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An exact pairwise hydrodynamic theory is developed for the flow-induced spatial
distribution of particles in dilute polydisperse suspensions undergoing two-dimensional
unidirectional flows, including shear and planar Poiseuille flows. Coupled diffusive fluxes
and a drift velocity are extracted from a Boltzmann-like master equation. A boundary
layer is predicted in regions where the shear rate vanishes with thickness set by the
radii of the upstream collision cross-sections for pair interactions. An analysis of this
region yields linearly vanishing drift velocities and non-vanishing diffusivities where the
shear rate vanishes, thus circumventing the source of the singular particle distribution
predicted by the usual models. Outside of the boundary layer, a power-law particle
distribution is predicted with exponent equal to minus half the exponent of the local
shear rate. Trajectories for particles with symmetry-breaking contact interactions (e.g.
rough particles, permeable particles, emulsion drops) are analytically integrated to yield
particle displacements given by quadratures of hard-sphere (or spherical drop) mobility
functions. Using this analysis, stationary particle distributions are obtained for suspensions
in Poiseuille flow. The scale for the particle distribution in monodisperse suspensions is
set by the collision cross-section of the particles but its shape is almost universal. Results
for polydisperse suspensions show size segregation in the central boundary layer with
enrichment of smaller particles. Particle densities at the centreline scale approximately
with the inverse square root of particle size. A superposition approximation reliably
predicts the exact results over a broad range of parameters. The predictions agree with
experiments in suspensions up to approximately 20 % volume fraction without fitting
parameters.
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1. Introduction

Particles in a fluid subjected to a bulk deformation interact with each other
hydrodynamically, modifying the rheology of suspensions, and can lead to flow-induced
microstructuring (Stickel & Powell 2005; Van der Sman 2009; Denn & Morris 2014;
Tanner 2018; Carotenuto et al. 2021). Flow-induced microstructure in flowing suspensions
is a key to understanding a diverse range of natural phenomena and is fundamental to
the engineering design of these systems. Flow-induced microstructure is important in
materials processing, such as the production of particle-filled polymers (Migler 2001;
Elias et al. 2008; Colón Quintana et al. 2019), and ceramic tape casting (Jabbari et al.
2016). Rheology and microstructure affect the sensation of food and digestion (Lentle
& Janssen 2010; Schroën, de Ruiter & Berton-Carabin 2020). Flow-induced demixing in
polydisperse suspensions is a useful separation technique (Bandyopadhyay, Peralta-Videa
& Gardea-Torresdey 2013; Schroen, van Dinther & Stockmann 2017).

The effects of suspension microstructure are especially pronounced in tightly confined
flows as arise in microfluidic devices (Van Dinther et al. 2012; Sarkar & Singh 2013;
Dahl et al. 2015; Singha et al. 2019) and hydrofracturing (Barbati et al. 2016; Osiptsov
2017). Blood flow in the microcirculation depends critically on the coupled rheology and
flow-induced microstructure (Secomb 2017). The Fahraeus–Lindqvist effect refers to the
concomitant reduction in haematocrit and viscosity in capillaries and small vessels (i.e.
arterioles, venules). In their classical paper, Fahraeaus & Lindqvist (1931) explain these
phenomena in terms of the migration of red blood cells (erythrocytes) to the region of
faster-moving fluid at the centre of the capillary where velocity gradients are smaller. This
mechanism is important for reducing the workload on the heart and helps to understand
the detrimental effects of certain diseased states (e.g. malaria, sickle-cell anaemia) that
disrupt this mechanism by altering the mechanical properties of red blood cells (Higgins
et al. 2007; Diez-Silva et al. 2010; Chien, Gompper & Fedosov 2021). This phenomenon
continues to be an active area of study (Pries, Neuhaus & Gaehtgens 1992; Tokarev,
Panasenko & Ataullakhanov 2011; Secomb & Pries 2013).

Investigations of flow-induced structuring have focused on suspensions of spherical
particles suspended in Newtonian liquids (Karnis, Goldsmith & Mason 1966;
Koh, Hookham & Leal 1994; Hampton et al. 1997; Lyon & Leal 1998a,b).
Low-Reynolds-number and large-Péclet-number conditions usually apply, based on the
size of the suspended particles, the fluid viscosities and typical shear rates. Under these
conditions, fluid motion is governed by the Stokes equations and Brownian motion is
negligible (Duprat & Stone 2015). Early studies include experimental measurements
(Eckstein, Bailey & Shapiro 1977; Leighton & Acrivos 1987a) and computer simulations
(Bossis & Brady 1987; Chang & Powell 1994) of self-diffusion of marked tracer particles
in sheared suspensions. Eckstein et al. (1977) proposed a hydrodynamic self-diffusivity,
Ds ∼ γ̇ a2, resulting from O(a) random particle displacements with zero mean due to
uncorrelated hydrodynamic interactions between particles occurring at a rate of γ̇ , where
a is the particle radius, γ̇ is the magnitude of the shear rate and the proportionality
depends on the volume fraction. Leighton & Acrivos (1987b) proposed the existence
of a cross-flow particle flux down the particle concentration gradient with a similarly
scaled hydrodynamic diffusivity, D ∼ Ds, and a particle drift velocity, V , from high
to low shear stress (Koch 1989). The ratio of the hydrodynamic self- and gradient
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diffusivities to the molecular diffusivity, D associated with Brownian motion, defines a
Péclet number, γ̇ a2/D; under large-Péclet-number conditions, hydrodynamic diffusion
dominates Brownian diffusion (Semwogerere, Morris & Weeks 2007).

The Leighton & Acrivos (1987b) theoretical framework was used to explain the
anomalous time-varying viscosity previously observed by Gadala-Maria & Acrivos
(1980) (Koch 1989) and provides the basis for the diffusive flux model of suspensions
(Phillips et al. 1992). The diffusive flux model has been subsequently used to
describe the flow-induced microstructure and rheology of suspensions and emulsions
(King & Leighton 2001; Ramachandran, Loewenberg & Leighton 2010; Reboucas
et al. 2016). Although based on pairwise particle interactions, the diffusive flux
model provides a phenomenological description for the coupled microstructure and
rheology in concentrated suspensions through the use of an empirical model for
the concentration-dependent shear viscosity (Eilers 1943; Krieger 1972) and transport
coefficients determined from experimental data (Phillips et al. 1992).

An alternate suspension balance model was developed where particle fluxes result from
normal stress differences (Nott & Brady 1994; Morris 2009). The suspension balance
model has also been widely used to explore the flow-induced microstructure and rheology
of suspensions. The suspension balance and diffusive flux models are similar; moreover,
the diffusive flux model can be derived from the suspension balance model (Nott & Brady
1994; Nott, Guazzelli & Pouliquen 2011). Both are phenomenological descriptions.

Both models have difficulty describing particle distributions at points where the local
shear rate vanishes, e.g. at the centre of a Poiseuille flow, as anticipated by Leighton
& Acrivos (1987b). At these points, the predicted particle concentration profile has
an unphysical singularity. The incorporation of a viscosity model in the diffusive flux
model that diverges at a prescribed maximum packing fraction of particles prevents the
volume fraction from diverging (Phillips et al. 1992). However, this imposes a volume
fraction equal to the prescribed maximum packing fraction at points where the shear
rate vanishes which is unlikely to apply in dilute systems. The resulting cusp-shaped
distribution reflects the lack of a length scale imposed by the particle size in the diffusive
flux model. The use of an ad hoc non-local shear rate or a constitutive model relating
stresses to velocity fluctuations rather than the local shear rate smooths the cusp that
would otherwise be predicted by the suspension balance model (Morris & Brady 1998;
Frank et al. 2003). Away from singular points where the shear rate vanishes, the particle
concentration profiles predicted by the diffusive flux and stress balance models are in
qualitative agreement with experimental measurements (Lyon & Leal 1998a; Frank et al.
2003).

Experiments reveal size segregation in bidisperse suspensions (Husband et al. 1994;
Lyon & Leal 1998b; Semwogerere & Weeks 2008). These studies tend to show that larger
particles accumulate more quickly in regions of low shear rate. Slow evolution of the
particle microstructure requires long entry lengths to attain fully developed stationary
particle distributions (Nott & Brady 1994; Phan-Thien & Fang 1996), and experiments are
often later found to have used insufficient entry lengths. Theoretical and phenomenological
models are at an early stage. The diffusive flux model has been extended to bidisperse
suspensions but requires more adjustable parameters (Shauly, Wachs & Nir 1998; Kanehl
& Stark 2015; Chun et al. 2019; Reddy & Singh 2019), and it fails at points where the shear
rate vanishes, leading to predictions at odds with experiments.

Many-particle boundary integral simulations with periodic boundary conditions have
been used to explore particle segregation in wall-bounded shear- and pressure-driven
flows of polydisperse suspensions of deformable particles, e.g. red cells and platelets
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(Zhao & Shaqfeh 2011; Zhao, Shaqfeh & Narsimhan 2012). These studies focused on size
segregation that occurs in small channels, several particle diameters wide (e.g. arterioles,
venules). The results further a fundamental understanding of the Fahraeus–Lindqvist effect
and related phenomena such as plasma skimming (Tangelder et al. 1985; Aarts et al. 1988),
showing that smaller, stiffer particles (platelets, and white cells) accumulate near bounding
walls of a channel and larger, more deformable particles (red cells) accumulate in the
central, core region of the flow (‘anti-margination’). Aside from the restriction to creeping
flow conditions, which may not always apply, a drawback of boundary integral simulations
is their extreme computational intensity which hinders access to the long-time stationary
microstructure of these systems.

Kinetic theory models, based on the Boltzmann equation, provide another useful
theoretical framework for suspension flows (Kumar & Graham 2012; Zurita-Gotor,
Bławzdziewicz & Wajnryb 2012; Narsimhan, Zhao & Shaqfeh 2013; Kumar, Rivera
& Graham 2014; Rivera, Sinha & Graham 2015; Rivera, Zhang & Graham 2016;
Qi & Shaqfeh 2017, 2018). Central to the Boltzmann equation is the particle flux
generated by uncorrelated pair interactions (collisions) between particles suspended in
the continuous-phase fluid. Accordingly, the Boltzmann equation is inherently a pairwise
description, and thus restricted to dilute systems; however, it may provide a reasonable
approximate description for particle microstructure in suspensions with moderate volume
fractions. Comparisons between kinetic theory models and direct three-dimensional
boundary integral simulations reveal close agreement in the predicted microstructure for
volume fractions up to approximately 20 % (Narsimhan et al. 2013; Qi & Shaqfeh 2017,
2018). Although they require much less computation than many-particle boundary integral
simulations, kinetic theory models still require considerable computation, preventing
parametric exploration of suspension microstructures. Their computational requirement is
dominated by the pre-calculation of an ensemble of pair trajectories needed for evaluating
the collision flux in the Boltzmann equation, but once pair trajectories are calculated,
kinetic theory models provide comparatively efficient access to the long-time, statistically
stationary microstructure.

For small channels, several particle diameters wide, the resulting Boltzmann equation
can be numerically solved to obtain the particle distribution. Features such as margination
and anti-margination are recovered (Kumar & Graham 2012; Zurita-Gotor et al. 2012;
Narsimhan et al. 2013; Kumar et al. 2014; Rivera et al. 2015; Qi & Shaqfeh 2017, 2018).
For channels that are wide compared with particle size, the collision flux can be expanded
to yield a phenomenological particle transport equation similar to the diffusive flux model
for dilute suspensions (Rivera et al. 2016). Note that kinetic theory models have the same
difficulty as the diffusive flux and stress balance models at points of vanishing shear rate,
requiring a similar ad hoc treatment in the neighbourhood of such points (Rivera et al.
2016; Qi & Shaqfeh 2017).

Pairwise hydrodynamic interactions of force- and torque-free spherical particles in shear
flow under creeping flow conditions are well understood and analytically tractable (Lin,
Lee & Sather 1970; Batchelor & Green 1972a,b; Zinchenko 1978, 1980, 1983). By the
linearity of the Stokes equations and by symmetry, pair interactions between spherical
particles on open trajectories in shear flow are reversible, yielding zero net cross-flow
displacements of the particles; however, there are diverse phenomena that can break the
symmetry of pair trajectories in shear flow, leading to non-zero net displacements. It is
generally accepted that particle displacements resulting from irreversible pair interactions
are the dominant mechanism for particle transport (Leighton & Acrivos 1987a,b; Phillips
et al. 1992).
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Mechanisms that break the symmetry of pair interactions include the perturbative
effects that slightly affect hydrodynamic pair interactions and short-range phenomena
that qualitatively affect the motion of particles when they are in near contact
with surface-to-surface separations h0 � a but have a negligible effect at larger
separations. Short-range phenomena involve symmetry-breaking ‘contact’ interactions
between particles on narrowly offset streamlines of the flow. The classical lubrication
singularity between smooth spherical particles hinders the near-contact approach of
particles in the compressive quadrant of the shear flow, preventing contact, and acts
symmetrically slowing the separation of the particles in the extensional quadrant
of the flow. Contact interactions break the symmetry of pair interactions in shear
flow because they involve a compressive force that prevents particle overlap in the
compressive quadrant of the flow without a compensating tensile force in the extensional
quadrant.

The prototypical example of a short-range mechanism for contact interactions is
small-amplitude surface roughness, d � a, that prevents surface-to-surface particle
separations less than d (Smart & Leighton 1989; Smart, Beimfohr & Leighton 1993;
da Cunha & Hinch 1996; Rampall, Smart & Leighton 1997; Wilson 2005; Ingber
& Zinchenko 2012). Other examples of particles with short-range contact interactions
include particles with weak permeability (Reboucas & Loewenberg 2021a,b, 2022),
particles stabilized by screened electrostatic interactions (Zinchenko 1984; Kremer,
Robbins & Grest 1986) and emulsion drops under small-deformation conditions
(Loewenberg & Hinch 1997; Ramachandran et al. 2010). Particle-scale deformation
associated with stronger flows is an example of a perturbative mechanism, affecting
hydrodynamic interactions at O(a) separations, and breaking the symmetry of more
distant, non-contacting pair trajectories (Lopez & Graham 2007; Lac & Barthès-Biesel
2008; Singh & Sarkar 2015; Malipeddi & Sarkar 2019a,b).

In this paper, we present a simplified theory for flow-induced structuring in dilute
particle suspensions based on pair interactions between particles. In contrast to the
phenomenological models discussed above, ours is an exact description. Starting
from a Boltzmann-type master equation, particle fluxes are derived for the cross-flow
hydrodynamic particle transport in flows such as shear and planar Poiseuille flow. A
general analysis is presented for the boundary layer that forms in regions where the
shear rate vanishes and for the stationary particle distributions that form away from
these regions. Cross-stream displacements for particles that undergo symmetry breaking,
contact interactions are formulated in terms of quadratures of mobility functions for
spherical particles. Using this result, transport coefficients are explicitly calculated for
rough particles and emulsion drops and results are presented for particle distributions in
monodisperse and bidisperse suspensions.

The general formulation of the problem, including the Boltzmann equation, is presented
in § 2, and expanded to derive transport coefficients including an analysis of the region
where shear rates vanish. Generic results for stationary particle distributions are derived
in § 3 that are independent of the character of the pair interactions between particles.
Trajectories of particles that undergo contact interactions are analytically integrated in § 4
to yield particle displacements formulated as quadratures of standard mobility functions.
The results from §§ 3 and 4 are combined in § 5 to obtain spatial distributions of
rough particles and emulsion drops in mono- and bidisperse mixtures undergoing planar
Poiseuille flow. The predictions are compared with experimental results in the literature.
Concluding remarks are made in § 6.
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2. Formulation of pairwise theory

2.1. Asumptions and simplifications
The starting point for our simplified theory, presented in § 2.2, is a Boltzmann-type
equation for particle transport in a dilute polydisperse suspension of non-Brownian,
neutrally buoyant particles undergoing unidirectional flow. Only cross-flow variations of
particle concentrations are considered. Wall-induced particle migration is neglected under
the assumption that the scale of the flow field is large compared with the particle size.
Restricting consideration to stationary particle distributions, the collision fluxes of particle
species are set to zero.

The collision flux is expanded for smoothly varying particle distributions in § 2.3 to
obtain formulas for transport coefficients describing diffusive and drift fluxes of particle
species driven, respectively, by gradients of particle concentrations and shear rate. The
formulas are appropriately modified to handle regions with vanishing shear rate, as occurs
in pressure-driven flows. The results of this section are combined in § 3 to yield an exact
formulation for stationary particle distributions in dilute suspensions.

2.2. Boltzmann equation
We consider particle transport in two-dimensional unidirectional flows,

v = v(X2)e1, (2.1)

where (X1, X2, X3) describes a Cartesian coordinate system and ek(k = 1, 2, 3) are the
corresponding unit vectors. Velocity field (2.1) includes simple shear and planar Poiseuille
flow. The particle distribution evolves in the plane perpendicular to the fluid velocity
according to the Boltzmann-type equation

∂ni

∂t
= −∇ · F i, (2.2)

where ni(X2, X3) is the number density of type-i particles (i = 1, 2, . . . , m). (Explicit
time dependence of number density is suppressed here because we investigate stationary
particle distributions.) The quantity Fik(X2, X3)(k = 2, 3) is the flux of type-i particles in
the k-direction resulting from pairwise ‘collisions’ with other particles,

Fik(X2, X3) =
m∑

j=1

Fijk. (2.3)

Here, Fijk is the contribution to the flux Fik from collisions with type-j particles (j =
1, 2, . . . , m) given by the Boltzmann collision integral,

Fijk =
∫ ∞
−∞

∫ ∞
−∞

dx−∞2 dx−∞3

∫ 0

−ΔXij
k

ni(X
i,−∞
k )nj(X

j,−∞
k )|vij| dXi,−∞

k , (2.4)

where Xi,−∞
k (k = 2, 3) is the initial distance of particle i from the plane Xk where the

flux is evaluated, ΔXij
k is the displacement of particle i in the k-direction due to its binary

encounter with particle j, and

x−∞k = Xj,−∞
k − Xi,−∞

k , (2.5)

is the relative initial position of the particles in the cross-flow plane, i.e. the trajectory
offset, as shown in figure 1. Here, |vij| is the magnitude of the relative velocity between
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j
�Xk

ji

�Xk
ij

Xk
j,–∞

Xk
i,–∞

xk
–∞

i

Xk

X1

Figure 1. Schematic showing trajectories of particles undergoing pair interaction projected on the 1–k plane
(k = 2, 3); cross-flow displacements ΔXij

k and ΔXji
k of particles i and j, respectively; Xi,−∞

k and Xj,−∞
k are

coordinates of the particles in cross-flow plane (X2, X3) prior to interaction (dashed lines) and x−∞k = Xj,−∞
k −

Xi,−∞
k is the initial trajectory offset; particle flux is evaluated at plane of constant Xk (solid line).

widely separated particles,

|vij| = |v(Xj,−∞
2 )− v(Xi,−∞

2 )|, (2.6)

and v(X2) is the prescribed velocity (2.1). Prior to a pair interaction, particles are widely
separated in the X1-direction (i.e. flow direction) with uncorrelated initial positions
(Xi,−∞

2 , Xi,−∞
3 ) and (Xj,−∞

2 , Xj,−∞
3 ) in the cross-flow plane.

Formula (2.4) is obtained using the odd symmetry of particle displacements with respect
to trajectory offset,

ΔXij
k (−x−∞k ) = −ΔXij

k (x−∞k ), (2.7)

for (k = 2, 3). Particle displacements are, moreover, symmetric with respect to
complementary coordinates, i.e.

ΔXij
2(−x−∞3 ) = ΔXij

2(x−∞3 ), ΔXij
3(−x−∞2 ) = ΔXij

3(x−∞2 ). (2.8a,b)

Cross-flow convection due to particle migration away from solid boundaries is omitted
from (2.2) under the assumption that flow occurs in a channel that is wide compared
with particle size. In the absence of wall interactions that can produce cross-swapping
trajectories (Zurita-Gotor et al. 2012; Reddig & Stark 2013), particle displacements obey
the relation

x−∞k ΔXij
k ≤ 0. (2.9)

The equality holds only for x−∞k = 0 and for widely separated particles.

2.2.1. Boundary conditions
Stationary particle distributions are governed by

F i = 0, (2.10)
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under the assumption that the channel walls are impermeable to the particles. In channel
flows, a bulk number density, ni∞, can be imposed for each particle type (i = 1, 2, . . . , m),

qni∞ =
∫

S⊥
v(X2)ni(X2, X3) dX2 dX3, (2.11)

where q is the volume flow through a channel with cross-section S⊥.
Diluteness requires low volume fractions,

φi∞ � 1, (2.12)

where number densities are related to volume fractions, φi = nivi, and vi is particle
volume. Stationary particle distributions depend nonlinearly on the bulk composition
ni∞/n∞ given that the particle flux (2.4) is quadratic in number density. However, the total
bulk density n∞ =

∑m
i=1 ni∞ can be scaled out of (2.10) and (2.11). Stationary particle

density distributions are proportional to the total bulk number density.

2.3. Particle transport

2.3.1. Local transport coefficients
Here, we analyse particle transport in suspensions undergoing flows with velocity (2.1) and
derive diffusive and drift fluxes, i.e. fluxes proportional to the local concentration gradients
of particle species and a flux associated with a drift velocity of particles from high to low
shear rates. Local transport coefficients for these fluxes are obtained. The diffusive fluxes
have been derived previously (Zarraga & Leighton 2001) and a drift velocity has been
extracted from a Boltzmann collision integral (Rivera et al. 2016). A brief derivation is
provided below for completeness and uniformity.

The diffusive and drift fluxes are obtained by evaluating the collision flux (2.4) for
perturbative variations in number densities and relative velocities. The number densities
and shear rates are expanded up to linear variations

ni = ni0 +
3∑

k=2

∂ni

∂Xk
Xk + O(X2

k ), (2.13)

γ̇ = γ̇0 + dγ̇

dX2
X2 + O(X2

2), (2.14)

where γ̇0 and ni0, respectively, are the local shear-rate magnitude and number densities
of the particles at Xk = 0 (k = 2, 3); the quantities dγ̇ /dX2 and ∂ni/∂Xk are the
corresponding local values of the derivatives. Brownian motion is neglected under the
assumption of large Péclet number

γ̇0a2

D � 1, (2.15)

where D is the molecular diffusivity. In general, the relative velocity (2.6) becomes

|vij| = |x−∞2 |
∣∣∣∣γ̇0 + dγ̇

dX2

[
Xi,−∞

2 + 1
2

x−∞2

]∣∣∣∣ . (2.16)

The development presented in this section assumes a non-vanishing shear rate

γ̇0 >

∣∣∣∣ dγ̇

dX2

∣∣∣∣
∣∣∣∣Xi,−∞

2 + 1
2

x−∞2

∣∣∣∣ , (2.17)
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so that the relative velocity (2.16) reduces to

|vij| = |x−∞2 |
(

γ̇0 + dγ̇

dX2

[
Xi,−∞

2 + 1
2

x−∞2

])
. (2.18)

The case of vanishing shear rates is analysed in the next section.
Inserting (2.13) and (2.14) into the flux (2.4) and integrating in Xi,−∞

k yields the net flux
of type-i particles,

Fik = F(c)
ik + δk2F(γ̇ )

i2 , (2.19)

where F(c)
ik are the diffusive fluxes

F(c)
ik = −Ds

ik
dni

dXk
−

m∑
j=1

(
Dijk

dnj

dXk

)
, (2.20)

and F(γ̇ )

i2 is the drift flux

F(γ̇ )

i2 = −ni0Vi
dγ̇

dX2
. (2.21)

The Kronecker delta δpq in (2.19) indicates that there is a drift flux in the X2−direction
only.

The above diffusivities and the drift-velocity coefficient are defined by

Ds
ik = γ̇0

m∑
j=1

nj0IA
ijk, (2.22)

Dijk = γ̇0ni0(IA
ijk + IB

ijk), (2.23)

Vi =
m∑

j=1

nj0

(
IA
ij2 +

1
2

IB
ij2

)
, (2.24)

where IA
ijk, IB

ijk are integrals over the relative cross-flow-plane coordinates (2.5)

IA
ijk =

1
2

∫ ∞
−∞

∫ ∞
−∞
|x−∞2 |(ΔXij

k )2 dx−∞2 dx−∞3 , (2.25)

IB
ijk = −

∫ ∞
−∞

∫ ∞
−∞
|x−∞2 |x−∞k ΔXij

k dx−∞2 dx−∞3 . (2.26)

Both integrals are intrinsically positive given the symmetry (2.8a,b) and sign of particle
displacements (2.9).

The self-diffusivity of type-i particles, Ds
ik, defined by (2.22), can be directly obtained as

a sum of the rate of mean squared displacements from random encounters with all particle
species. Diffusive fluxes occur in both the velocity gradient and vorticity directions and
have contributions from concentration gradients of all species; a non-zero diffusive flux
of a species with uniform concentration can be generated by a gradient of another species.
This formulation of the diffusive fluxes concurs with that presented by Zarraga & Leighton
(2001).

The drift velocities describe the migration of particles from regions of high shear
rates. Gradients of the shear-rate magnitude γ̇ generate an oppositely directed flux. By
symmetry, gradients of the shear-rate magnitude do not contribute to the diffusive flux.

952 A2-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.786


R.B. Reboucas, A.Z. Zinchenko and M. Loewenberg

x
2

–∞

x
3

–∞

r–∞

θ

Figure 2. Cylindrical coordinate system (r−∞, θ) for the cross-flow plane (x−∞3 , x−∞2 ), where
x−∞3 = r−∞ cos θ and x−∞2 = r−∞ sin θ .

The O(r−3) far-field velocity gradients of force-free particles perturb the trajectories
of deformable particles, where r is distance between the particles normalized by particle
size. Integrated along an open trajectory, this perturbation produces pair displacements
ΔXij

k = O(r−∞)−2 for widely offset trajectories, r−∞ � 1, where r−∞ is the radial
relative trajectory coordinate, defined in figure 2. Accordingly, integral (2.26) is divergent.
The self-diffusivity of deformable particles can be computed from pair interactions
because integral (2.25) converges (Loewenberg & Hinch 1997), but the evaluation of the
diffusive and drift fluxes (2.20) and (2.21) requires a numerical cutoff, rij

c = rji
c , a trajectory

offset beyond which interactions between type-i and type-j particles cause cross-flow
displacements, i.e.

ΔXij
k = 0, r−∞ > rij

c . (2.27a,b)

With this cutoff, integrals (2.25) and (2.26) become

IA
ijk =

1
2

∫ 2π

0

∫ rij
c

0
|r−∞ sin θ |(ΔXij

k )2r−∞ dr−∞ dθ, (2.28)

IB
ijk = −

∫ 2π

0

∫ rij
c

0
|r−∞ sin θ |x−∞k ΔXij

k r−∞ dr−∞ dθ, (2.29)

where (r−∞, θ) is the cylindrical coordinate system shown in figure 2 and x−∞k is defined
in the caption.

In general, truncation of the integration domain is an ad hoc procedure, and results
depend on rij

c (Narsimhan et al. 2013). However, boundary condition (2.27a,b) applies
rigorously for spherical particles that undergo contact interactions, as discussed in § 4.
Such particles have circular upstream collision cross-sections rij

c that scale with particle
size (Zinchenko 1984; da Cunha & Hinch 1996).

2.3.2. Particle transport at points of vanishing shear rate
Here, the analysis of particle transport developed in the previous section is extended to
regions where the shear rate vanishes linearly. Accordingly, we consider regions where the
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velocity is locally quadratic,

v = v0 +
γ ′2
2

X2
2, (2.30)

where γ ′2 is the magnitude of the shear-rate gradient and v0 is an arbitrary local velocity
that can be ignored since only velocity differences are significant. The corresponding
magnitude of the shear rate and its gradient are given by

γ̇0 = γ ′2 |X2|, dγ̇

dX2
= sign(X2)γ

′
2. (2.31a,b)

An example is the velocity field at the centre of planar Poiseuille flow in a channel of
half-width H, where v is given by (2.1) with

v = v0

[
1−

(
X2

H

)2
]

. (2.32)

Here, v0 is the velocity at centreline, X2 = 0, and the magnitude of the shear rate is
given by (2.31a,b) with γ ′2 = 2v0H−2. Neglecting Brownian motion in regions where the
shear rate vanishes requires a more stringent condition; in this case, requirement (2.15) is
replaced by

γ ′2a3

D � 1. (2.33)

Inserting (2.31a,b) into (2.16) yields the relative velocity magnitude,

|vij| = γ̇ ′2|x−∞2 ||X2 + Xi,−∞
2 + 1

2 x−∞2 |. (2.34)

For |X2| > Xij
c , the result reduces to the form of (2.18),

|vij| = γ̇ ′2|x−∞2 |(|X2| + sign(X2)[X
i,−∞
2 + 1

2 x−∞2 ]), |X2| > Xij
c , (2.35)

where Xij
c is an upper bound of the excluded region |Xi,−∞

2 + 1
2 x−∞2 |. Here, Xij

c is given by

Xij
c = ΔXij

2,max + 1
2 rij

c , (2.36)

where ΔXij
2,max is the maximum displacement magnitude of a type-i particle by a pair

interaction with a type-j particle and is thus the upper bound for |Xi,−∞
2 |; the radius of the

collision cross-section, rij
c , defined by (2.27a,b), is the upper bound for |x−∞2 |. In general,

ΔXij
2,max, and thus Xij

c , are O(rij
c ). For spherical particles that undergo contact interactions,

Xij
c ≤ rij

c , as discussed in § 4.
For |X2| > Xij

c , the local analysis presented in § 2.3.1 applies with shear-rate magnitude
and gradient given by (2.31a,b). Accordingly, a linearly varying diffusive flux and constant
drift velocity are obtained according to (2.20)–(2.24). However, for |X2| < Xij

c , the relative
velocity, vij, changes sign within the maximum range of particle displacements, ΔXij

2,max,
that contribute to the particle flux. Within this region, (2.34) must be used to describe the
magnitude of the relative velocity. The use of (2.35) is inconsistent and leads to incorrect
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results. For example, inserting the linearly varying diffusive flux balanced by the constant
drift velocity, obtained by the local analysis (2.22)–(2.24) into (2.19) and then (2.10) yields,

X2n
dn

dX2
= −M1n2, (2.37)

where M1 is a positive constant. A singular distribution, n ≈ |X2|−M1 is thus obtained, as
pointed out by Leighton & Acrivos (1987b).

The region |X2| < Xij
c defines a boundary layer within which the transport coefficients

exhibit a more complex dependence on position X2. By retaining the relative velocity
magnitude (2.34) in this region, we obtain the essential dependence of the transport
coefficients required to avoid the spurious singularity at X2 = 0 without the need for any
of the ad hoc manoeuvres used in prior studies, as discussed in the introduction.

Particle transport in the vorticity direction (k = 3) does not have a singular behaviour
because there is no drift velocity, so the local analysis presented in § 2.3.1 is uniformly
valid.

According to the derivation provided in Appendix A, the particle flux in the
velocity-gradient direction is given by

Fi2(X2) = F(c)
i2 (X2)+ F(γ̇ )

i2 (X2), (2.38)

where the diffusive and drift fluxes are

F(c)
i2 (X2) = −Ds

i2(X2)
dni

dX2
−

m∑
j=1

(
Dij2(X2)

dnj

dX2

)
, (2.39)

F(γ̇ )

i2 (X2) = −γ ′2ni0Vi(X2), (2.40)

the diffusivities and drift-velocity coefficient are

Ds
i2(X2) = γ ′2|X2|

m∑
j=1

nj0I(1)
ij (X2), (2.41)

Dij2(X2) = γ ′2|X2| ni0I(2)
ij (X2), (2.42)

Vi(X2) =
m∑

j=1

nj0I(3)
ij (X2). (2.43)

Following the analysis presented in Appendix A, integrals I(1)
ij , I(2)

ij , I(3)
ij are given by

I(1)
ij (X2) = 1

|X2|
∫ π

0

∫ rij
c

0
r−∞ sin θ

[
1
2
|X2|(ΔXij

2)2B2(X′2)+
1
3
(−ΔXij

2)3(1− B3(X′2))

+1
4

r−∞ sin θ(ΔXij
2)2(1− B2(X′2))

]
r−∞ dr−∞ dθ, (2.44)
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1

–1 1 2

B(t)

Figure 3. Ramp function defined by (2.48).

I(2)
ij (X2) = 1

|X2|
∫ π

0

∫ rij
c

0
r−∞ sin θ

[
r−∞ sin θ |X2|(−ΔXij

2)B(X′2)+
1
2
|X2|(ΔXij

2)2B2(X′2)

+1
3
(−ΔXij

2)3(1− B3(X′2))+
3
4

r−∞ sin θ(ΔXij
2)2(1− B2(X′2))

+1
2
(r−∞ sin θ)2(−ΔXij

2)(1− B(X′2))
]

r−∞ dr−∞ dθ, (2.45)

and

I(3)
ij (X2) = sign(X2)

∫ π

0

∫ rij
c

0
r−∞ sin θ

[
1
2
(ΔXij

2)2B2(X′2)+
1
2

r−∞ sin θ(−ΔXij
2)B(X′2)

+ |X2|(−ΔXij
2)(1− B(X′2))

]
r−∞ dr−∞ dθ, (2.46)

where (r−∞, θ) are the cylindrical coordinates defined in figure 2, and

X′2 =
|X2| − 1

2 r−∞ sin θ

−ΔXij
2

. (2.47)

Here, B(t) is the ramp function sketched in figure 3 and defined by

B(t) = tΘ(t)− (t − 1)Θ(t − 1), (2.48)

where Θ(t) is the Heaviside function. Note that

−ΔXij
2 > 0 for 0 < r−∞ < rij

c , 0 < θ < π, (2.49)

by (2.9) and the remark below it. It follows that integrals (2.44)–(2.46), and thus the
transport coefficients (2.41)–(2.43), are positive provided X2 /= 0.

2.3.3. Discussion
Here, we point out the salient features of the diffusive and drift fluxes in the boundary-layer
region.

For |X2| ≥ Xij
c , we have X′2 ≥ 1, according to (2.36) and (2.47), and thus

B(X′2) = 1. (2.50)

Inserting this result into integrals (2.44)–(2.46) reduces them to their local forms

I(1)
ij → IA

ij2, I(2)
ij → IA

ij2 + IB
ij2, I(3)

ij → sign(X2)(IA
ij2 + 1

2 IB
ij2), |X2| ≥ Xij

c . (2.51a–c)

Accordingly, the transport coefficients (2.41)–(2.43) reduce to their corresponding local
forms, (2.22)–(2.24), with the shear-rate magnitude and its gradient given by (2.31a,b).
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First-derivative discontinuities introduced by the ramp function (2.48) are manifest
by second-derivative discontinuities of integrals I(k)

ij (X2) (k = 1, 2, 3) and the transport

coefficients (2.41)–(2.43) at |X2| = Xij
c . The source of these discontinuities is the discrete

interaction range (2.27a,b) for contact interactions between spherical particles.
According to (2.44)–(2.46), integrals I(1)(X2) and I(2)(X2) are even functions of X2 and

I(3)(X2) is an odd function. (This is plainly seen in the antecedent (A2)–(A4).) Thus,
diffusivities (2.41)–(2.42) are even functions and drift velocities (2.43) are odd functions
of X2. Near the centreline, integrals (2.44)–(2.46) reduce to

lim
X2→0
|X2|I(1)

ij (X2) =
∫ π

0

∫ rij
c

0
r−∞ sin θ

[
1
3
(−ΔXij

2)3

+1
4

r−∞ sin θ (ΔXij
2)2
]

r−∞ dr−∞ dθ, (2.52)

lim
X2→0
|X2|I(2)

ij (X2) =
∫ π

0

∫ rij
c

0
r−∞ sin θ

[
1
3
(−ΔXij

2)3

+3
4

r−∞ sin θ(ΔXij
2)2 + 1

2
(r−∞ sin θ)2(−ΔXij

2)

]
r−∞ dr−∞ dθ,

(2.53)

and

lim
X2→0

I(3)
ij (X2) = X2

∫ π

0

∫ rij
c

0
r−∞ sin θ(−ΔXij

2)r−∞ dr−∞ dθ. (2.54)

Inserting these results with (2.49) into (2.41)–(2.43) shows that diffusivities are finite and
positive and drift velocities are linear with positive slope for X2 → 0. Inserting these
results into (2.38) and (2.10) indicates that particle transport near the centreline is governed
by

n
dn

dy = −M2yn2, |y| → 0, (2.55)

where M2 is a positive constant, and y = X2/Xij
c is a dimensionless length variable.

By contrast to (2.37), this equation predicts the smooth, non-singular behaviour, n ≈
n0(1− 1

2 M2 y2), where n0 is the number density at y = 0. Hence, the source of the classical
singular particle distribution, described above, is eliminated. Note that Xij

c introduces
a particle-related length scale on the distribution near the centreline, whereas (2.37)
describes a distribution without a length scale.

Rivera et al. (2016) accommodated the non-vanishing diffusivities at the centreline but
ignored variations in the drift velocity. This led to the prediction of a linear cusp at the
centreline, as seen by inserting (41) from their paper into (2.10) to obtain

n
dn
dỹ
= −M3 sign(ỹ)n2, |y| → 0, (2.56)

which yields n ≈ n0(1−M3|ỹ|), consistent with the result shown in figure 10 of their
paper. Here, M3 is a positive constant, and ỹ = X2/H.

The diffusive flux model (Phillips et al. 1992) also predicts a linear cusp at the
centreline, except with n0 = nm, corresponding the maximum packing fraction, as shown
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A pairwise theory for flow-induced particle transport

in Appendix B. Although the diffusive flux model uses local coefficients for diffusivity
and drift velocity in the particle transport equation (B1), the singular behaviour (2.37)
is avoided through the use of a suspension viscosity model that diverges at a prescribed
maximum packing fraction.

3. Stationary particle distributions: general results

The results presented in this section are independent of the character of pairwise particle
interactions. Specific results for particles that undergo short-range contact interactions are
presented in § 5.

3.1. Non-vanishing shear rates
Here, we present an exact stationary solution for the particle distribution in a polydisperse
suspension in a flow with a power-law shear-rate magnitude,

γ̇ = C1Xβ

2 , (3.1)

where β and C1 are arbitrary non-zero constants and X2 > 0 is assumed. Accordingly, the
shear rate is non-vanishing (and non-singular).

Inserting (2.19)–(2.24) into (2.10) yields
m∑

j=1

(γ̇ [IA
ij2 njn′i + (IA

ij2 + IB
ij2)nin′j]+ γ̇ ′[ninj(IA

ij2 + 1
2 IB

ij2)]) = 0, (3.2)

for i = 1, 2, . . . , m, where primes are used to denote X2-derivatives.
A power-law particle distribution

ni(X2) = ciX
−β/2
2 (3.3)

is seen to satisfy (3.2) with arbitrary coefficients ci. This is a general result that holds
independent of the details of pairwise particle interactions in a given system. There are
two features that should be noted here: (i) the effect of particle interactions exactly cancel,
i.e. the spatial distribution of each particle species is unaffected by the presence of the
others, and (ii) particle size does not affect the particle distribution. These features break
down in regions where the shear rate vanishes, as seen below.

3.2. Planar Poiseuille flow
Here, we consider the steady-state particle distribution in quadratic flows (2.30), including
regions X2 → 0, where the shear rate vanishes.

3.2.1. Polydisperse suspension
Inserting (2.38)–(2.43) into (2.10) yields the equation governing the stationary particle
distribution

m∑
j=1

(|X2|[I(1)
ij (X2)njn′i + I(2)

ij (X2)nin′j]+ I(3)
ij (X2)ninj) = 0, |X2| < Xc, (3.4)

for i = 1, 2, . . . , m. In a polydisperse system, each binary interaction has a distinct
boundary-layer half-thickness, Xij

c , determined by (2.36), and Xc is the maximum of these,
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i.e.
Xc = sup{Xij

c }. (3.5)

For |X2| > Xc, (3.4) reduces to (3.2), according to (2.51a–c), thus particle distributions
are decoupled and obey distribution (3.3) with β = 1, i.e.

ni(X2) = nicX1/2
c |X2|−1/2, |X2| > Xc, (3.6)

where nic is the number density of species i at X2 = Xc.
The spatial distributions of particle species are coupled for |X2| < Xc. By contrast to

the scale-free power-law distribution (3.3) that governs particle distributions in regions
of non-vanishing shear rate, the coupling that occurs in regions of vanishing shear rate
imposes a particle-related length scale Xc. A dimensionless coordinate is thus introduced
using the length scale Xc

y = X2/Xc. (3.7)

It will also be useful to define the dimensionless number densities

n̄i = ni/nc, N̄i = ni/nic, (3.8a,b)

where nic is the number density of particle species i at X2 = Xc and nc =
∑m

i=1 nic.
In terms of these variables, (3.4) becomes

m∑
j=1

(D(1)
ij ( y)n̄jn̄′i + D(2)

ij ( y)n̄in̄′j + Vij( y) n̄in̄j) = 0, |y| < 1, (3.9)

where primes denote y-derivatives and dimensionless transport coefficients are defined

D(k)
ij ( y) = |y|I(k)

ij ( y), k = 1, 2; Vij( y) = I(3)
ij ( y). (3.10a,b)

Boundary conditions for (3.9) are given by

n̄i(1) = xic, (3.11)

where xic = nic/nc is the number density fraction at y = 1. Outside of the coupled
boundary-layer region, |y| > 1, the dimensionless particle densities are given by

N̄i( y) = |y|−1/2, (3.12)

according to (3.6).
The number densities nic at y = 1 are related to the prescribed bulk number densities

ni∞, through the conservation constraint (2.11), which in this case becomes

qni∞ =
∫ H

0
v(x)ni(x) dx, (3.13)

for i = 1, . . . , m, where v(x) is the velocity (2.32), q = 2
3v0H is the corresponding volume

flux per unit depth and H is the half-width of the channel. Using dimensionless variables
and (3.12) yields

n̄i∞ = 12
5 ε1/2xic(1− 5

8ε1/2ΔN̄i)+ O(ε5/2), (3.14)

where n̄i∞ = ni∞/nc and
ε = Xc/H, (3.15)

is the ratio of the two length scales that affect the particle distributions. Under the
assumption that the channel width is large compared with the particle size, ε � 1. The
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quantity ΔN̄i is the (average) deficit of type-i particle density in the centre region compared
with the singular distribution (3.12)

ΔN̄i =
∫ 1

0
[y−1/2 − N̄i( y)] dy, (3.16)

where N̄i is defined above. This particle deficit results from the modified transport
coefficients in the region |y| < 1. The O(ε5/2) error in (3.14) results from neglecting
particle–wall interactions. Dividing (3.14) by its sum over all species provides a relation
between the composition at X2 = Xc and the bulk composition

xi∞ = xic

⎛
⎜⎜⎜⎜⎜⎝

1− 5
8
ε1/2ΔN̄i

1− 5
8
ε1/2

m∑
j=1

xjcΔN̄j

⎞
⎟⎟⎟⎟⎟⎠+ O(ε2), (3.17)

for i = 1, . . . , m− 1, where xi∞ = ni∞/n∞ is the prescribed bulk number fraction of
species i. This result in combination with (3.11) provides the boundary conditions for (3.4).
In wide channels, ε � 1, the composition in the centre region is insensitive to channel
width; at leading order, (3.17) yields xic ≈ xi∞ and boundary conditions for (3.4) simplify
to

n̄i(1) = xi∞. (3.18)

Dividing n̄i( y) by (3.14) yields the particle distributions normalized by their bulk
number densities,

ni( y)
ni∞

= fi(ε)N̄i( y), (3.19)

where

fi(ε) =
5
12ε−1/2

1− 5
8ε1/2ΔN̄i

. (3.20)

Outside the centre region, this distribution reduces to

ni(ỹ)
ni∞
= 5

12
ỹ−1/2

(
1− 5

8
ε1/2ΔN̄i

)−1

+ O(ε2), |y| > 1, (3.21)

according to (3.12), where ỹ = X2/H. The result indicates that the channel width sets the
length scale of the distribution for |y| > 1.

3.2.2. Monodisperse particle distribution
For a single particle species, (3.9)–(3.11) reduce to the linear boundary value problem

D( y)N̄′ + V( y)N̄ = 0, N̄(1) = 1, (3.22)

where N̄ is defined by (3.8b) and the index i is dropped to distinguish the monodisperse
case. The transport coefficients are given by

D( y) = D(1)
11 ( y)+ D(2)

11 ( y), V( y) = V11( y). (3.23a,b)
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The solution of boundary value problem (3.22) is

N̄( y) = exp

(∫ 1

|y|
V(t)
D(t)

dt

)
. (3.24)

For |y| > 1, the transport coefficients (3.23a,b) reduce to their local forms

D( y) = |y|(2IA
112 + IB

112), V( y) = sign( y)(IA
112 + 1

2 IB
112), (3.25a,b)

and thus V( y)/D( y) = 1/2y, according to (2.51a–c), so that the outer solution (3.12) is
recovered. Given that D( y) is non-vanishing and V( y) vanishes linearly for |y| → 0, as
discussed in § 2.3.3, it follows that N̄ has a maximum with dN̄/dy = 0 at y = 0, consistent
with the scaling predicted by (2.55). From the continuity of D( y) and V( y) up to their
second derivatives at |y| = 1, it follows that N̄( y) is continuous up to its third derivative.

From (3.19), we have
n( y)
n∞
= f (ε)N̄( y), (3.26)

where N̄( y) is given by (3.24), ΔN̄ given by

ΔN̄ =
∫ 1

0

[
y−1/2 − exp

(∫ 1

|y|
V(t)
D(t)

dt

)]
dy, (3.27)

and

f (ε) =
5
12ε−1/2

1− 5
8ε1/2ΔN̄

. (3.28)

3.2.3. Superposition approximation
The particle distribution in a polydisperse mixture with weak interactions between
particles of different sizes can be approximated by a superposition of monodisperse
distributions for each particle size (or size class).

Displacements resulting from collisions between particles of different sizes are usually
smaller than displacements resulting from collisions between equal-size particles. This
is true for particles that undergo contact interactions, as discussed in § 4.2, because
collision rates diminish rapidly with size ratio (Adler 1981; Wang, Zinchenko & Davis
1994; Reboucas & Loewenberg 2021b). Thus, the superposition approximation may be
expected to hold for particles with vastly different sizes. It may be also expected to
hold for similar-size particles because the effect is similar to increasing the total number
density and the latter scales out of the equations, as explained in § 2.2.1. The superposition
approximation is further supported by the fact that particle distributions are coupled only
in the boundary layer; outside the boundary-layer particle distributions are decoupled, as
shown in § 3.1.

According to the superposition approximation, distribution (3.19) reduces to
ni( yi)

ni∞
� f (εi)N̄( yi), (3.29)

for i = 1, . . . , m. Here,
yi = X2/Xii

c and εi = Xii
c /H, (3.30a,b)

where N̄( yi), ΔN̄ and f (x) are given by (3.24) and (3.27) and (3.28); Xii
c is the

boundary-layer thickness for a suspension of type-i particles. The result reduces to the
monodisperse distribution (3.26) by dropping the index i.
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Comparing (3.19) and (3.29) indicates that the superposition approximation is
equivalent to ε−1/2N̄i( yi) � ε

−1/2
i N̄( yi) and ε1/2ΔN̄i � ε

1/2
i ΔN̄ and, thus,

N̄i( yi) � χ
−1/2
i N̄( yi), ΔN̄i � χ

1/2
i ΔN̄, (3.31a,b)

where χi is the ratio

χi = Xii
c /Xc, (3.32)

and χi ≤ 1, according to (3.5).
Under the assumption that Xii

c scales with particle size, the above results predict that
particle segregation occurs in the boundary layer region with relative enrichment of
smaller particles. The dependence of the centreline particle density on particle size is
described by the function f (εi). According to (3.28), particle densities at the centreline
scale approximately with the inverse square root of particle size, assuming that particles
are small compared with channel width, εi � 1. Distributions of smaller particles adhere
more closely to the singular outer distribution (3.12) as reflected by their smaller average
density deficit (3.16), according to (3.31b).

The error of the superposition approximation, resulting from interactions between
particles of different sizes in the boundary layer, is characterized by the polydisperse
enrichment

ΔN̄ij =
∫ 1

0
[N̄i( y)− χ

−1/2
i N̄( y/χi)] dy, (3.33)

where N̄i( y) is the exact distribution for type-i particles in a polydisperse suspension and
χ
−1/2
i N̄( yi) is superposition approximation (3.31a). According to (3.16) and (3.31b), we

have the relation ΔN̄i = χ1/2ΔN̄ −ΔN̄ij.

4. Particle displacements

4.1. Contact interactions
Spherical particles that undergo short-range symmetry-breaking ‘contact’ interactions in
shear flow are considered here, specifically, particles with surface roughness, permeable
particles and emulsion drops. Pair trajectories of such particles are analytically integrated
to yield formulas for binary cross-stream particle displacements ΔX12

k , ΔX21
k (k = 2, 3)

involving integrals of the standard pair mobility functions for spherical particles. Note
that superscripts 1 and 2 are used in this section to refer to particle labels, not particle
species, by contrast to the superscripts i and j introduced earlier. Accordingly, ΔX12

k refers
to the net displacement of particle-1 resulting from its collision with particle-2 and vice
versa for ΔX21

k , whereas ΔXij
k is the net displacement of any type-i particle resulting

from its collision with any type-j particle. Similarly, we will use rc to denote the collision
cross-section for particles 1 and 2, by contrast with the quantity rij

c , defined by (2.27a,b),
that refers to the collision cross-section for any type-i and j particles. The particles have
radii a1 and a2, and size ratio κ = a2/a1. We assign label 1 to the larger particle thus, only
κ ≤ 1 needs consideration.

Recall that the particles are assumed to be non-Brownian and neutrally buoyant. Here,
creeping flow conditions are assumed, and particle inertia is neglected
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4.1.1. Rough particles
According to the usual model for rough particles, surface asperities with size d transmit a
normal inter-particle contact force between rigid particles that prevents surface-to-surface
particle separations less than d but do not exert a tensile force upon separation. Here,
δ̄ = d/ā is the dimensionless roughness amplitude, ā = (a1 + a2)/2 is the average particle
radius and δ̄ � 1 is assumed. Models for rough particles may also include a coefficient of
friction to describe tangential forces transmitted by surface asperities at contact, h0 = d;
the limiting cases of frictionless or tangentially locking particle contacts are most often
used (Smart et al. 1993; da Cunha & Hinch 1996; Rampall et al. 1997; Wilson 2005).

4.1.2. Permeable particles
Particle permeability is another short-range, symmetry-breaking mechanism. The
dimensionless permeability is defined K̄ = k/ā2, where k is the permeability and Darcy’s
law is used to describe the intraparticle flow. Weak permeability alleviates the lubrication
pressure between particles, allowing particle contact, h0 = 0, but otherwise has little effect
on the pair interaction. Under the assumption that the particles are rigid and not cohesive,
the effect of weak permeability closely resembles small-amplitude particle roughness. The
following hydrodynamic equivalence between particle roughness and particle permeability
was proposed based on the contact time between particles under the action of a constant
force (Reboucas & Loewenberg 2021a):

δ̄←→ 0.7224ν1/5K̄2/5, (4.1)

where δ̄ and K̄ are the dimensionless particle roughness and permeability, and ν =
2κ/(1+ κ)2. This relation is based on the assumption that no-slip boundary conditions
apply on the particle surfaces. This correlation has been shown to hold accurately for
colliding pair trajectories in several types of flow (including shear) for a wide range of size
ratios and permeabilities (Reboucas & Loewenberg 2021b).

4.1.3. Non-coalescing spherical drops
The small, flattened thin film that forms in the near-contact region between approximately
spherical emulsion drops in apparent contact, h0 ≈ 0, under small-deformation conditions
is a third short-range mechanism that breaks the symmetry of pair trajectories. Drop
deformation is principally controlled by the capillary number, Ca = μγ̇ a/σ , where μ is
the viscosity of the continuous-phase fluid, γ̇ is the magnitude of the local shear rate, a is
the drop radius and σ is surface tension; small-deformation conditions are characterized
by Ca� 1.

In the absence of van der Waals attraction, slow drainage from the film (Nemer et al.
2004; Zinchenko & Davis 2005; Nemer et al. 2007; Santoro & Loewenberg 2009; Nemer
et al. 2013) prevents drop coalescence in the compressional quadrant of the flow that would
otherwise result between spherical drops (i.e. infinite surface tension) with tangentially
mobile interfaces (Zinchenko 1978; Wang et al. 1994). The film quickly reverts as the
drops rotate into the extensional quadrant of the flow and has little effect on their separation
(Zinchenko 1984; Loewenberg & Hinch 1997).

The foregoing discussion indicates that Ca→ 0 is a singular limit: spherical drops,
characterized by Ca = 0, undergo coalescence in shear flow for trajectories with
sufficiently small offsets, but coalescence does not occur for Ca > 0. Non-coalescing
spherical drops is a rigorous description for the pair interactions of drops in the
small-deformation limit, Ca→ 0, and absence of van der Waals attraction. Hydrodynamic
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interactions are described by the mobility functions for spherical drops (Zinchenko 1978),
augmented by an inter-particle force at contact, h0 = 0, that acts along the line of
centres and only in compression, preventing overlap in the compressional quadrant of
the flow, but otherwise having no effect. According to this description, hydrodynamic
interactions depend on size ratio and the drop- to continuous-phase viscosity ratio, λ, but
are independent of the capillary number.

Non-coalescing spherical drops is a model for pair interactions of drops and
other deformable particles under small-deformation conditions. Its predictions for drop
displacements in shear flow are supported by the boundary integral simulations of
Loewenberg & Hinch (1997) for drops under finite-capillary-number conditions, where
drop displacements were shown to be a weak function of Ca and the predictions
of non-coalescing spherical drops were shown to be in approximate agreement with
exact simulations even for moderate capillary numbers (Loewenberg & Hinch 1997).
Boundary integral simulations of capsules and red blood cells also show an insensitivity to
deformation for moderate capillary numbers (Pranay et al. 2010; Kumar & Graham 2011;
Omori et al. 2013; Qi & Shaqfeh 2017), suggesting that a similar simplified model may
provide a good approximation.

4.2. Trajectories of particles with contact interactions
Relative particle trajectories emanate from x1 →−∞ for x−∞2 > 0 and from x1 →+∞
for x−∞2 < 0. Apart from the contact interactions, trajectories are accurately described
using standard pair mobility functions for spherical particles (or drops) in shear flow
(Batchelor & Green 1972a; Zinchenko 1978, 1980, 1983). Accordingly, particles with
short-range binary contact interactions have circular upstream collision cross-sections,
defined by (2.27a,b), where rc depends on size ratio, and on the roughness, permeability,
or drop- to continuous-phase viscosity ratio, respectively, for rough or permeable particles
or drops. Collision cross-sections, or equivalently collision efficiencies E12 = (rc/(2ā))3,
are available in the literature for rough and permeable particles and drops (Wang et al.
1994; Reboucas & Loewenberg 2021b). Trajectories with offsets r−∞ > rc are reversible,
i.e. ΔX12

k = ΔX21
k = 0.

Pair trajectories with upstream trajectory offsets, r−∞ < rc, reach the contact surface,
defined by s = s∗, where s = r/ā is the centre-to-centre separation, r, normalized by
the average particle radius. For permeable particles and drops, s∗ = 2; for particles
with surface roughness, s = 2+ δ̄. On the contact surface, the particles undergo relative
rotation through the compressional quadrant of the flow and separate at the equator
(x1 = 0), under the assumption that cohesive forces are absent. The motion on the contact
surface is described by a subset of the trajectory equations corresponding to zero relative
radial velocity. Examples of contacting trajectories are shown in figures 4 and 5.

Below a critical roughness, the collision cross-section for rough particles vanishes;
similarly, there exists a critical permeability below which rc = 0. The values of these
critical parameters increase with diminishing size ratio (Arp & Mason 1977; Reboucas &
Loewenberg 2021b). Likewise, drops have a critical viscosity ratio beyond which rc = 0,
and the critical viscosity ratio decreases with diminishing size ratio (Wang et al. 1994).
Equivalently, there exists a finite critical size ratio ratio, κ∗, below which rc = 0 for fixed
values of particle roughness or permeability, or drop viscosity ratio.

4.2.1. Maximum particle displacements
Maximum particle displacements are important because they determine the thickness of
the boundary layer that forms in regions of vanishing shear rate. Maximum displacement
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Figure 4. Relative (a) and pair (b) particle trajectories in velocity-gradient plane, size ratio κ = a2/a1 = 1/2,
roughness δ̄ = d/ā = 10−3; initial positions (i), contact surface (ii)–(iii) (dotted lines), final positions (iv).
Relative x = X (2) − X (1) and pair x̄ = X (1) + X (2) coordinates of particles non-dimensionalized by the
average radius ā = 1

2 (a1 + a2); initial conditions x = (−∞, 0.1, 0) and x̄ = (−∞, 0.1, 0).
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Figure 5. Offset relative trajectory shown in cross-flow plane (a) and enlargement (b), size ratio κ =
a2/a1 = 1/2; particles with roughness δ̄ = d/ā = 5× 10−3, frictionless contact (solid lines), infinite contact
friction coefficient (dash-dotted lines); permeable particles K̄ = 6× 10−6 from (4.1) (dotted lines); drops
with viscosity ratio λ = 1 (dashed lines); initial offset (i), contact surface (ii)–(iii), final offset (iv); collision
surface s∗ (large circle), collision cross-sections rc particles (small circle), drops (dashed circle). Relative
x = X (2) − X (1) coordinates of particles non-dimensionalized by the average radius ā = 1

2 (a1 + a2); initial
conditions x = (−∞, 0.25, 0.25).

magnitudes in the X2-direction are achieved for r−∞ → 0 with θ = ±π/2 (i.e. x−∞3 =
0). For contact interactions between pairs of inertialess particles in creeping flows, the
maximum displacement magnitudes satisfy

ΔX12
2,max +ΔX21

2,max = rc, (4.2)

and for equal-size particles,

ΔX12
2,max = ΔX21

2,max = 1
2 rc, κ = 1, (4.3a,b)

by symmetry.
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Bounds for the magnitudes of individual displacements of unequal size particles are
given by

0 < ΔX12
2,max ≤ 1

2 rc,
1
2 rc ≤ ΔX21

2,max < rc, 0 < κ ≤ 1, (4.4a–c)

and for extreme size ratios,

ΔX12
2,max → 0, ΔX21

2,max → rc, κ → 0. (4.5a–c)

4.3. Results
In Appendix C, particle trajectories, and net displacements, ΔX12

k and ΔX21
k , are expressed

in terms of formulas involving quadratures of pair mobility functions for spherical
particles. Results for particle displacements are used to determine particle distributions
in § 5. Examples of particle trajectories, and particle displacements are shown here and
discussed.

4.3.1. Effects of friction and permeability
Contact friction can affect the relative motion of rough particles in contact. As explained
in § C.4, it enhances particle displacements in the X2-direction and suppresses them
in the X3-direction. This behaviour is supported by computations of self- and gradient
diffusivities (2.22) and (2.23) of equal-size particles by da Cunha & Hinch (1996) for
the limiting cases of frictionless and tangentially locking particle contacts, i.e. the latter
produced larger diffusivities in the X2-direction and smaller in the X3-direction. Similar
results were obtained for the two limiting cases, however.

An example of relative trajectories for the limiting cases of frictionless and tangentially
locking particle contacts are contrasted in figure 5 (solid and dash-dotted lines) for size
ratio κ = 1/2. Very similar trajectories are obtained for the two cases but the enlargement
shown in panel (b) of the figure concurs that friction enhances particle displacement in
the X2-direction and suppresses it in the X3-direction. The insensitivity to contact friction
seen here and in the results of da Cunha & Hinch (1996) indicate that lubrication resistance
dominates the effect of friction. Contact friction was neglected for all other rough particle
calculations presented herein.

The trajectory for permeable particles depicted by the dotted line in figure 5(b) lies
between the two trajectories for rough particles, corresponding to the limiting cases
of contact friction. This example illustrates a general result explained in § C.4.1. The
displacements of permeable particles lie between the results for rough particles with
frictionless and tangentially locking particle contacts and roughness prescribed by (4.1).
These limits provide tight bounds on displacements of permeable particles inasmuch as
rough particle displacements are insensitive to contact friction.

This finding and the reliability of correlation (4.1) on colliding trajectories that terminate
on the contact surface discussed in § 4.1.2 supports its use for contacting trajectories in
their entirety. It follows that pair displacements and thus transport of permeable particles
can be reliably predicted from results for rough particles with either frictionless or
tangentially locking particle contacts using (4.1).

4.3.2. Particle displacements
Examples of net particle displacements for unequal size rough particles and drops in the
velocity-gradient and vorticity directions are shown by the contour maps in figures 6 and
7. Figures 8 and 9 show the collision cross-section (and maximum displacement) for
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Figure 6. Displacement magnitudes of (a) larger and (b) smaller particles in velocity-gradient direction, and
(c) larger and (d) smaller particles in vorticity direction; size ratio κ = a2/a1 = 1/2, roughness δ̄ = d/ā =
10−3. Displacements and cross-flow coordinates non-dimensionalized by the average radius, ā = 1

2 (a1 + a2);
radius of collision cross-section, rc, indicated by outermost quarter circle. By the symmetry relations (2.7) and
(2.8a,b), only a quarter of the cross-flow plane is shown.

equal-size particles as functions of particle roughness and drop viscosity. Figures 10 and
11 show maximum particle displacements as a function of size ratio, illustrating relations
(4.2)–(4.5a–c).

The results in figures 5–11 illustrate that (i) particle displacements in the
velocity-gradient direction are considerably larger than in the vorticity direction, especially
for rough particles, and (ii) pair collisions displace the smaller particle much more than
the larger, even for modest size ratios (beyond the critical value).

4.4. Boundary-layer thickness
Given that maximum displacements (4.2) occur for r−∞ → 0 and given ΔX12

2 = ΔX21
2 =

0 for r−∞ = rc, suggests that (2.36) can be replaced by the tighter bound

Xij
c = max(ΔXij

2,max,
1
2 rij

c ), (4.6)
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Figure 7. Same as figure 6, except for drops with viscosity ratio λ = 1.
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Figure 8. Collision cross-section for equal-size particles with roughness δ = d/a normalized by particle
radius.

for particles of types i and j that undergo contact interactions. Our calculations support
this relation but our results do not rely on it. The relation is used here to discuss the width
of the boundary layer, Xc, that forms where the shear rate vanishes.
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Figure 9. Same as figure 8, except for drops with viscosity ratio λ.
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Figure 10. Maximum particle displacement magnitudes (solid lines) for rough particles, δ1 = d/a1 = 10−3,
vs size ratio, κ = a2/a1, (a) in the velocity-gradient direction, and (b) in the vorticity direction; average
of maximum displacement magnitudes (dashed lines); particle displacements and collision cross-section
non-dimensionalized by radius of larger particle a1.

In a monodisperse suspension, maximum particle displacements are set by the collision
cross-section, according to (4.3a,b), and rc = rii

c , thus the boundary-layer thickness (4.6)
reduces to

Xii
c = 1

2 rii
c . (4.7)

The formula for the collision cross-section is provided in Appendix C. Below the critical
values of particle roughness or permeability or above a critical value of the drop viscosity
ratio, rc = 0, as seen in figures 8 and 9; particle structuring is not predicted in this case.

In a bidisperse suspension we have,

Xc = max(Δ21
2,max,

1
2 rc,max), (4.8)

given that ΔX21
2 ≥ ΔX12

2 , according to (4.4a–c). Here, rc,max is the maximum collision
cross-section among the permutations of pairs of type-i and j particles, i.e. rc,max =
max(rii

c , rjj
c , rij

c ). In binary mixtures of particles that differ only in size, the collision
cross-section between the larger particles usually controls rc,max. Consider the case where
larger particles are type-i and smaller, type j, particles differs only in size and κ < 1. In
this case, we have rii

c > rij
c because collision cross-sections increase monotonically with
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Figure 11. Same as figure 10, except for drops with viscosity ratio λ = 1.

size ratio, and usually rii
c > rjj

c , because collision cross-sections scale with particle size.
Accordingly, we have rc,max = rii

c . For drops, rii
c = κ−1rjj

c but this relation is inexact for
rough and permeable particles because collision cross-sections increase monotonically
with the size-dependent parameters, d/a and k/a2. Away from critical values of these
parameters, however, the dependence is sub-linear, as seen in figure 8, thus rii

c > rjj
c holds

and the relation rc,max = rii
c is retained.

The results shown in figures 10 and 11 illustrate relation (4.8), indicating that the
boundary-layer thickness is controlled by heterogeneous pair interactions (i.e. Δ21

2,max >

rc,max) for moderate size ratios, and by the collision cross-section of the larger particles
closer to the critical size ratio, κ∗. For κ < κ∗, displacements due to interactions between
particles of different sizes vanish identically; in this case, the superposition approximation,
described in § 3.2.3, holds exactly.

For particles with contact interactions, pair displacements and the resulting
boundary-layer thickness scale with the size of the suspended particles. The particle
distributions described in § 3.2 thus depend on particle size.

5. Particle distributions in Poiseuille flow: particles with contact interactions

Stationary particle distributions are presented here for suspensions in planar Poiseuille
flow (2.32) with particles that undergo contact interactions using the analysis developed
in § 4. The results here are specific examples of the results presented in § 3 for the case
of rough particles and emulsion drops; permeable particles are also included through
the established relation (4.1). The predictions for rough particles are compared with
experimental measurements. No adjustable parameters are used for this comparison, aside
from particle roughness; a nominal 1 % roughness is used in all cases.

Transport coefficients (3.10a,b) were obtained by numerical evaluation of integrals
(2.44)–(2.46) with particle displacements, ΔXij

2 , obtained from quadratures of mobility
functions, as described in § C.3. Stationary particle distributions in monodisperse
suspensions were then obtained by evaluating formula (3.24). Stationary particle
distributions in bidisperse mixtures were obtained by numerical integration of (3.9)
using boundary conditions (3.18) appropriate for wide channels; approximate distributions
were obtained by the superposition approximation (3.29). Results for monodisperse and
bidisperse suspensions are presented in §§ 5.1 and 5.2, respectively. The limitation to dilute
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suspensions is discussed in § 5.3 and a practical upper bound on the volume fraction is
proposed.

In addition to diluteness, experiments for comparison require small particle Reynolds
numbers and large Péclet numbers,

Re = ρv0a2

μH
� 1, Pe = v0a3

DH2 � 1, (5.1a,b)

where ρ and μ are the density and viscosity of the suspending phase fluid, D is the
Stokes–Einstein diffusivity, v0 is the magnitude of the centreline velocity and H is the
half-width of the channel. The Reynolds number is based on the characteristic shear
rate, v0/H, and the Péclet number is defined by criterion (2.33). For all experimental
comparisons in this paper, Re < 10−3 and Pe > 107. In bidisperse suspensions, these
bounds apply with Reynolds number based on the larger particle and Péclet number based
on the smaller. The assumptions of non-Brownian particles and creeping flow conditions
are thus easily justified.

Another important consideration is the entry length Lss required for particles to achieve
a stationary distribution. An estimate for this quantity is given by Lss ∼ v0tss, where
tss is the corresponding time scale for cross-flow particle transport. The latter scales as
tss ∼ H2/D, where D = O(γ̇ n∞X5

c ) is an estimate for the magnitude of the hydrodynamic
diffusion coefficient of the particle. Then taking γ̇ ∼ v0/H and Xc = O(a), yields the
desired estimate for the entry length based on the dilute theory

(
L
H

)
ss
= 1

12φ∞

(
H
a

)2

, (5.2)

where the factor of 12 is included for consistency with Nott & Brady (1994). Accordingly,
this estimate is the same as theirs except for the explicit first-order dependence on
volume fraction. In a dilute polydisperse suspension, particles of different sizes ai may
require different entry lengths Li to establish a stationary distribution, consistent with the
superposition approximation. Thus, we introduce the generalization

(
Li

H

)
ss
= 1

12φi∞

(
H
ai

)2

. (5.3)

Entry lengths Lexp used in experiments to test the predicted stationary distributions must
satisfy

Lexp/Liss > 1, (5.4)

where the index i is omitted for monodisperse suspensions. This criterion is satisfied for
most of the experimental comparisons presented below, but as noted below, there are
exceptions. The value of Lexp/Liss is reported in the figure captions with experimental
comparisons.

Dimensionless variables are used in this section with characteristic length set by the
boundary-layer thickness Xc, the boundary layer thicknesses of individual species Xii

c
(related to the collision cross-section by (4.7)), or the channel width H, as indicated.
The normalized number density N̄i, defined by (3.8b), is used for presenting theoretical
predictions (i.e. the number density of each particle species normalized by its density at
edge of the boundary layer).
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Figure 12. Dimensionless drift velocity (a) and diffusive (b) transport coefficients D̄ = DX−6
c and V̄ = VX−5

c
(3.23a,b) for monodisperse suspensions of particles with roughness δ = d/a and drops with viscosity ratio λ, as
indicated (solid lines); outer forms of transport coefficients (3.25a,b) (dotted lines). Boundary-layer thicknesses
Xc/a = 0.349 for rough particles, and Xc/a = 0.778 for drops.

5.1. Particle distribution in monodisperse suspensions
Results for monodisperse suspensions are presented here, including particle distributions,
the average deficit of particle density in the boundary layer compared with the singular
outer distribution and the underlying diffusive and drift velocity transport coefficients.
Predicted particle distributions are compared with predictions of the diffusive flux model
(Phillips et al. 1992) and the experiments of Koh et al. (1994).

The results in figure 12 show that the drift velocity V but not the diffusion coefficient
D vanishes at the centre of the channel, where the shear rate vanishes, and illustrate the
respective odd and even symmetries of these quantities and their behaviour for X2 → 0, as
discussed in § 2.3.3. These are the essential features that avoid the classical singularity
at points of vanishing shear rate predicted by (2.37) and instead yield the smooth,
non-singular behaviour predicted by (2.55). The dashed lines in figure 12 depict the local
form of the transport coefficients that apply for X2 > Xc. The anticipated second-derivative
discontinuity in the transport coefficients at X2 = Xc, discussed in § 2.3.3, is evident.
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Figure 13. Distribution (3.24) for monodisperse suspension of particles with roughness δ = d/a and drops
with viscosity ratio, λ, as indicated (solid lines); fit using (5.5) with ΔN̄ = 0.71 (dashed line); outer solution
(3.12) (dotted lines).
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10–2 100 102
λ
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δ

Figure 14. Average deficit of particle density in the boundary layer (3.27) for monodisperse suspensions of
particles with roughness δ = d/a (solid line) and drops with viscosity ratio λ (dashed line).

Examples of particle distributions for rough particles and emulsion drops are shown in
figure 13; the two distributions are barely distinguishable. Similar results were obtained
for other values of roughness and viscosity ratios. The average deficit of particle density
in the boundary layer is insensitive to the particle parameters (roughness and viscosity
ratio) and has an almost constant value, 0.711 ≤ ΔN̄ ≤ 0.714, over a wide range of
parameters, as seen in figure 14. The boundary-layer thickness (4.7) depends on details
of the contact interactions between particles, as shown in figures 8 and 9; however, the
particle distributions are almost independent of these details when displayed using the
rescaled coordinate, X2/Xc.

The above observation motivates a polynomial fit of the exact calculations. Enforcing
continuity up to second derivatives at y = ±1, consistent with the expected continuity,
discussed below (3.25a,b), and a prescribed value of the particle density deficit ΔN̄ yields
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Figure 15. Particle distribution in monodisperse suspension with roughness δ = d/a = 10−2, bulk volume
fraction φ∞ = 10 % and channel width H/a = 8.8. Dilute theory (3.26) (solid line); classical diffusive flux
model (5.6) (dashed line); data from Koh et al. (1994), Lexp/Lss = 5.0 (©).

N̄ .=
{

1+ t + 5
2

t2 + 35(3− 4ΔN̄)t3 |ỹ| < 1

|ỹ|−1/2 |ỹ| > 1
, (5.5)

where t = 1
4 (1− ỹ2) and ỹ = X2/H. Inserting the value of ΔN̄ from figure 14 yields an

approximation for N̄ with 0.2 % maximum pointwise relative error; using the nominal
value, ΔN̄ .= 0.71, yields an approximation error of less than 1 % for most values of
roughness or viscosity ratio. Given its accuracy, the polynomial fit is appropriate for use
with the (less accurate) superposition approximation.

An outline of the diffusive flux model is provided in Appendix B. For the purpose of
comparing the dilute theory with the diffusive flux model (Phillips et al. 1992), we employ
its frequently used approximate solution (Koh et al. 1994)

φ = φm

1+ α(X2/H)
, (5.6)

where φm is the maximum packing fraction at the centreline of the channel, herein taken
as φm = 0.68 following Koh et al. (1994), and α is a numerical coefficient adjusted to
enforce the bulk particle concentration (3.13). The prediction φ = φm at the centreline
is a consequence of using a suspension viscosity model as explained in Appendix B but
is inappropriate for dilute suspensions. Moreover, the cusp-shape profile is unphysical and
the corresponding absence of a particle scale is at odds with experiments (Koh et al. 1994).

The results in figures 15–17 show that the dilute theory is in approximate agreement
with experiments for dilute suspensions and avoids the centreline cusp characteristic of
the diffusive flux model. Empirical support for the predicted volume fraction and particle
size dependence of the dilute theory is discussed in § 5.3.

5.2. Particle distribution in bidisperse suspensions
Results for bidisperse suspensions are presented here, including particle distributions,
obtained by exact calculation and by superposition, and a parametric exploration of
polydisperse enrichment due to the interactions between particles of different sizes.
Predicted particle distributions are compared with the experiments of Lyon & Leal (1998b)
in bidisperse suspensions.
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Figure 16. Same as figure 15 except H/a = 15.6; data (Koh et al. 1994) Lexp/Lss = 1.6 (©).
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Figure 17. Same as figure 15 except φ∞ = 20 %; data (Koh et al. 1994) Lexp/Lss = 10. (©).

The bidisperse particle distributions shown in figure 18 show that small particles are
enriched relative to large particles at the centreline, consistent with the approximately
inverse square-root size dependence of the centreline density, discussed below (3.32).
When rescaled using superposition variables (3.30a) and (3.31a), the distributions for both
particles approximately collapse onto a universal distribution given by (5.5), as seen in
figure 19.

Polydisperse enrichment (3.33) is a measure of the effect of interactions between
particles of different sizes, an effect ignored by the superposition approximation.
According to the discussion in § 3.2.3 and the remark at the end of § 4.4, the superposition
approximation is expected to apply in bidisperse suspensions for κ � κ∗ and for κ ≈ 1,
as confirmed by the results presented in figures 20 and 21 which show ΔN̄ij → 0 in these
limits. Particle roughness δ1 and viscosity ratio λ determine the collision cross-section and
thus the critical size ratio κ∗ below which contact interactions are not predicted.

The results in figures 20 and 21 demonstrate that the superposition approximation
provides an estimate of the particle distribution for all size ratios (examples for
intermediate size ratio are shown in figure 18). The weak coupling for all size ratios is
likely due to the absence of coupling outside the boundary layer, as discussed in § 3.2.3.
For rough particles, the superposition approximation is accurate to within a few per
cent for a broad range of parameters; larger errors occur for emulsion drops because the
displacements resulting from collisions between unequal drops exceed those for unequal
rough particles, as seen by comparing figures 10(a) and 11(a).
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Figure 18. Particle distributions N̄i (i = 1, 2) in bidisperse suspensions with bulk volume fractions, φ1∞ =
φ2∞; rough particles δ1 = d/a1 = 10−3, size ratio κ = a2/a1 = 0.6 (a), κ = 0.8 (b); drops with viscosity
ratio λ = 1, κ = 1/2 (c); numerical solution of (3.9) and (3.18) for large (thick solid line) and small (thin solid
line) particles; superposition approximation (3.31a) (dashed lines), outer solution (3.12) (dotted lines).

Polydisperse enrichment in binary suspensions is most sensitive to size ratio.
Polydisperse enrichment of larger particles is predicted for rough particles at all size
ratios, as seen in panel (a) of figures 20 and 21, whereas smaller particles are enriched
by the presence of much larger particles (small size ratios) and depleted by the presence
of moderately larger particles. The particle distributions in panels (a) and (b) of figures 18
and 19 illustrate both regimes. By contrast, a polydisperse depletion of larger drops and
enhancement of smaller drops is predicted for emulsions over most of the parameter range,
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Figure 19. Same as figure 18 except rescaled using (3.30a) and (3.31a). Formula (3.24) (dashed lines).

as seen in panel (b) of figures 20 and 21. Panel (c) of figures 18 and 19 illustrates a typical
drop distribution and shows the bigger effect of polydispersity.

The bulk composition, φ2∞/φ1∞, modulates the magnitude of polydisperse enrichment
and depletion in suspensions of particles and drops but has less effect on whether it
occurs, according to the results shown in figure 20. The viscosity ratio λ also modulates
the magnitude of polydisperse enrichment and depletion as seen in figure 21(b). Particle
roughness has a weaker effect on the magnitude of polydisperse enrichment and depletion;
figure 21(a) shows that the polydisperse enrichment of large particles is insensitive to
roughness.

Figures 22 and 23 show particle distributions in bidisperse suspensions with 30 %
volume fraction. The dilute theory quantitatively predicts the distribution of large particles
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Figure 20. Polydisperse enrichment (3.33) for large (thick lines) and small (thin lines) particles, φ2∞/φ1∞ as
indicated; (a) particles with roughness δ1 = d/a1 = 10−3, (b) drops with viscosity ratio λ = 1.

in the experiments of Lyon & Leal (1998b), except near the boundary, |X2|/H ≥ 0.8,
where the data are reported to be unreliable (Lyon & Leal 1998b). Here, the superposition
approximation of the dilute theory is used. Similarly, assuming independent transport of
large particles, the authors fit their results for large particles using the suspension balance
model for a monodisperse suspension (Morris & Brady 1998).

By contrast, the experiments depicted in figures 22 and 23 show essentially no
flow-induced structuring of small particles; however, this is likely due to insufficient entry
length to achieve the stationary distribution of small particles, as suggested by the authors
(Lyon & Leal 1998b). As indicated in the figure captions, the entry length used in the
experiments, Lexp, is at least 3.5 times shorter than the estimated length, L2ss , required to
establish a stationary distribution of the smaller particles. The slow evolution of particle
microstructure is well known (Nott & Brady 1994; Phan-Thien & Fang 1996; Lyon & Leal
1998a); however, the hypothesis that particles of different sizes have distinct entry lengths
has received less consideration (Semwogerere & Weeks 2008). The experiments reported
by Lyon & Leal (1998b), including data not shown here, are consistent with distinct entry
lengths predicted by (5.3).

There have been few studies that measure polydisperse enrichment, i.e. deviations from
superposition resulting from hydrodynamic interactions between particles of different
size. Semwogerere & Weeks (2008) observed polydisperse enrichment of large or small
particles at the centreline and suggested that particles with a shorter entry length become
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Figure 21. Polydisperse enrichment (3.33) for large (thick lines) and small (thin lines) particles,
φ2∞/φ1∞ = 1; (a) particles, roughness δ1 = d/a1 as indicated; (b) drops, λ as indicated.
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φ

Figure 22. Particle distribution in bidisperse suspension with size ratio, κ = a2/a1 = 0.3, roughness δ1 =
d/a1 = 10−2, bulk volume fractions φ1 = 22.5 % and φ2 = 7.5 %, channel width H/a1 = 11; dilute theory
with superposition approximation (3.29) for large (thick line) and small (thin line) particles; data from Lyon &
Leal (1998b) large (�) and small (©) particles, Lexp/L1ss = 5.0, Lexp/L2ss = 0.14.

more enriched in the centre region. Their results are less relevant here because colloidal
(Brownian) particles were used in their study.

The experiments shown in figures 22 and 23 have been compared with a bidisperse
diffusive flux model (Shauly et al. 1998; Chun et al. 2019). In planar Poiseuille flow, the
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Figure 23. Same as figure 22, except for φ1 = φ2 = 15 %; data (Lyon & Leal 1998b) large (�) and small (©)
particles, Lexp/L1ss = 3.3, Lexp/L2ss = 0.28.

bidisperse diffusive flux model predicts cusp-shaped distributions of both particle species:
an upward cusp for the larger particles with a prescribed maximum volume fraction at
the centreline, and a downward cusp for smaller particles with zero concentration at the
centreline. By adjusting the physical parameters (size ratio, volume fractions and channel
width), it was shown that the distribution of large particles could be made to fit the data
but the predictions for the small particles were found to be qualitatively at odds with
observations (Lyon & Leal 1998b; Chun et al. 2019).

5.3. Limitation of dilute theory
Here, we propose a volume fraction criterion for application of the dilute theory. Data
aggregated from several experiments that satisfy this criterion and the required entry
length (5.4) are used to further validate the dilute theory.

At larger volume fractions, the dilute theory fails by predicting a centreline volume
fraction above the maximum packing limit. This observation provides a rough practical
upper bound of the bulk particle volume fraction φ∗∞ in a monodisperse suspension and
an upper bound φ∗i∞ for each particle species in a polydisperse suspension. Using the
superposition approximation (3.29) with polynomial fit (5.5), and setting the centreline
particle volume fraction equal to the maximum packing limit, φ(0) = φm, we obtain

φ∗i∞/φm ≈ 1.61ε
1/2
i , (5.7)

where εi is defined by (3.30b), and dropping the index i for monodisperse suspensions.
For particles with 1 % roughness, Xii

c
.= 0.52ai, yielding the upper bound φ∗i∞/φm ≈

1.16 (ai/H)1/2. Taking φm = 0.68, we find φ∗∞ ≈ 27 % for the conditions described in
figures 15 and 17, and φ∗∞ ≈ 20 % for those in figure 16. For the conditions in figures 22
and 23, we have φ∗1∞ ≈ 24 % and φ∗2∞ ≈ 13 % but a smaller value may be warranted to
accommodate a smaller value for φm.

All experiments from Koh et al. (1994) and Lyon & Leal (1998a) that satisfy constraint
(5.7) and have the required entry length (5.4) are aggregated in figure 24, omitting data
close to the wall, |X2|/H ≥ 0.8, as suggested by Lyon & Leal (1998b). According to (3.29),
these data should collapse onto a single curve when re-plotted using

N̄exp = φi/φi∞
f (εi)

, (5.8)
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Figure 24. Data for monodisperse suspensions from Koh et al. (1994) φ = 10 %, H/a = 8.8, Lexp/Lss = 5.0
(©), H/a = 15.6, Lexp/Lss = 1.6 (�); φ = 20 %, H/a = 8.8, Lexp/Lss = 10. (♦), H/a = 15.6, Lexp/Lss =
3.2 (�). Data for large particles in bidisperse suspensions from Lyon & Leal (1998b) H/a1 =
11, φ1 = 7.5 %, Lexp/L1ss = 1.7 (�), φ1 = 10 %, Lexp/L1ss = 2.2 (�), φ1 = 15 %, Lexp/L1ss = 3.3 (�), φ1 =
20 %, Lexp/L1ss = 4.4 (	), φ1 = 22.5 %, Lexp/L1ss = 5 (•).
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Figure 25. Data from figure 24 rescaled using (5.8); theoretical curve N̄ given by (3.24) (solid line).

where εi is given by (3.30b) and f (x) is defined by (3.28) with ΔN̄ .= 0.71. The index i
is dropped for monodisperse suspensions. As shown in figure 25, the data approximately
collapse according to the dilute theory (and superposition approximation for bidisperse
systems) when re-plotted this way.

The collapse of data for large particles in bidisperse suspensions (filled symbols)
demonstrates the proportionality to bulk volume fraction because these data differ only
in volume fraction. This is also seen in the collapse of data for monodisperse suspensions
with 10 % and 20 % volume fractions with the same size particles (compare data points©
with ♦ and � with �). Validation for the size dependence predicted by the dilute theory
is seen by comparing data for suspensions with different sized particles at fixed volume
fractions (compare© with � and ♦ with �).

Although the data are seen to collapse when re-plotted according to (5.8) in figure 25,
the shape of the universal curve (solid line) is not accurately obtained. We note that the data
for large particles from Lyon & Leal (1998b) (filled symbols) appear to attain the shape
of the universal curve more closely than the data from Koh et al. (1994) (open symbols),
consistent with the closer, quantitative agreement seen in figures 22 and 23 compared with
that seen in figures 15–17. Systematic errors in the earlier study, discussed by Lyon & Leal
(1998a), might account for this difference.
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6. Conclusions

In this work we present a pairwise theory for particle distributions in dilute suspensions
undergoing two-dimensional unidirectional flows, including planar Poiseuille and shear
flows. There are no adjustable parameters.

A boundary layer is shown to form where the shear rate vanishes at the centre of
Poiseuille flow; its thickness is set by the maximum of particle-related scales, including
collision cross-sections, and net pairwise particle displacements. Size segregation occurs
in the boundary layer leading to enrichment of smaller particles. Centreline particle
densities scale approximately with the inverse square root of particle size. The finding
of linearly vanishing drift velocities and non-vanishing diffusive fluxes in the boundary
layer avoids the singular distribution predicted by other models. Outside of the boundary
layer, particle distributions for each particle species are decoupled, independent of particle
size, and obey a power law with exponent−β/2 in a power-law shear rate with exponent β.
These results hold for systems with arbitrary symmetry-breaking pair interactions between
particles.

Pair displacements for hydrodynamically interacting particles that undergo symmetry-
breaking contact interactions were reduced to quadratures of mobility functions for
spherical particles or drops. This result qualitatively advances the computational
efficiency of calculations for particle distributions, making feasible an exploration of
the three-dimensional parameter space that describes particle distributions in bidisperse
suspensions, including size ratio, bulk composition and parameters that characterize
particle interactions. Specific calculations were performed for rough particles and
permeable particles (via an established equivalence relation) and for non-coalescing
spherical drops.

After rescaling by the collision cross-section, particle distributions in monodisperse
suspensions have an almost universal shape, nearly independent of particle roughness or
drop viscosity. Polydisperse enrichment and depletion in bidisperse suspensions due to the
coupling between particles of different sizes enhances the centreline concentration of large
particles for the entire parameter space, whereas small particles are enriched for smaller
size ratios and depleted for larger. By contrast, drops with mobile interfaces generally
show polydisperse centreline enrichment of smaller drops and depletion of larger ones.
Polydisperse enrichment is a comparatively weak effect, however, probably resulting from
the absence of coupling between particle distributions outside the boundary layer. This
allows particle distributions in polydisperse suspensions to be approximately described by
a superposition of monodisperse distributions.

Within its limitations, the dilute theory is shown to be in agreement with available
experiments for moderately dilute suspensions of non-Brownian particles. The predicted
dependence on the bulk volume fraction and particle size are supported by these
results. The experiments moreover support the superposition approximation. Some of
the discrepancy between experiments and theory is likely the use of inadequate entry
lengths. A transient analysis of particle distributions will help to confirm the theory.
The superposition approximation may breakdown in smaller channels with significant
size-dependent wall migration.
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Appendix A. Derivation of transport coefficients in planar Poiseuille flows

In this section, we present a derivation of the transport coefficients in the velocity-gradient
direction in regions where the shear rate vanishes. Inserting the exact relative particle
velocity magnitude (2.34) into the particle flux integral (2.4), and transforming to the
cylindrical coordinate system shown in figure 2, yields

Fij2(X2) = γ̇ ′2
∫ 2π

0

∫ rij
c

0
r−∞|sin θ |

[∫ 0

−ΔXij
2

ni(X
i,−∞
2 )nj(X

j,−∞
2 )

∣∣∣∣X2 + Xi,−∞
2 + 1

2
r−∞ sin θ

∣∣∣∣ dXi,−∞
2

]
r−∞ dr−∞ dθ. (A1)

Here, Xi,−∞
2 is the distance of particle-i from the plane X2 where the flux is measured and

Xj,−∞
2 is the distance of particle-j from this plane, as depicted in figure 1.
We proceed by inserting linear variations in number density (2.13) into (A1) but the

complete velocity field (2.34) is used here, not a linearized approximation, because
the latter is inconsistent in the region where the shear rate vanishes. Splitting the
angular θ -integration in (A1) into two ranges: 0 ≤ θ < π and π ≤ θ < 2π, and using
the symmetry relation (2.7) to consolidate integration to the range 0 ≤ θ < π yields

I(1)
ij (X2) = 1

2
1
|X2|

∫ π

0

∫ rij
c

0
r−∞ sin θ

[∫ −ΔXij
2

0

(∣∣∣∣Xi,−∞
2 + 1

2
r−∞ sin θ − X2

∣∣∣∣
+
∣∣∣∣Xi,−∞

2 + 1
2

r−∞ sin θ + X2

∣∣∣∣
)

Xi,−∞
2 dXi,−∞

2

]
r−∞ dr−∞ dθ, (A2)

I(2)
ij (X2) = 1

2
1
|X2|

∫ π

0

∫ rij
c

0
r−∞ sin θ

[∫ −ΔXij
2

0

(∣∣∣∣Xi,−∞
2 + 1

2
r−∞ sin θ − X2

∣∣∣∣
+
∣∣∣∣Xi,−∞

2 + 1
2

r−∞ sin θ + X2

∣∣∣∣
)

(r−∞ sin θ + Xi,−∞
2 ) dXi,−∞

2

]
r−∞ dr−∞ dθ, (A3)

and

I(3)
ij (X2) = 1

2

∫ π

0

∫ rij
c

0
r−∞ sin θ

[∫ −ΔXij
2

0

(∣∣∣∣Xi,−∞
2 + 1

2
r−∞ sin θ − X2

∣∣∣∣
−
∣∣∣∣Xi,−∞

2 + 1
2

r−∞ sin θ + X2

∣∣∣∣
)

dXi,−∞
2

]
r−∞ dr−∞ dθ, (A4)

where −ΔXij
2 > 0 according to (2.49).

Equations (A2)–(A4) indicate that integrals I(1)(X2) and I(2)(X2) are even functions and
I(3)(X2) is an odd function of X2. Accordingly, we can make the replacement X2 → |X2|
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in these equations without other changes, except multiplying (A4) by sign(X2). After
so doing, the absolute value can be removed from the second term in each integrand
because its argument, Xi,−∞

2 + 1
2 r−∞ sin θ + |X2|, is intrinsically positive for 0 < θ < π.

However, removing the absolute value of the first term of each integrand requires splitting
the range of the Xi,−∞

2 integration in two intervals,

0 < Xi,−∞
2 < −ΔXij

2 B(X′2), (A5)

and

−ΔXij
2 B(X′2) < Xi,−∞

2 < −ΔXij
2 , (A6)

where X′2 is defined by (2.47) and B(x) is the ramp function (2.48). After implementing
the foregoing manoeuvres, integrals (A2)–(A4) become

I(1)
ij (X2) = 1

|X2|
∫ π

0

∫ rij
c

0
r−∞ sin θ

[∫ −ΔXij
2 B(X′2)

0
|X2|Xi,−∞

2 dXi,−∞
2

+
∫ −ΔXij

2

−ΔXij
2 B(X′2)

(
Xi,−∞

2 + 1
2

r−∞ sin θ

)
Xi,−∞

2 dXi,−∞
2

]
r−∞ dr−∞ dθ, (A7)

I(2)
ij (X2) = 1

|X2|
∫ π

0

∫ rij
c

0
r−∞ sin θ

[∫ −ΔXij
2 B(X′2)

0
|X2|(Xi,−∞

2 + r−∞ sin θ) dXi,−∞
2

+
∫ −ΔXij

2

−ΔXij
2 B(X′2)

(
Xi,−∞

2 + 1
2

r−∞ sin θ

)
(Xi,−∞

2 + r−∞ sin θ) dXi,−∞
2

]

r−∞ dr−∞ dθ, (A8)

I(3)
ij (X2) = sign(X2)

∫ π

0

∫ rij
c

0
r−∞ sin θ

[∫ −ΔXij
2 B(X′2)

0

(
Xi,−∞

2 + 1
2

r−∞ sin θ

)
dXi,−∞

2

+
∫ −ΔXij

2

−ΔXij
2 B(X′2)

|X2| dXi,−∞
2

]
r−∞ dr−∞ dθ. (A9)

In this form, the Xi,−∞
2 integration can be performed to yield the desired result given by

(2.44)–(2.46).

Appendix B. Diffusive flux model

For comparison purposes, a brief outline of the diffusive flux model (Phillips et al. 1992)
is presented here, including a local analysis of the predicted behaviour at the centreline of
the flow. From (11) in Phillips et al. (1992), the stationary particle distribution is governed
by

Kc(φ
2γ ′ + γφφ′)+ Kη(γ [log η(φ)]′φ2) = 0, (B1)

where Kc and Kη are dimensionless constants, γ is the shear rate non-dimensionalized by
v0/H, η(φ) is the particle-concentration-dependent viscosity of the suspension and primes
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denote derivatives with respect to ỹ = X2/H. By a momentum balance, the shear rate is
given by

γ = |ỹ|/η(φ). (B2)

Krieger’s empirical model (Krieger 1972) for the suspension viscosity is used to complete
the description

η/η0 = (1− φ/φm)−β, (B3)

where η0 is the viscosity of the continuous-phase liquid. Here, φ = φm is the maximum
packing fraction of the suspension, where the viscosity diverges, and β

.= 1.82. Note that
particle size does not enter the diffusive flux model.

The shear rate vanishes at the centreline but γ ′ does not. According to (B1), a
non-singular particle distribution requires divergence of the viscosity, thus φ→ φm is
required at ỹ = 0. The solution of (B1)–(B3) has a cusp at the centreline,

φ/φm = 1−M4|ỹ|c + O(ỹ2c), ỹ→ 0, (B4)

where M4 is a positive constant determined by the solution away from the centre and the
exponent is given by

c = Kc

Kη − Kc
β−1. (B5)

Phillips et al. (1992) report Kc/Kη
.= 0.66, thus c ≈ 1.

An approximate solution of (B1)–(B3) for planar Poiseuille flow (Koh et al. 1994),
consistent with the local analysis above, is given by (5.6).

Appendix C. Analytical integration of contacting pair trajectories

Analytical integration formulas are derived here for contacting particle trajectories, such
as those shown in figures 4 and 5. As illustrated, widely separated particles with upstream
offsets within the collision cross-section are brought together by the imposed flow, reach
the contact surface (ii), move along the contact surface in the compressional quadrant of
the flow (ii–iii), separate at the edge of the compressional quadrant (iii) and again become
widely separated. A contact force prevents particle overlap on the contact surface portion
of trajectories (ii–iii). The relative and pair motion of the particles are separately treated.
The former has been previously analysed in classical works as cited below; integration of
the pair motion is new. Both are needed to determine particle displacements.

C.1. Particle trajectories
In a linear flow under creeping flow conditions, the trajectories of non-Brownian, neutrally
buoyant, inertialess particles with labels 1 and 2 are described by Batchelor & Green
(1972b)

V 1 = V (∞)
1 − [A1(s)r̂r̂ + B1(s)(I − r̂r̂)] · E · r̂, (C1)

and
V 2 = V (∞)

2 − [A2(s)r̂r̂ + B2(s)(I − r̂r̂)] · E · r̂, (C2)

where, r = X (2) − X (1) is the vector between the particle centres, as shown in figure 26,
r̂ = r/|r| is a unit vector along the line of centres, I is the identity tensor and s = |r|/ā is
the centre-to-centre separation normalized by the average radius. The undisturbed particle
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x2

x3

x1

r

1

2

θ

φ

Figure 26. Spherical coordinate system (r, θ, φ) for pair trajectories, where x1 = r sin θ cos φ,
x2 = r sin θ sin φ, x3 = r cos θ .

velocities are V (∞)
i = E · X (i) + ω × X (i) (i = 1, 2), where E is the rate of strain, and ω

is the angular velocity. In simple shear flow

E = γ̇

⎛
⎝ 0 1/2 0

1/2 0 0
0 0 0

⎞
⎠ , ω = γ̇

(
0, 0, −1/2

)
, (C3a,b)

where γ̇ is the magnitude of the local shear rate. In (C1) and (C2), Ai and Bi (i =
1, 2), respectively, are mobility functions that incorporate the effect of hydrodynamic
interactions on the particle velocities parallel and normal to the line of centres of the
pair. Mobility functions depend also on the particle size ratio κ = a2/a1, and for spherical
drops, also on the drop-to-continuous-phase viscosity ratio, λ.

C.2. Trajectory integration
The relative motion of the particles are described by the trajectory equations (Batchelor &
Green 1972b)

ds
dt
= (1− A)s sin2 θ sin φ cos φ, (C4)

dθ

dt
= (1− B) sin θ cos θ sin φ cos φ, (C5)

dφ

dt
= −1

2
+ 1

2
(1− B) cos 2φ, (C6)

where the spherical coordinates defined in figure 26 are used. The pair motion of the
particles is described by

dx̄1

dt
= x̄2 −

[
Bpx2

2
+ (Ap − Bp)

x2
1x2

s2

]
, (C7)
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dx̄2

dt
= −

[
Bpx1

2
+ (Ap − Bp)

x1x2
2

s2

]
, (C8)

dx̄3

dt
= −(Ap − Bp)

x1x2x3

s2 . (C9)

Here, t is strain, and x and x̄, respectively, are the relative and pair positions

x = X (2) − X (1), x̄ = X (1) + X (2). (C10a,b)
Relative and pair mobilities are denoted M = M2 −M1 and Mp = M1 +M2, respectively,
where M = A or B. In prior analyses, only the relative mobilities were required (Batchelor
& Green 1972a,b; Zinchenko 1978, 1980, 1983; Wilson 2005). Here, pair mobilities
are also required because the displacements of both particles, not just their relative
displacement, are needed. By symmetry, we can restrict our attention to relative positions
x in the positive quarter-plane. Accordingly, the initial positions are

x(i)
1 = −∞, x(i)

2 , x(i)
3 ≥ 0, (C11a,b)

but x̄(i) is arbitrary because only differences of the pair position are significant.
Integrating equations (C4)–(C6) with initial conditions (C11a) yields (Batchelor &

Green 1972b; Zinchenko 1983)
x2(s) = ϕ(s)[(x∞2 )2 + Ψ (s)]1/2, (C12)

x3(s) = x∞3 ϕ(s), (C13)

x1(s) = ∓
√

s2 − x2
2 − x2

3, (C14)

where x∞2 and x∞3 are the cross-flow coordinates of the far-field relative position of the
particles at s→∞. The functions ϕ(s) and Ψ (s) are given by

ϕ(s) = exp
[∫ ∞

s

A(s′)− B(s′)
1− A(s′)

ds′

s′

]
, (C15)

and

Ψ (s) =
∫ ∞

s

B(s′)s′

[1− A(s′)]ϕ2(s′)
ds′. (C16)

The minus sign applies in (C14) for π/2 < φ < π; the + sign applies for 0 < φ < π/2.
Dividing equations (C8) and (C9) by (C4) and integrating yields the pair positions

x̄2(s) = x̄∞2 + Ψ̄ (s, x∞2 ), (C17)
and

x̄3(s) = x̄∞3 +�ϕ(s, x∞3 ), (C18)
where x̄∞2 and x̄∞3 are the corresponding coordinates of the far-field pair position. The
functions �ϕ(s, x∞3 ) and Ψ̄ (s, x∞2 ) are defined

ϕ̄(s, x∞3 ) =
∫ ∞

s

[Ap(s′)− Bp(s′)]x3(s′, x∞3 )

[1− A(s′)]s′
ds′, (C19)

and

Ψ̄ (s, x∞2 ) =
∫ ∞

s

[
Bp(s′)s′

2[1− A(s′)]x2(s′, x∞2 )
+ [Ap(s′)− Bp(s′)]x2(s′, x∞2 )

[1− A(s′)]s′

]
ds′, (C20)

where x2(s, x∞2 ) and x3(s, x∞3 ) are defined by (C12) and (C13). The streamwise coordinate
of the pair position, x̄1, does not affect the cross-flow particle distribution.
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C.2.1. Trajectories on contact surface
The contact surface is defined by s = s∗, where s∗ = 2 for permeable particles and drops
and s∗ = 2+ δ̄ for particles with surface roughness. In the compressional quadrant of the
flow, the relative trajectory on the contact surface is described by setting the relative radial
velocity to zero; particles separate in the extensional quadrant. The polar and azimuthal
angles (θ, φ) evolve according to (C5) and (C6) over the range

π

2
≤ φ ≤ φ0, (C21)

where (θ0, φ0) is the initial point of contact (point (ii) in figures 4 and 5); separation occurs
at φ = π/2 (point (iii)). Dividing the two equations and integrating yields (Rother & Davis
2001)

θ1(φ) = tan−1

(
tan θ0

√
1− B∗1 cos(2φ0)

1− B∗1 cos 2φ

)
, (C22)

where B∗1 = 1− B(s∗).
The pair motion on the contact surface is obtained by dividing (C8) and (C9) by (C6)

and integrating the range (C21) to yield,

x̄∗2(φ) = x̄∗2(φ0)+Ω(φ), (C23)

and

x̄∗3(φ) = x̄∗3(φ0)+ χ(φ), (C24)

where the functions Ω(φ) and χ(φ) are defined by

Ω(φ) =
∫ φ

φ0

[r̂2
3(φ
′)− 1][B∗pr̂1(φ

′)+ 2(A′p − B∗p)r̂1(φ
′)r̂2

2(φ
′)]

1
2 B∗[2 r̂2

2(φ
′)+ r̂2

3(φ
′)− 1]− r̂2

2(φ
′)

dφ′, (C25)

and

χ(φ) =
∫ φ

φ0

[r̂2
3(φ
′)− 1][2(A′p − B∗p)r̂1(φ

′)r̂2(φ
′)r̂3(φ

′)]
1
2 B∗[2r̂2

2(φ
′)+ r̂2

3(φ
′)− 1]− r̂2

2(φ
′)

dφ′. (C26)

Here, r̂ = (r̂1, r̂2, r̂3) is the relative position vector on the contact surface

r̂ = (sin[θ1(φ)] cos φ, sin[θ1(φ)] sin φ, cos[θ1(φ)]), (C27)

where θ1(φ) is given by (C22). The mobility functions B∗p and B∗ in (C25) and (C26)
are evaluated at s = s∗, except that contact friction for rough particles, enters through a
modified value of B∗, as discussed in § C.4.

The quantity A′p in (C25) and (C26) is the modified contact mobility that encompasses
the correction resulting from the action of the contact force, Fc. The latter quantity is

952 A2-45

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.786


R.B. Reboucas, A.Z. Zinchenko and M. Loewenberg

required to prevent particle overlap and is determined by the force balance,

V 12 · r̂ = 2(1− A∗)(E : r̂r̂)− Fc

μā2γ̇
G∗ = 0, (C28)

where μ is the continuous-phase viscosity, and G∗ is the relative radial mobility function
evaluated at contact. The contact force modifies the pair velocity for unequal size particles,

V p
12 · r̂ = −2A∗p(E : r̂r̂)− Fc

μā2γ̇
G∗p, (C29)

where G∗p is the pair radial mobility function evaluated at contact. Substituting the normal
force derived from (C28) into (C29) yields

V p
12 · r̂ = −2A′p(E : r̂r̂), (C30)

where A′p = A∗p + (1− A∗)G∗p/G∗ is the modified axisymmetric pair mobility that appears
in formulas (C25) and (C26) (Zarraga & Leighton 2001). The modified mobility represents
a higher-order correction, e.g. an O(δ̄) correction for rough particles and an O(K2/5)
correction for permeable particles. There is no contact force for non-coalescing spherical
drops because 1− A∗ = 0, according to the model described in § 4.1.3.

C.3. Net cross-flow displacements
The indefinite trajectory integrals derived in § C.2 are combined here to yield formulas for
the net relative and pair displacements in terms of the pair mobility functions. Relative
and pair trajectory segments, (i–ii), (ii–iii) and (iii–iv) are defined in figure 4.

From (C12) and (C13), the relative cross-flow position at the contact point is

x(ii)
2 = ϕ∗[(x(i)

2 )2 + Ψ ∗]1/2, x(ii)
3 = ϕ∗x(i)

3 , (C31a,b)

where ϕ∗ and Ψ ∗ are the functions (C15) and (C16) evaluated on the contact surface,
s = s∗, and x(i) is the initial condition (C11a,b). The polar and azimuthal angles at the
initial contact point (θ0, φ0), are given by

2 cos θ0 = x(ii)
3 , 2 sin θ0 sin φ0 = x(ii)

2 . (C32a,b)

The separation point is given by

x(iii)
2 = 2 sin

[
θ1

(π

2

)]
x(iii)

3 = 2 cos
[
θ1

(π

2

)]
, (C33a,b)

where θ1(x) is the function (C22). The final relative position of the particles in the
cross-flow plane is

x(iv)
2 =

⎡
⎣(x(iii)

2
ϕ∗

)2

− Ψ ∗
⎤
⎦

1/2

, x(iv)
3 = x(iii)

3
ϕ∗

. (C34a,b)

The displacement relations for the pair motion are obtained from (C17) and (C18) and
(C23) and (C24), yielding the pair position

x̄(ii)
2 = Ψ̄ ∗(x(i)

2 ), x̄(ii)
3 = �ϕ∗(x(i)

3 ), (C35a,b)
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where ϕ̄∗ and Ψ̄ ∗ are the functions (C19) and (C20) evaluated at s = s∗. The separation
point is

x̄(iii)
2 = x̄(ii)

2 +Ω
(π

2

)
, x̄(iii)

3 = x̄(ii)
3 + χ

(π

2

)
, (C36a,b)

where Ω(x) and χ(x) are the functions (C25) and (C26). The final cross-flow pair position
is

x̄(iv)
2 = x̄(iii)

2 + Ψ̄ ∗(x(iii)
2 ), x̄(iv)

3 = x̄(iii)
3 +�ϕ∗(x(iii)

3 ). (C37a,b)

The above results are combined to obtain the net relative and pair displacements

Δxk = x(iv)
k − x(i)

k , Δx̄k = x̄(iv)
k − x̄(i)

k , (k = 2, 3). (C38a,b)

The net displacements of each particle, ΔX12
k and ΔX21

k (k = 2, 3), are then obtained as

ΔX12
k = 1

2(Δx̄k −Δxk), ΔX21
k = 1

2(Δx̄k +Δxk). (C39a,b)

Examples of particle displacements are shown in figures 6 and 7.

C.3.1. Collision cross-section
Combining (C34a,b) and using

(x(iii)
2 )2 + (x(iii)

3 )2 = (s∗)2, (x(iv)
2 )2 + (x(iv)

3 )2 = (rc)
2, (C40a,b)

yields the radius of the upstream collision cross-section,

rc

ā
=
[(

s∗

ϕ∗

)2

− Ψ ∗
]1/2

, (C41)

where ϕ∗ and Ψ ∗ are the mobility function integrals (C15) and (C16) evaluated on the
contact surface, s = s∗. Figures 8 and 9 show the radius of the collision cross-section for
equal size particles.

C.4. Contact friction
Contact friction between rough particles affects only their relative motion on the contact
surface, described by (C22) and enters through the transverse relative mobility function,
B∗. Frictionless solid contact corresponds to B∗ = B(s∗), where s∗ = 2+ δ̄. Finite contact
friction increases the value of B∗. The limit of tangentially locking particle contacts is
obtained using the contact value of the mobility function for smooth spheres, i.e. B∗ =
B(2). By increasing B∗, friction acts to move the polar angle between the particles from
its incoming value, θ0, towards θ = π/2 according to (C22). At the point of separation,
φ = π/2, we have ∣∣∣θ1

(π

2

)
− π

2

∣∣∣ <

∣∣∣θ0 − π

2

∣∣∣ , (C42)

under the assumption that φ0 < π/2. Thus, friction acts to increase relative particle
displacements in the X2-direction and diminish them in the X3-direction, according to
(C33a,b).
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C.4.1. Contacting permeable particles
The results in figure 5 of Reboucas & Loewenberg (2022) show that the contact value
of the transverse relative mobility for permeable particles, B∗, has the upper and lower
bounds,

B(s∗eq) < B∗ ≤ B(2), (C43)

where B(2) is the contact value of the hard-sphere mobility function, corresponding to
rough particles with tangentially locking particle contacts; the equality holds for κ = 1
because permeability has no effect on the transverse relative mobility for equal-size
particles (Reboucas & Loewenberg 2022). The quantity B(s∗eq) corresponds to frictionless
contact between particles with equivalent roughness, where s∗eq = 2+ δ̄eq with δ̄eq defined
by (4.1). Accordingly, particle displacements for permeable particles lie between the
displacements for equivalent rough particles with frictionless and tangentially locking
particle contacts.
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