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Abstract

The existence of stable periodic oscillatory solutions in a two species competition
model with time delays is established using a combination of Hopf-bifurcation theory
and the asymptotic method of Krylov, Bogoliuboff and Mitropolsky.

1. Introduction

The classical Volterra-Lotka equations used to describe the dynamic behaviour of a
competitive association between two species are

and (1.1)
du2(t)

dt
fb r t>0 ,

where u^t) and u2(t) denote the population sizes (or biomasses) of two species at time
t sharing a common pool of resources and kt, aiJy i,j = 1,2, are positive constants. It
is generally considered that the conventional model (1.1) is rather uninteresting in
the sense that its asymptotic behaviour is convergence to any of the four possible
constant equilibrium states. Perhaps this may be the reason why, apart from certain
discussions dealing with the "principle of competitive exclusion", the model (1.1) has
not been "studied to that extent as its counterpart 'the prey-predator system' has
been studied". One of the realistic modifications of (1.1) is to incorporate continuous
time dealys in (1.1) and examine the asymptotic behaviour for various time delays.
Beginning with the seminal work of Volterra [21], a number of authors have
considered continuous time delays in population dynamic models. Most of the
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analysis has been restricted to single population models (Miller [19], Cushing [8, 9],
May [16, 17]) or to prey-predator models (Bownds and Cushing [1], Cushing
[5, 6], MacDonald [15]). Time lags in competition models have not been fully
investigated although there are some indications of possible results in the works of
Caswell [2], Gomatam and MacDonald [11] and Cushing [7]. It has been the belief
of many that oscillatory (non-stationary) coexistence in the classical Volterra-Lotka
two species competition model is unlikely although such a possibility is indicated in
Cushing [7] where sufficient conditions are given which guarantee the existence of
non-constant periodic solutions. If such periodic solutions are stable then we have
non-stationary coexistence.

Recently it has been proved by one of the authors [12] that if (1.1) is modified to
include time delays so that

and

-^- = "1 U i - a i i "1-^12 )-i(s)w2(f + s)<M

-^•=w 2 /c2-a21 y2{s)ul(t + s)ds-a22u2[ for t > 0, j

) (1-2)

then, for any arbitrary fixed T, the system (1.2) is globally asymptotically stable in the
sense that, for (1.2),

(u,(t),«2W)-»(«?,«!) a s r ^ o o , (1.3)

where

a2iuX + a22u% = k2, (1.4)

whenever the following conditions hold:

£ L L > > i
21 k2 a22

and (1.5)

yl(s)ds=l=\ y2(s)ds, yt(s) > 0, y2(s) > 0 fo rse [ -7 ;0 ] .

The purpose of the present paper is to show that, if there are continuous time
delays in the intraspecific reaction rates in (1.1), then it is possible to have stable
"limit cycle" type oscillatory coexistence of the two competing species. This aspect
has an interesting further extension to a diffusive competition system in which case
there can arise competition wave trains. A similar case has been analysed in a prey-
predator system and the existence of "pursuit evasion wave trains" has been shown
in [13].
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2. Hopf bifurcation to oscillations

We will consider a modified form of (1.1) as follows:

k\—<*\\ I u,(s)k(t — s)ds — ai2i

J-oc
and

du2 ,-, -,
-^=u2[k2-a2lu1-a22u2], for t> 0,

where kit atj, i,j = 1,2, are positive constants and we choose

k(s) = a exp [ - as], s > 0,

[3]

(2.1)

(2.2)

a being a positive constant parameter. It is easy to see that the system (2.1) and (2.2)
has four equilibrium states given by

where

and

(0,0), (fc./fln.O), (0,k2/a22) and (u*,u*2),

"* = (kla22-k2a12)/(alla22-a12a2l)

"* =

We assume throughout that

A*2i >kjk2 >al2/a22.

(2.3)

(2.4)

It is known that, when (2.4) holds, all solutions (u^t), u2(t)) of (1.1) with positive
initial values converge to (wf, uj) as t -* oo. This can be shown using either phase
plane methods or by means of a Lyapunov function.

To investigate the asymptotic behaviour of (2.1) let us introduce a third recovery
variable u3(r) as follows:

"3(0
J-00

{s) a. exp [ — a(r — s)] ds. (2.5)

In terms of M3, we can rewrite the integro-differential system (2.1) in the form of an
equivalent automonous differential system

dul

~dt
= Ui(k1-allu3-al2u2),

and

dt*2 ,i \
— = u2(k2 -a2l ut -a22 u2),

du-x
-^=a(u1-M3), fort>0.

(2.6)
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The differential system (2.6) has a constant nontrivial equilibrium at (uf, «f, uf),
where u% = uf. If we let

Ul{t) = uf + UJit), i = l , 2 , 3 , (2.7)

then the variational system corresponding to (2.6) about (wf, uj, uf) is

d_
dt

1/3

0 — al2u*

— a21 u* —^22 u*

a 0

-flu"*

0

— a

(2.8)

The steady state (uf, MJ, U%) of (2.6) is locally stable if and only if all the eigenvalues of
the coefficient matrix in (2.8) have negative real parts. The eigenvalues of the
coefficient matrix in (2.8) are the roots of the cubic equation

where

and

M, =

M3 = uuf uf(alla22-al2a2l).

(2.9)

(2.10)

A set of necessary and sufficient conditions for all the roots of the cubic in (2.8) to
have negative real parts is, by the Routh-Hurwitz criterion,

M, > 0, M 3 > 0 and Mt M2 > M3. (2.11)

By virtue of (2.4), the first two of (2.11) always hold while the third will hold if and
only if

M2 > 0 and <x2
2')

2 —a22a12a2iu1[u2'
2 > 0.(2.12)

The second part of (2.12) will hold if and only if

where

(2.13)

-. (2.14)

It follows that, if the positive delay parameter a is such that a < a*, then the constant
equilibrium («}", u\, u?) of (2.6) is locally unstable and hence (u%, MJ) of (2.1) and (2.2) is
locally unstable; for, otherwise, (u^t), u2(t) -»(uf, uj) as t-*oo will imply
(t^W, u2(t), u3(t)) -»(uf, «*,"*) as t-*co by (2.5). We can now formulate the
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following:

THEOREM. In the two-dimensional system (2.1) and (2.2), suppose (2.4) holds. Then a
periodic solution of (2.1) and (2.1) in the region u2 > 0, u2 > 0 bifurcates from the
steady state (uf, u%)for suitable values of a. in a neighbourhood ofcc*.

The stability of the bifurcating periodic solution is investigated in the next section
where we examine whether the bifurcation is supercritical, critical or subcritical.

PROOF. When a = a* it follows from (2.9) and (2.12) that M, M2 = M3. Since Mx

and M3 are positive we have M2 > 0 for a = a*. Hence there exists an interval
containing a*, say (a* — n, a* + n) for some n > 0, a* — n > 0, such that M2 > 0 for
<xe(a* — n, <x* + n). Thus, for ae(a* — n, a.* + n), the characteristic equation (2.9)
cannot have purely positive roots. For a = a*, the roots of (2.9) are Xul2

 a n d ^3
where

kx = iw, X2 = —iw and A3 = — \i = — (a + a22
u*)> (2-15)

with

w2 = M2 at a = a*. (2.16)

For ae(a* — n, a.* + n), the roots of (2.9) are in general of the form

and

where, for ae(a* — >;, a*), er(a)>0 and, for ae(<x*, a* + »/), er(a) < 0; this is verified
from the Routh-Hurwitz criterion resulting in (2.13) in which a+ < 0. In order to
apply Hopf's bifurcation theorem to ascertain the existence of periodic solutions for
(2.6), we need to verify the transversality CQndition

Rel^J #0. (2.18)

A direct calculation of dk/da. from (2.9) leads to

].„«.*<>. (2.19)
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It will now follow from Hopf's bifurcation theorem (Marsden and McCracken [18])
that a periodic solution say {u^t), u2(t), «3(t)} of the system (2.6) bifurcates from the
steady state (uj1, wj, wf) for a near a*. The nonnegativity of (M1(t),"2(t)."3(0) will
follow from the vector field of (2.6) since the vector field does not point to the outside
of the positive octant. This completes the proof of the existence of a periodic solution
(uj(£), u2(t)) of (2.1) and (2.2). We show below that the bifurcation is supercritical, that
is, there exists a constant E* > 0 such that 0 < a* — rj < a* — e* < a < a*.

3. Stability of the periodic solution via the KBM asymptotic method

In the literature on Hopf bifurcation theory there are certain algorithms
developed by Poore [20] and Hsii and Kazarinoff [14] to investigate the stability of
the bifurcating periodic solutions. Another alternative to investigate such a stability
is to use a multi-time perturbational approach which has the added benefit of
approximately determining the bifurcating solution. (See Cohen and Keener [4],
Cohen, Coutsias and Neu [3].) The author's attempts to use these established
procedures for investigating the stability of the periodic solution bifurcating in (2.6)
have not been successful. The calculations needed to verify stability or instability of
the periodic solution are too numerous to carry out. However, there is another
relatively easy way to determine the stability of periodic solutions arising from
Hopf's bifurcation.

This method is based on perturbation theory of invariant manifolds, especially
invariant tori. We will essentially use theorem 2 of Golets [10]; this method results in
a smaller number of computations than in the other methods. In order to apply
Golets' theorem we proceed as follows:

Let a = a* — e2 in (2.6), where 0 < a* — r\ < a* — e2 < a, and let

ul=u*

so that

d_
it

~u
u
u

1

2

3

=

42 =

" 1 2

^22

0

= «!

«*

:+e[/2w

- O n " *

0

- a *

and u3

"l/i"

l/2

I/3

= u3
t + et/3(O, (3.1)

(3.2)

+ (-£2)

0 0
0 0
1 0

0
0

U2

u2 + 6
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Introduce a new set of variables (x, y, z) by the linear transformation

u2

n 12

^21 P22 P23

32

and choose Pit, i,j = 1,2,3, so that

0 i2"f-«i2"f -

- " 2 2 "2

0 - a "

0 w 0
- w 0 0
0 0 - /

For such a choice of Pfj-, the new variables (x, y, z) are determined by

dt

0 w 0

- w 0 0

0 0 -L

-e2

M u M12 M13

M21 M22 M23

M31 M32 M33

fi(x,y,z)

fi(x,y,z)

f3(x,y,z)

where

(Mij) = p~1

0 0 0

0 0 0

1 0 - 1

p,

(3.3)

(3.4)

(3.5)

(3.6)

and/i./j and/3 are quadratic polynomials in x, y and z. A direct calculation in (3.5)
leads to

dx 2 / w— = wy — e (M\
dt

+ e {a quadratic polynomial in z},

dy
dt
^£ = — wx — e2(M2lx +M 22 y) + e(clx

2 + cl2xy).

+ e {a quadratic polynomial in z},

(3.7)

-7- = — ̂ z + e (a polynomial in x, y and z),

in which Mtj, bh b^, ch c(J are constants which can be calculated from (3.2) to (3.6).
Eliminating dy/dt in the first two equations of (3.7) and retaining terms up to order of
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e2, we get

d2x
2 x = —WE2(M21 x + M22x/w) — £2(Mll x — Ml2wx)dt

+ W£Cj x2 + E2bl xx + w£c2{x2 — 2x£(bl x
2 + b2y

2 + bl2xy)/w2}

+ W£cl2x{x — s(bl x2 + b2y
2 + b12xy)}/w

+ (Eb2/w) {— wxx + xe(c1 x
2 + c2y2 + c12x_y) (3.8)

+ w£x(bi x
2 + b2y

2 + bl2xy)}

+ £b12{ — WX2 + EX(C1 x
2 + c2y2 + c12xy)}

+ sbl2x{x — E(blx
2 + b2y

2 + bl2 xy)}/w,

where x = dx/dt; in (3.8), if we replace y by x/w, we get an equation of the form

d 2 x - v, . n»v

c = EF(X,E) (3.9)dt2

for a polynomial F in x and £. In addition to (3.8) we have

dz
— = — fiz + E (a quadratic polynomial in x, y and z). (3.10)

If we now let

x(t) = a(t) sin <f>(t), y(t) = a(t) w cos 4>(t)

and ^ (3.11)

-f- = w + terms of the order of £,
at

then, by a combination of the Krylov Bogoliubov Mitropolsky (KBM) asymptotic
method and Theorem 2 of Golets [10], we find, after a lengthy calculation and
simplification, that

da e2aY P22w
2

dt |
w j^ t"* "n«* 1

a*(a*2 + w2)l a*2 (a*2 + w2)a12j

a22 Pli
a { 2a*

in which A = det (P(J) and

P u = I/a*, P 1 2 = 0, Pl3 = I/a*, P 2 1 = - a n a*/(a*2 + w2) a12,

P 2 2 =a1 1a*w/(a*2 + vv2)a12a22uf, P 2 3 = a21 uj/a*2,

P 3 1 =a*/(a*2 + w2), P 3 2 = -w/(a*2 + w2), P 3 3 = - l/a22 u? (3.13)
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and

wa21ul(a22u*-ct*){w2 + (a22u*2+a*)2}

(a2
22u? + w2)(a*

2 + w2)a22u*2<x*3 ' ( 3 ' 1 3

Since

It follows that A > 0 and hence we can conclude from (3.12) that the amplitude of the
oscillations in (3.11) approaches a constant, idependent of initial values, as t -» oo.
From this it follows that, for suitable a, arbitrary solutions of (2.1) and (2.2) approach
in the limit as t -» oo the limit cycle type oscillatory solutions of the form

t ( ) ? t t a* sin wt

and

u2(t) = 11% + e(P21 a* sin wt + P22 <** w(cos wt)),

where a* is the positive stationary solution in (3.12).

4. Some comments

If there are time delays in the interspecific interaction terms as in (1.2) and if the
intraspecific interactions are strong (that is, axla22 > al2a2l), then oscillatory
coexistence is not possible; this is established in [12]. In his monograph Cushing [7]
shows that, when there are delays in the interspecific interactions, oscillations are
possible in two species competition provided the interspecific interactions are strong
(see Cushing [7, pages 171-175]). However, Cushing [7] remarks that the periodic
solutions found by him are unlikely to be stable since his numerical integrations do
not support the possibility of stable periodic solutions. By considering a simpler
model, we have demonstrated stable oscillations in a two species competition model
system when the intraspecific interactions are stronger. The authors are unable to
comment on the absence of oscillations when there are delays in the interspecific
interactions and the presence of oscillations when there are delays in the
intraspecific interactions.

5. An example

The following example has beemiumerically simulated in a digital computer and
the oscillations are graphically illustrated:

-^- = «i 1 0 ~ 3 J aexp[-a( t -s)]U l (s)ds-u2
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Fig. 1. Equilibrium co-existence, a = 6.0, a* = 1.88.
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Fig. 2. Oscillatory co-existence, a = 1.65, a* = 1.88.
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Fig. 3. Oscillatory co-existence, a = 1.65, a* = 1.88.

Fig. 4. Oscillations of species 1, a = 1.65.
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5 10 15 20

TIME

Fig. 5. Oscillations of species 2, a = 1.65.

25 30

and

In this example, a* = 1-88. We have chosen a = 1.65. To show rapid convergence to
a stationary steady state, we have also chosen a = 6.0.
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