aid of auxiliary generators (AGs) [15, 16]. In the third
stage, the fundamental-frequency terminations Go that give
rise to instability are determined with a bifurcation [15–25]
detection technique. It is taken into account that at the oscil-
lation boundary, the steady-state oscillation condition is ful-
filled for amplitude tending to zero [15, 16]. A boundary
analysis should be carried out for each of the oscillation
modes detected in the first stage. The boundary is calculated
in terms of the termination Go and traced in the Smith
chart. Stable and unstable regions are distinguished through
pole-zero identification [8–10], applied to representative
points in the distinct regions separated by the boundary.

The odd-mode instability often involves a subharmonic
oscillation due to the influence of the input signal at fin on
the critical circuit frequencies, which are shifted to the
divided-by-two frequency fin/2 [18]. Therefore, two cases
will be distinguished: an incommensurable oscillation at a fre-
quency f and a subharmonic oscillation at fin/2. The PA oper-
ates in a large-signal regime, so the input power will have a
significant impact on the potential-instability properties,
which will be investigated in detail with a graphical technique.
The method will be illustrated through its application to two
power-combining amplifiers at fin ¼ 1.5 GHz, with two and
four active devices, respectively, which have been manufac-
tured and measured.

The paper is organized as follows. Section II presents the
methodology for the detection of odd-mode instabilities,

illustrated with a basic PA cell of two transistor devices. The
impact of input power is analyzed in detail. Section III
describes the stabilization method. Section IV presents the
generalization of the potential-instability analysis to multi-
device PAs.

I I . D E T E C T I O N O F O D D - M O D E
I N S T A B I L I T I E S

Let a circuit exhibiting symmetries, such as the one in Fig. 1,
be considered. For the analysis of mismatch effects, and
assuming sufficient low-pass filtering effects of the output
network, the circuit will be terminated in Go at fin and in
50 V at mfin, where |m| . 1. For instance, in Fig. 1, a 1808
shorted stub at 2fin has been introduced in parallel with the
final 50 V load (the load that will undergo changes under
the mismatch effects), which should help reduce the impact
of mismatch at frequencies with |m| . 1. For a given input
power Pin and termination Go, the circuit exhibits the
steady-state solution �Xo, which is the vector of harmonics of
the various state variables, obtained with harmonic balance
(HB).

For a simple analysis of the impact of the circuit topology
on the possible oscillation modes, an exemplary outer tier con-
version matrix will be calculated. An admittance matrix is
obtained by sequentially connecting an AG of voltage type
[15, 16] at the frequency f, in parallel at the two analysis
nodes [1 and 2 in Fig. 1(a)]. The AG should operate in
small signal and include a bandpass filter at fAG ¼ f. To
obtain the first (second) matrix row, the AG is connected to
node 1 (2), calculating the ratio between the currents, I1 and
I2, entering the active network from node 1 and node 2, at
the particular sideband kfin + f frequency, and the AG
voltage. In the case of the circuit in Fig. 1, the resulting
matrix has the form:

Ya,11(f , kfin + f ) Ya,12(f , kfin + f )
Ya,12(f , kfin + f ) Ya,11(f , kfin + f )

[ ]
, (1)

where the subindex “a” stands for “active network”. Due to the
circuit symmetry, the form of the outer tier conversion matrix
will be the same, no matter the choice of the outer tier
sidebands. This matrix topology exhibits the two eigenvectors
[1 1]T and [1 –1]T, as easily derived from (1). On the other
hand, the form of the admittance matrix describing the
passive network (Fig. 1) is identical to (1) at all frequencies
mfin + f, and therefore exhibits the same two eigenvectors
[1 1]T and [1 –1]T. The eigenvector [1 1]T corresponds to an
even mode, with the sidebands mfin + f in phase in the two
amplifier branches. The eigenvector [1 –1]T corresponds to an
odd mode, having sidebands with 1808 phase shift in the
two branches.

The two modes can be excited by simultaneously connect-
ing the two voltage AGs in parallel at the two analysis nodes,
at the frequency f, with identical amplitudes VAG [see
Fig. 1(a)]. The mode [1 1]T is analyzed by setting equal
phase values at the two AGs, fAG1 ¼ fAG2 ¼ 08. Under this
simultaneous excitation, the total admittance at f, at each of
the two analysis nodes is given by the ratio between each
AG current and voltage: YAG1,e ¼ IAG1( f )/VAG, YAG2,e ¼

IAG2( f )/VAG. Because the excitation agrees with one of the
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matrix eigenvectors, the two admittances are identical, as
demonstrated in [11]. This admittance will be renamed
YTe ¼ YAG1,e ¼ YAG2,e. In turn, the mode [1 –1]T is analyzed
by using two small-signal AGs with equal amplitude and
1808 phase shift, fAG1 ¼ 08, fAG2 ¼ 1808. Under this simul-
taneous excitation, the total admittances YAG1,o ¼ IAG1( f )/
VAG and YAG2,e ¼ IAG2( f )/VAGejp are also equal, and will be
denoted as YTo. This use of multiple AGs to analyze the
modes will be most useful in the general case of multi-device
PAs, as shown in Section IV.

In the case of odd-mode instability, the two transistor
branches will exhibit 1808 phase shift at mfin + f, so these side-
bands will inherently cancel out at the PA output reference
plane. This situation in which the stability properties depend
on the termination at mfin but are independent on the termina-
tions at the sideband frequencies at mfin + f can be interpreted
as a failure of the proviso established in [4] (an extension of
Rollet’s proviso [6] to the sideband-impedance problem).
This is because the odd-mode instability will be observed
even if the sideband frequencies are terminated in open or
short circuits at the PA output [4]. The antenna mismatch
will only affect the stability properties through the termination
impedances at mfin, which will give rise to a change in the
steady-state solution �Xo about which the circuit is linearized,
and, therefore, to a change in YTo. However, under the assump-
tion of sufficient low-pass filtering effects, the analysis can be
limited to the termination at fin, expressed as Go. The test
bench is illustrated in Fig. 1, where harmonics |m| . 1 are
arbitrarily terminated in 50 V due to their limited influence.

The prediction of the odd-mode instability will be based on
two fundamental properties: (i) when a circuit exhibits a
steady-state oscillation, all its nodes exhibit a total admittance
function (current-to-voltage ratio) equal to zero, (ii) at the

instability boundary, the steady-state oscillation amplitude
tends to zero [18]. When linearizing the circuit with respect
to the perturbation at f (as done in the conversion-matrix
approach), we implicitly assume amplitude tending to zero at
this frequency. Thus, the limit oscillation condition (instability
boundary) is defined by the condition: YTo ¼ 0. This odd-mode
limit oscillation condition can also be evaluated through the
connection of a small-signal current source between equivalent
device nodes of the two subcircuits (Fig. 1), doing YTo ¼ Itest/
(V1 2 V2). Note that YTohas been redefined here.

Pole-zero identification [8–10] would be applicable to
detect the odd-mode instabilities under mismatch effects.
However, the odd-mode excitation must be preserved as
otherwise the impedance at sideband frequencies would be
ill represented with a constant Go. Such an analysis would
require a sweep in the perturbation frequency f (going from
0 to fin, in periodic regimes) for each steady-state solution,
obtained through a double sweep in the amplitude and
phase of Go. Pole-zero identification should be applied to all
the transfer functions resulting from this double sweep. The
identification interval 0 to fin should be, in general, divided
into smaller intervals, so this analysis will be computationally
demanding. Instead, the aim here will be to obtain directly the
boundary between stable and unstable values of Go, given by
the condition YTo ¼ 0, which should be traced in the Smith
chart corresponding to Go. Actually, the fulfillment of YTo ¼

0 will depend on the input power Pin, the termination Go,
and the oscillation characteristics, since there are two major
instability mechanisms from a periodic regime at fin [15–
20]. One is the onset of an incommensurable oscillation at
the frequency f, or Hopf bifurcation, and the other is a division
by 2 of the input frequency, leading to a subharmonic regime
at fin/2, which corresponds to a flip bifurcation.

Fig. 1. Test-bench power amplifier based on a CLY5 transistor (RO4003C: 1r ¼ 3.38, h ¼ 0.5 mm). (a) Circuit schematic. The AGs, at the respective phases fAG1

and fAG2, are used for the analysis of the modes. The stabilization resistor Rs, connected between the two amplifier branches, is also shown. The small-signal
current source is introduced to evaluate the limit-oscillation conditions at an incommensurable frequency f or a subharmonic frequency fin/2. (b) Photograph.
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For illustration, the analysis will be applied to the PA in
Fig. 1. Introducing a stabilization resistor, Rs ¼ 170 V, in par-
allel between the two amplifier branches, the circuit is stable
for all the Pin values under matched conditions (when termi-
nated in a 50 V load), as has been verified with pole-zero iden-
tification [8–10]. On the other hand, the amplifier does not
exhibit even-mode instabilities under mismatch effects, as
verified with the method in [4].

The analysis method relies on the calculation of the Hopf-
and flip-bifurcation loci, in terms of the magnitude and phase
of the reflection coefficient Go. This must be complemented
with a local-stability analysis, such as pole-zero identification
[8–10] to distinguish between stable and unstable regions. It
will be sufficient to apply this local-stability analysis to repre-
sentative points in the various regions separated by the loci.

A) Incommensurable oscillation
For each Pin, the boundary of incommensurable oscillations,
or Hopf-bifurcation locus [15–20], will be defined by the
two conditions:

�H(�Xo, ro,fo) = 0,

YTo(�Xo, ro,fo, f ) = 0,
(2)

where �H = 0 represents the whole set of HB equations, acting
as an inner tier, ro, fo are the magnitude and phase of Go and f
is incommensurable with fin. The steady-state solution �Xo

depends on Go and the limit oscillation condition, YTo ¼ 0,
is evaluated with the conversion-matrix approach.

The analysis based on (2) should start with a global explor-
ation of the Smith chart, in order to provide a suitable initial
value to the optimization/calculation procedure. This is done
with a simple graphical technique that takes advantage of the
bounded nature of ro and fo. The perturbation frequency f is
swept between 0 and fin [8–10] and, for each f, a double sweep
is performed in ro, fo, so as to cover the entire Smith chart.
For each triplet f, ro, fo, the total admittance YT is calculated as
the ratio between the current delivered by the small-signal
source and the voltage across its terminals YT ¼ Itest/(V1 2 V2).
A closed curve is obtained for each pair of values f, ro. To fulfill
YTo¼ 0, there must be changes of sign in both the real and
imaginary parts of YT under variations of ro, fo, which is easily
evaluated through simple inspection.

Figure 2(a) shows the admittance plots versus f, ro, fo cor-
responding to the circuit in Fig. 1, obtained for Pin ¼ 10 dBm.
There are no crossings of the negative real semi-axis, so there

is no oscillation boundary within the Smith chart. Because the
PA is always stable in matched conditions, the value Go ¼ 0 is
stable and, as a result, the whole Smith chart should be stable
too. The same situation is obtained for other Pin values, so one
concludes that the PA in Fig. 1 cannot exhibit incommensur-
able oscillations under mismatch effects.

In case the presence of an instability boundary is detected,
suitable initial values for the calculation of this boundary
should be close to the origin of the admittance plane (YT ¼ 0).
This situation may be found in one or several regions of the
Smith chart. This initial value (or values) should be introduced
in system (2), which will provide an initial point of the instabil-
ity boundary: ri

o,f
i
o, f i. Then the entire Hopf locus will be effi-

ciently traced through continuation [18], by sweeping fo from
fi

o and solving (2) to obtain: ro (fo), f(fo). There will be one
Hopf locus for each Pin.

B) Frequency division by 2
One common case of odd-mode instability is the frequency div-
ision by 2, associated with flip bifurcations [13–20]. This phe-
nomenon occurs when the input signal shifts the circuit natural
frequency f to one-half of the input frequency: f � fin/2, which
is often associated with a parametric instability. This evolution
involves the splitting of a pair of complex-conjugate poles at f
(associated with two dimensions of the differential equation
system [18]) into two independent pairs of complex-conjugate
poles at fin/2 (each associated with one dimension). At the
division threshold, the subharmonic-oscillation amplitude
will tend to zero, so the flip bifurcations can be detected
by setting the frequency of the small-signal current source to
fin/2. Because this perturbation frequency ( fin/2) and the
input frequency are commensurable, the phase shift between
the input source and the current source is a relevant analysis
variable [19]. For the bifurcation detection, one can set the
phase of the current source to zero and consider the
input-source phase fin as an analysis variable. The mathemat-
ical conditions for the flip bifurcation are:

�H(�Xo, ro,fo,fin) = 0,

YTo(�Xo, ro,fo,fin) = 0,
(3)

where �H = 0 is the whole set of HB equations, acting as an
inner tier, and ro, fo are the magnitude and phase of Go. The
steady-state solution �Xo depends on Go. Unless a modified
conversion-matrix analysis [21, 22] is applied, the above ana-
lysis must be carried out with HB at the fundamental frequency

Fig. 2. Graphical method to obtain initial values, using the total admittance function. (a) Results in the case of an incommensurable frequency f, sweeping in f, ro,
and fo at the constant input power Pin ¼ 10 dBm. No instability boundary can exist within the unit Smith chart. (b) Results in the case of a subharmonic frequency
fin/2 and Pin ¼ 10 dBm, sweeping fin, ro, and fo. There should be an instability boundary inside the unit Smith chart.

1308 almudena sua’ rez, franco rami’rez and sergio sancho

https://doi.org/10.1017/S1759078717000885 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078717000885


fin/2, due to the frequency commensurability. The initial
value(s) is obtained through three nested sweeps, in the input-
source phase fin, varied between 0 and 3608, and in ro, fo, to
cover the full Smith chart. Advantage is taken from the fact
that the three sweeps are bounded.

In the case of the PA in Fig. 1, the admittance plots
YT (�Xo, ro,fo,fin) provide several crossings of the negative
real semi-axis [Fig. 2(b)], indicating the fulfillment of the flip-
bifurcation condition (3) for a continuous set of triplets ro, fo,
fin. Once an initial point ri

o,f
i
o,f

i
in has been obtained, the

entire instability boundary is easily traced through continu-
ation, by sweeping the phase fo from fi

o, and solving (3) to
obtain: ro (fo), fin (fo). This provides the flip-bifurcation
loci shown in Fig. 3, which constitute the boundary of
load-impedance values for which the circuit exhibits a subhar-
monic oscillation (flip-bifurcation locus). Each locus in Fig. 3
corresponds to a different Pin. The stable and unstable regions
of this boundary are easily distinguished since one should
know beforehand the stability properties of the matched amp-
lifier, that is, when it is terminated in 50 V. Because the amp-
lifier is stable in matched conditions, the stable region
corresponds to the outside of the flip loci.

Processing the data in Fig. 2(b), it has been possible to obtain
the Go values giving negative conductance (Re(YT) , 0), with a
magnitude of the imaginary part |Im(YT)| below 1023 V21 at
different Pin values, represented with squares in Figs 3(a)–3(c).
The unstable region contains a subset of the points with nega-
tive real part of YT and low magnitude of the imaginary part.
Note that the negative real part and positive-slope resonance
of YT do not constitute a general instability condition.
However, the limit steady-state oscillation condition in (2)
and (3) is rigorous and should be fulfilled at any circuit node
at the stability boundary.

As shown in Fig. 4, for low Pin, the flip locus does not enter
the Smith chart, so there is unconditional stability. From Pin �
5 dBm, the locus crosses the Smith chart, so the amplifier is
potentially unstable under mismatch effects. Due to the
natural reduction of the negative resistance from certain
signal amplitude, one should expect the loci to escape from
the Smith chart from a certain Pin value.

Because the odd-mode instability only depends on the load
value Go at fin, all the possible implementation of this load
should give rise to the same kind of behavior, either stable
or unstable. This has been validated for two different Go

values, one at each side of the flip-bifurcation locus obtained
for Pin ¼ 15 dBm (in a solid red line in Fig. 3), indicated as
Gt1 and Gt2 in Fig. 4. They are relatively close to the stability
boundary to evaluate the degree of accuracy. Figure 5(a)

presents the results of an independent stability analysis
based on pole-zero identification when Gt1 and Gt2 are imple-
mented with an RL series network. Figure 5(b) presents the
results of the parallel-RL implementation. Poles of the Gt1

(Gt2) load are represented with “+” (“×”). With the two dif-
ferent implementations, the load Gt1 is stable and the load
Gt2 is unstable, in agreement with results from (3).

As stated, to protect the PA against mismatch-induced
instabilities, it is convenient to use a low-pass output
network, as in the case of the amplifiers considered in this
work. In the absence of output filtering effects, the same pro-
cedure should be applied for each particular set of reflection-
coefficient values at the harmonic frequencies |m| . 1, which
would provide a family of Hopf and flip loci. Actually, the
flip locus obtained above corresponds to the case Gm ¼ 0 for
|m| . 1. For unconditional stability, the PA should be stable
in matched conditions and none of the loci should enter the
Smith chart. If the goal is just to check whether the PA is
unconditionally stable or not, it will be sufficient to inspect
the admittance diagrams obtained through consecutive
sweeps. To be more precise, for each f (in the case of a
Hopf-bifurcation detection) or fin (in the case of flip-
bifurcation detection) a series of nested sweeps are carried
out in the magnitude and phase of the reflection coefficients
Gm, where |m| ≥ 1. To fulfill YTo ¼ 0, there must be changes
of sign in both the real and imaginary parts of YT under the
variations of Gm, which is easily evaluated through simple
inspection.

Fig. 3. Instability boundaries, showing also the points fulfilling Re(YTo) , 0 and |Im(YTo)| ≤ 1023 V21. (a) For Pin ¼ 6 dBm. (b) For Pin ¼ 10 dBm. (d) For
Pin ¼ 15 dBm.

Fig. 4. Evolution of the flip locus obtained with (3) versus Pin. The loci only
cross the Smith chart in a certain Pin interval. The two reflection-coefficient
points (Gt1 and Gt2) at both sides of the boundary corresponding to Pin ¼

15 dBm (used for the validation of the method) are indicated.
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I I I . A M P L I F I E R S T A B I L I Z A T I O N

The amplifier in Fig. 1 will be stabilized under mismatch
effects with the aid of the resistor Rs, connected between the
two amplifier branches. Because the target is to stabilize the
amplifier for all the Pin values, it will be useful to determine
the Pin interval with potential instability in an efficient
manner. In the particular case of Fig. 4, all the loci cross the
boundary of the Smith chart, so one can expect the locus to
be tangent to this chart at the limits of the unstable Pin inter-
val. At the boundary of the unit Smith chart, the magnitude of
the reflection coefficient is ro ¼ 1. The locus of Pin and fo

values fulfilling the flip-bifurcation condition under ro ¼ 1
is expressed as:

�H(�Xo, ro = 1,fo,fin, Pin) = 0,

YTo(�Xo, ro = 1,fo,fin, Pin) = 0.
(4)

For Pin values such that the flip locus in (3) crosses the unit
Smith chart, there will be at least two fo fulfilling (4) (Fig. 4).
This is shown in Fig. 6, where the phase fo at the intersection
points with the Smith chart [calculated with (4)] has been
represented versus Pin. At the boundaries of the unstable Pin

interval, there will only be one fo, since the locus is tangent
to the Smith chart. To stabilize the circuit under mismatch
effects, the resistor Rs, connected between the two amplifier
branches, will be reduced from its original value (170 V), in
order to increase the damping effects in the odd mode. As
expected (Fig. 6), the locus (4) decreases in size with Rs and
eventually vanishes. For Rs , 120 V, the amplifier should be
stable for all the Pin values.

The PA has been measured for two Rs values (150 and
100 V) and different positions of a triple-stub tuner, used to
enable the load variation [Fig. 7(a)]. With Rs ¼ 150 V, the
circuit is stable for the measured loads A and B and exhibits
a frequency division by 2 for the loads C and D. See the
spectra corresponding to B and C in Figs 7(b) and 7(c).
The low amplitude of the subharmonic spectral line is due
to the near cancellation of this frequency component at the
circuit output, due to its odd-mode nature. The region of
the unstable loads is in very good correspondence with the
analysis in Fig. 4. With Rs ¼ 100 V, the circuit is stable for
all the load values [E, F, G, H are shown in Fig. 7(a)] and all
the Pin values, in agreement with Fig. 6.

I V . G E N E R A L M E T H O D O L O G Y F O R
T H E P R E D I C T I O N O F P O T E N T I A L
O D D - M O D E I N S T A B I L I T I E S

The methodology in Section II can be generalized to multi-
device PAs, exhibiting symmetries. According to [11], in
general, there are N possible modes when N devices are com-
bined. The method to detect mismatch-induced instabilities
should consider all of the possible modes, detected through
the eigenvalue/eigenvector analysis [11] of the outer tier con-
version matrix describing the active subcircuit. Each of them
should be tested for the two cases of incommensurable and
subharmonic oscillations.

For instance, the PA in Fig. 8 is a two-stage extension of the
one in Fig. 1, containing four transistor devices. Under
matched conditions (50 V termination), with the stabilization
resistor Rs ¼ 100 V connected as shown in Fig. 9(a), this PA
exhibits unstable behavior in a certain Pin interval, as observed
when applying pole-zero identification [8–10]. Figure 9 shows
the evolution of the real part of the dominant poles versus Pin.
For low Pin, there is a pair of dominant complex-conjugate
poles at a frequency f, which is incommensurable with the
drive frequency fin. The poles are initially located on the left-
hand side (LHS) of the complex plane, but, as Pin increases,
they approach the imaginary axis and cross this axis to the
RHS at Pin1 � 2.55dBm. At Pin2 � 10.9dBm, the same pair
of complex-conjugate poles crosses to the LHS and the amp-
lifier becomes stable. Thus, the matched amplifier is unstable
in the input power interval (2.55, 10.9 dBm). To illustrate the
possibilities of the new methodology, instead of a two-stage

Fig. 5. Validation of the flip locus corresponding to Pin ¼ 15 dBm with two different implementations of Gt1 and Gt2 in Fig. 3. (a) RL-series implementation. Poles
of the Gt1 (Gt2) load are represented with “+” (“×”). (b) RL-parallel implementation. Poles of the Gt1 (Gt2) load are represented with “+” (“×”).

Fig. 6. Calculation of the unstable Pin interval using the locus in (4). The limits
of this interval correspond to the edge points of the locus. The calculation has
been performed for different values of the stabilization resistor Rs.
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procedure, with a first stage devoted to the stabilization of the
matched PA and a second one devoted to its stabilization
under mismatch effects, a global stabilization process will be
applied, considering all passive terminations Go at fin.

The method described in Section II to obtain an outer tier
conversion-matrix approach can be generalized to PAs con-
taining any number of active devices. A small-signal voltage
AG at the perturbation frequency f is sequentially connected
in parallel at each of the device nodes. Then, the elements of
each row of the admittance-type matrix are given by the
ratio between the current entering each device at the particular
sideband kfin+f and the AG voltage. In the particular case of

four active devices, considered in Fig. 8, the matrix is express-
ible as:

Y11(f ,kfin+ f ) Y12(f ,kfin+ f ) Y23(f ,kfin+ f ) Y23(f ,kfin+ f )
Y12(f ,kfin+ f ) Y11(f ,kfin+ f ) Y23(f ,kfin+ f ) Y23(f ,kfin+ f )
Y23(f ,kfin+ f ) Y23(f ,kfin+ f ) Y11(f ,kfin+ f ) Y12(f ,kfin+ f )
Y23(f ,kfin+ f ) Y23(f ,kfin+ f ) Y12(f ,kfin+ f ) Y11(f ,kfin+ f )

⎡
⎢⎢⎣

⎤
⎥⎥⎦.

(5)

Note that the matrix structure is independent of the two
sidebands chosen for the outer tier analysis. The matrix
describing the passive output network at kfin + f will have
an identical form. Thus, the possible oscillation modes can
be derived from the eigenvectors of the active and passive

Fig. 7. Measurements for different positions of a triple-stub tuner, connected
to the PA output. (a) The loads A, B, C, D correspond to tests under Rs ¼

150 V. The loads E, F, G, H correspond to tests under Rs ¼ 100 V. (b)
Spectrum for Rs ¼ 150 V and load B (stable). (c) Spectrum for Rs ¼ 150 V

and load C (unstable).

Fig. 8. PA based on four active devices, operating at fin ¼ 1.5 GHz. (a) Schematic. The AGs used for the potential-instability analysis and operating at the
frequency fAG, are also shown. Their phases, fAG1, fAG2, fAG3, and fAG4 depend on the particular odd mode to be analyzed, as described in the main text.
(b) Photograph.

Fig. 9. Stability analysis of the PA terminated in a standard 50 V load, with a
stabilization resistor Rs ¼ 100 V, connected as shown in Fig. 8. The real part of
the dominant poles has been represented versus Pin. The frequency f of these
poles is incommensurable with the input frequency fin. The PA is unstable
in the interval comprised between Pin1 ¼ 2.55 dBm and Pin2 ¼ 10.9 dBm.
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matrices. The matrix (5) (as well as the matrix describing the
passive output networks) has the following eigenvectors:

�e1 = 1 1 1 1
[ ]T

,

�e2 = 1 1 −1 −1
[ ]T

,

�e3 = 1 −1 a −a
[ ]T

,

�e4 = −1 1 −b b
[ ]T

.

(6)

The two last eigenvectors imply different amplitudes in the
two subamplifiers. In practice, due to the symmetry of the
circuit topology, one can expect identical oscillation ampli-
tudes in all the equivalent circuit nodes. The eigenvectors in
(6) indicate four possible situations, in terms of the phase
shifts (0 and 1808) between equivalent nodes of the four
circuit branches.

Once the possible modes have been determined with the
method described above, the potential-instability analysis
will be based on an actual excitation of these modes through
the simultaneous connection of as many voltage AGs as the
number of active devices. These AGs will be connected in par-
allel between equivalent nodes of these devices and ground, as
shown in Fig. 8(a). Note that the study can equally be carried
out using current sources in parallel, since the analysis targets
the instability boundary, at which the oscillation amplitude
tends to zero, so the circuit behaves in linear condition with
respect to these auxiliary sources.

The analysis of the possible odd-mode instabilities will
consist of two different stages, depending on the desired
level of insight into the potential-instability mechanism: (i) a
graphical method to detect the potential-instability problem
and (ii) a calculation of the stability boundaries in the Smith
chart corresponding to Go. The cases of an incommensurable
oscillation and a subharmonic oscillation will be distin-
guished. For each, all the possible odd-mode instabilities,

detected with the outer tier conversion-matrix approach,
will be checked.

A) Incommensurable oscillation
For the prediction of an odd-mode incommensurable oscilla-
tion, the frequency of the AGs ( fAG ¼ f ) must be incommen-
surable with the input-drive frequency fin.

1) mode [1 –1 1 –1]
t

To analyze the potential instability in the odd mode [1 –1 1 –1]T

four AGs, at fAG ¼ f, with the respective phase distributions:
(0, 180, 0, 1808), are connected in parallel at the device
output terminals [Fig. 8(a)]. For each Pin value, a triple sweep
is performed, in the frequency f, from 0 to fin, and in the amp-
litude and phase ofGo. Advantage is taken from the fact that the
three sweeps are bounded. For each frequency f and magnitude
ro, a closed curve is obtained when sweeping fo. Figure 10 pre-
sents the results of the triple sweeps corresponding to the mode
[1 –1 1 –1]T for different values of the stabilization resistor Rs in
Fig. 8(a).

Figure 10(a) shows the admittance plots with Rs ¼ 100 V.
For each Pin and each f, a closed curve is obtained. For
Pin ¼ 210 dBm, the zero-amplitude steady-state oscillation
condition YTo(�Xo, ro,fo, f ) = 0 can never be fulfilled, as
derived from a simple inspection of the plots. The entire
Smith chart will either correspond to stable or unstable
behavior, since there is no instability boundary within this
chart. From the pole-zero identification of Fig. 9, for
Pin ¼ 210 dBm, the amplifier terminated in 50 V is stable.
Therefore, the entire unit Smith chart is stable and the PA is
unconditionally stable under mismatch effects. The closed
curves become larger for Pin ¼ 0 dBm, and some of them
enclose the center of the complex plane [Fig. 10(a)]. As a
result, a continuous set of triplets f, ro, fo will fulfill the
limit oscillation condition YTo ¼ 0, so there should be a stabil-
ity boundary inside the Go Smith chart for this Pin value. The

Fig. 10. Graphical prediction of the odd-mode instability [1 –1 1 –1]T at an incommensurable frequency f, under mismatch effects. It is based on triple sweeps in
the perturbation frequency f and the reflection-coefficient magnitude ro and phase fo, performed for each Pin value. (a) Stabilization resistor Rs ¼ 100 V. A
stability boundary exists within the Smith chart. (b) Rs ¼ 91 V. Tangency situation. (c) Rs ¼ 82 V. There is no instability boundary within the Smith chart.
(d) Rs ¼ 75 V. There is no instability boundary within the Smith chart.
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same situation is obtained for other power values comprised
between Pin ¼ 0 dBm and Pin ¼ 10 dBm.

Using the described graphical method, in combination
with a stability analysis of the matched PA, based on pole-zero
identification [8–10], it will be straight forward to stabilize the
PA under mismatch effects for all the Pin values. Figure 10(b)
shows the same admittance plots in the presence of a stabiliza-
tion resistor of Rs ¼ 91 V, which nearly corresponds to a tan-
gency condition. Figures 10(c) and 10(d) show the admittance
plots corresponding to Rs ¼ 82 V and Rs ¼ 75 V, without any
possible fulfillment of the limit oscillation condition YTo ¼ 0.
Provided that the matched PA (under a 50 V termination) is
stable for all the Pin values with Rs , 82 V, it will also be
unconditionally stable under mismatch effects. The results
of the pole-zero identification for Rs ¼ 75 V are shown in
Fig. 11. For all the Pin values, the poles are located on the
LHS, so the amplifier must be unconditionally stable under
mismatch effects. This result will be experimentally confirmed
in Section IV.C.

Departing from an initial point obtained with the plots in
Fig. 10, and by means of a continuation method, it is possible
to trace the stability boundaries in the Go Smith chart. For the
stabilization resistor Rs ¼ 100 V, this provides the loci shown
in Fig. 12, which delimit the termination loads Go that would
give rise to unstable behavior. The impact of Pin on the
potential-instability boundary can be noticed. There is a sig-
nificant variation of the shape and size of the boundaries
when modifying Pin.

Stable and unstable regions can be distinguished with the
aid of the pole-zero identification in Fig. 9, applied to the
matched amplifier. For instance, for Pin ¼ 1 dBm, the stable
region corresponds to the outside of the boundary, since we
know that the matched 50 V termination is stable and
should belong to the stable region. The boundary crosses
the origin of the Smith chart at Pin ¼ 2.55 dBm and Pin ¼

10.9 dBm, which agree with the input power values at which
the matched PA undergoes Hopf bifurcations in the pole-zero
analysis of Fig. 9.

The accuracy of the stability boundaries in Fig. 12 has been
validated with pole-zero identification, considering the two
fundamental-frequency loads, A and B, one at each side of
the boundary corresponding to Pin ¼ 10 dBm. For A, the
poles are on the LHS (Fig. 13), in agreement with the stable
behavior predicted by the boundary. For B, the poles are on
the LHS, also in agreement with the boundary.

2) mode [1 1 21 – 1]
t

To predict potential instabilities in the mode [1 1 21 –1]T,
four AGs, with the respective phase values (0, 0, 180, 1808),
and operating at the incommensurable frequency f, are con-
nected at the device output terminals. Though not shown
here, all the resulting admittance plots fulfill Re(YT) . 0 for
all the Pin values. Thus, there cannot be any instability bound-
aries inside the Smith chart. Under this odd-mode excitation,
the matched PA is stable for all the Pin values, as verified with
pole-zero identification. Taking both results into account, one
concludes that the PA does not exhibit this kind of instability.

B) Subharmonic oscillation
The potential subharmonic oscillation (at fin/2) in each of the two
odd modes [1 –1 1 –1]T and [1 1 2 1 –1]T has been tested with
the graphical method. Four AGs with the respective phase distri-
butions: (0, 180, 0, 1808) and (0, 0, 180, 1808) have been con-
nected in parallel at the device output terminals [Fig. 8(a)].
The AG frequencies are fAG¼ fin/2. For each of the two AG
phase distributions, a triple sweep is performed: in the input-

Fig. 11. Pole-zero identification of the matched amplifier (terminated in
50 V), with a stabilization resistor Rs ¼ 82 V. This analysis complements the
one based on the admittance diagrams in Fig. 10. Combining the results of
the two analyses, it is predicted that the amplifier will be unconditionally
stable under mismatch effects for Rs , 82 V.

Fig. 12. Evolution of the instability boundary under incommnesurable
oscillations in the odd mode [1 –1 1 21]T under variations in the input
power Pin. (a) Stability boundaries in the Go Smith chart. Stable and unstable
regions are distinguished with a complementary stability analysis of the
matched amplifier (terminated in 50 V) versus Pin. This analysis is shown in
Fig. 9. (b) Validation of the stability predictions obtained with the boundary
corresponding to Pin ¼ 10 dBm, through pole-zero identifiction. Two
different loads have been tested, A and B, indicated in (a). The boundary
accurately predicts the stability properties.
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source phase fin, from 0 to 3608, and in the amplitude phase of
Go. This provides a closed curve for each pair of values fin, ro.
Results obtained for different Pin values are shown in Fig. 13,

where the geometrical effect of the double-phase periodicity
can be noted. With none of the two excitations, there is a crossing
through the negative real semi-axis of the admittance diagram, so
there should be no stability boundary in the Smith chart for any
Pin value. This information should be complemented with the
one obtained through application of pole-zero identification to
the matched amplifier. There are no poles on the RHS at the sub-
harmonic frequency for any Pin, so the center of the Smith chart
is stable. Since there is no instability boundary in the Smith chart
for any Pin, one concludes that the amplifier is unconditionally
stable versus subharmonic instabilities.

C) Experimental results
The amplifier has been manufactured and measured. Its output
was connected to a triple-stub tuner. Under variations of the
triple-stub tuner, subharmonic instabilities were only observed
through synchronization mechanisms, once the circuit was in a
steady-state oscillatory regime. This is a secondary phenomenon,
which takes place when the autonomous frequency of the quasi-
periodic regime becomes commensurable with the input-drive
frequency [18]. From a periodic regime at fin, only transitions
to a self-oscillating mixer regime at fin and f (incommensurable
with fin) were experimentally observed under variations of the
tuner, in agreement with the simulation results. Figure 14
shows the results obtained for the stabilization resistor Rs ¼

100 V and Pin ¼ 10 dBm. The theoretical stability boundary is
represented in Fig. 14(a), together with the measured
load-impedance variations obtained for several positions of the
triple-stub tuner. Unstable behavior was obtained inside the
instability boundary, as in the case of the loads A and D. As an
example, with the spectrum obtained with the load A is shown
in Fig. 14(b). Note that the spectrum in Fig. 8(b) corresponds
to the fully established autonomous quasi-periodic regime, exhi-
biting the oscillation frequency fa. In this regime, only the spectral
lines mfin + kfa, with k odd are 1808 out of phase. Spectral lines
with k even are in phase and are combined by the output network.
All the lines comprised between dc and fin are more than 30 dB
below the one at fin. The spectral line at 1.85 GHz, exhibiting
high power, agrees with the second harmonic of one of the
autonomously generated line at 0.925 GHz. Stable behavior
was obtained outside the boundary, as in the case of the loads

Fig. 13. Prediction of subharmonic instabilities (at fin/2) under mismatch
effects by using a total admittance diagram. Different values of input power
Pin have been considered. (a) Odd-mode [1 –1 1 –1]T, with AG excitation at
the phases (0, 180, 0, 1808). (b) Odd-mode [1 1 21 –1]T with AG excitation
at the phases (0, 0, 180, 1808). For each of the two AG phase distributions, a
triple sweep is performed: in the input-source phase fin, from 0 to 3608, and
in the amplitude and phase of Go.

Fig. 14. Experimental measurement of the PA with four active devices in Fig. 8. (a) Validation of the instability boundary under incommnesurable oscillations in
the odd mode [1 –1 1 –1]T, corresponding to the input power Pin ¼ 10 dBm. (b) Unstable behavior for the experimental load A. (c) Stable behavior for the
experimental load B.
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B and C. As an example, the spectrum obtained with the load B is
shown in Fig. 14(c). When using the resistor value Rs ¼ 75 V, no
unstable behavior was obtained for any Pin up to the maximum
value (20 dBm), considered in our theoretical analysis.

V . C O N C L U S I O N

A method has been presented to predict odd-mode instabil-
ities in PAs under output mismatch effects. The various pos-
sible modes are related with the symmetry properties of the
matrix describing the active network, calculated with a
two-tier conversion-matrix approach. In the case of
odd-mode instability, the antenna impedance influences the
stability properties only through its value at the fundamental
and harmonic frequencies. Under sufficient low-pass filtering
effects, the antenna mismatch analysis can be limited to the
fundamental frequency. The prediction of odd-mode instabil-
ities consists of two different stages, depending on the desired
level of insight into the potential-instability mechanism. The
first stage is a graphical method based on admittance dia-
grams, which must be combined with an ordinary stability
analysis of the matched PA (terminated in 50 V) versus the
input power. This enables an efficient detection of potential
instabilities. The second stage is a calculation of the stability
boundaries in the Smith chart corresponding to the termin-
ation at the fundamental frequency. The two analyses must
be carried out for all the possible odd-mode oscillations and
should distinguish the cases of incommensurable and subhar-
monic oscillations. The method has been applied to two differ-
ent PA, containing two and four active devices, respectively,
which have been manufactured and measured. Very good
agreement has been obtained with the simulation results.
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Rousset, J.: A general program for steady state, stability, and FM noise
analysis of microwave oscillators, in IEEE MTT Symp., 1990, 1287–1290.

[14] Rizzoli, V.; Mastri, F.; Masotti, D.: General noise analysis of non-
linear microwave circuits by the piecewise harmonic balance tech-
nique. IEEE Trans. Microw. Theory Tech., 42 (5) (1994), 807–819.
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